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In models of cosmological inflation motivated by dynamical supersymmetry
breaking, the potential driving inflation may be characterized by inverse pow-
ers of a scalar field. These models produce observables similar to those typical
of the hybrid inflation scenario: negligible production of tensor (gravitational
wave) modes, and a blue scalar spectral index. In this short note, we show
that, unlike standard hybrid inflation models, dynamical supersymmetric in-
flation (DSI) predicts a measurable deviation from a power-law spectrum of
fluctuations, with a variation in the scalar spectral index |dn/d(ln k)| may
be as large as 0.05. DSI can be observationally distinguished from other hy-
brid models with cosmic microwave background measurements of the planned
sensitivity of the ESA’s Planck Surveyor.
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The existence of an inflationary stage during the evolution of the early Universe is

usually invoked to solve the flatness and the horizon problems of the standard big bang

cosmology [1]. In the simplest picture, the vacuum energy driving inflation is generated

by a single scalar field φ displaced from the minimum of a potential V (φ). Quantum

fluctuations of the inflaton field give rise to temperature perturbations in the Cosmic

Microwave Background (CMB) at the level of δH = 1.94 × 10−5 and these fluctuations

may be responsible for the generation of structure formation.

The fluctuations arising from the quantum fluctuations of the inflaton field may be

characterized by a power spectrum, which is the Fourier transform of the two-point

density autocorrelation function. The power spectrum δ2
H has the primordial form pro-

portional to kn, where k is the amplitude of the Fourier wavevector and n denotes the

spectral index.

Many theoretically appealing models of inflation [2] are characterized by a nearly

scale invariant spectrum with the spectral index n very close to unity. This is not an

absolute prediction, though. Inflationary models generically predict that the spectral in-

dex n of the density perturbation spectrum does depend upon the scale (or the comoving

wavenumber k), which signals the breakdown of the power-law assumption for the power

spectrum [3, 4, 5]. What is even more intriguing is that some models of inflation predict-

ing a negligible gravitational wave contribution to the microwave anisotropy, may present

a strong and possibly detectable scale dependence of the spectral index. This issue has

been recently analyzed in Ref. [6] where particular attention was paid to the measura-

bility of this scale dependence by the planned mission Planck, including the influence of

polarization on the parameter estimation. Since Planck will be able to probe a range of

multipoles from ` = 2 to about 2000 and will measure the spectral index n of a perfect

power-law spectrum to an accuracy of better than ±0.01, this implies that even small

variations of the spectral index with the scale, dn/dln k >∼ 0.01 should be measurable
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[6]. (Scale dependence in the spectral index results in an increase in the measurement

uncertainty by about an order of magnitude with respect to the case in which n is scale

independent. Other parameters are much more mildly affected.) This prediction is sig-

nificant because it means that observations of the temperature anisotropies in the cosmic

microwave background at the accuracy expected from Planck will allow us to distinguish

between models that would otherwise be degenerate, especially in the case of models

which predict no detectable gravitational wave contribution to the CMB anisotropy.

In this paper we show that in the class of supersymmetric inflationary models dubbed

“Dynamical Supersymmetric Inflation (DSI)” [7], dn/dln k is detectable: if some signifi-

cant scale dependence of the spectral index is measured, combined with the absence of

any gravitational wave contribution to the CMB anisotropy, this might help us in getting

some deeper insight into the nature of supersymmetry breaking. A generic feature of

models of nonperturbative gauge dynamics in supersymmetry [8] is the presence of a

“scalar field” potential of the form

V (φ) =
Λp+4

3

φp
, (1)

where the field φ is in general a label for a condensate. An inflationary phase in the very

early universe is a generic and natural characteristic of dynamical supersymmetry break-

ing models [7]. Like models of hybrid inflation [9, 10], these models are characterized by

a potential dominated by a constant term V0, and require coupling to another sector to

end inflation when φ reaches a critical value φc. Unlike standard hybrid inflation models,

models of this type postulate a field far from the minimum of the potential. Models of

cosmological inflation based on dynamical supersymmetry breaking are not only well mo-

tivated from a particle physics standpoint, but also very naturally meet constraints from

observations of the CMB. These models have the unusual characteristic of possessing an

upper limit on the total amount of inflation, as well as the feature of predicting a “blue”
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spectral index, n > 1. Furthermore, significantly blue spectra can occur for reasonable

values of the parameters of the theory. For those values, a strong scale dependence of

the spectral index is present providing us with a unique tool for confirming or disproving

this class of models.

The expressions for the spectra from slow-roll inflation are well known [11]. The

slow-roll approximation during inflation is consistent if both the slope and curvature of

the inflaton potential V (φ) are small. This condition is conventionally expressed in terms

of the “slow-roll parameters” ε and η, where

ε ≡
M2

Pl

4π

(
H ′ (φ)

H (φ)

)2

'
M2

Pl

16π

(
V ′ (φ)

V (φ)

)2

, (2)

and

η (φ) ≡
M2

Pl

4π

(
H ′′ (φ)

H (φ)

)
'
M2

Pl

8π

V ′′ (φ)

V (φ)
−

1

2

(
V ′ (φ)

V (φ)

)2
 . (3)

Here MPl ' 1.2 × 1019 geV is the Planck mass. Slow-roll is then a consistent ap-

proximation for ε, η � 1. Scalar fluctuations can be quantitatively characterized by

perturbations PR in the intrinsic curvature

P
1/2
R (k) =

1
√
π

H

MPl

√
ε

∣∣∣∣∣
k−1=dH

, (4)

where H(φ) ' (8π/3M2
Pl)V (φ) is the Hubble parameter during inflation. The fluctuation

power is in general a function of wavenumber k, and is evaluated when a given mode

crosses outside the horizon during inflation, k−1 = dH . Outside the horizon, modes do

not evolve, so the amplitude of the mode when it crosses back inside the horizon during a

later radiation or matter dominated epoch is just its value when it left the horizon during

inflation. The spectral index n is defined by assuming an approximately power-law form

for PR with

n− 1 ≡
d ln (PR)

d ln k
, (5)
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so that a scale-invariant spectrum, in which modes have constant amplitude at horizon

crossing, is characterized by n = 1.

The spectral index can be expressed in terms of the slow-roll parameters

n− 1 = −4ε+ 2η, (6)

and its derivative is given by [5]

dn

dln k
= −8 ε2 + 10 εη − 2ξ2, (7)

where

ξ2 ≡
M4

Pl

16π2

H ′ (φ)H ′′′ (φ)

H2 (φ)

'
M4

Pl

64π2

V ′ (φ)V ′′′ (φ)

[V (φ)]2
−

3

2

(
V ′ (φ)

V (φ)

)2 (
V ′′ (φ)

V (φ)

)
+

3

4

(
V ′ (φ)

V (φ)

)4
 (8)

is another slow-roll parameter. Another crucial inflationary parameter is the influence

of gravitational waves relative to density perturbation, on large-angle microwave back-

ground anisotropies, defined as a ratio of quadrupoles,

r ≡
CTensor

2

CScalar
2

' 14 ε. (9)

Using this parameter, we can express (7) in the following form [5]

dn

dln k
' 0.12 r2 − 0.57 r(1− n)−

M4
Pl

32π2

(
V ′V ′′′

V 2

)
. (10)

In Ref. [4] Copeland et al. concentrate on the case in which the last term in this

expression, proportional to V ′′′, vanishes. In this case, measurable variation in n is

dependent on a sufficiently large tensor amplitude r. The situation here is exactly the

opposite: DSI models are characterized by extremely small values of r, but nonetheless

the scale dependence of the spectral index may be detected even though no trace of

gravitational waves is found in the CMB anisotropy. This is because the last term in the
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expression (10), ξ2, turns out to be crucial in DSI models and gives a large contribution

to |dn/d(ln k)| during slow roll.

We now briefly discuss the basic features of DSI models. (The interested reader is

referred to ref. [7] for more details.) The potential is described by a single degree of

freedom φ, of the general form

V (φ) = V0 +
Λp+4

3

φp
+ · · · , (11)

where the dots mean the presence of nonrenormalizable terms which are not relevant for

the present discussion, but will induce a vacuum expectation value (VEV) 〈φ〉. In the

limit φ� 〈φ〉, the φ−p term dominates the dynamics,

V (φ) ' V0 +
Λp+4

3

φp
, φ� 〈φ〉

= V0

[
1 + α

(
MPl

φ

)p]
, (12)

where

α ≡
Λp+4

3

Mp
PlV0

. (13)

We assume that the constant V0 dominates the potential, or α � (φ/MPl)
p. (The case

where the potential is dominated by the φ−p term was considered in Ref. [12].) In this

limit, the first slow-roll parameter is

ε (φ) =
M2

Pl

16π

(
V ′ (φ)

V (φ)

)2

=

(
φ0

φ

)2(p+1)

, (14)

where(
φ0

MPl

)
=

(
p

4
√
π
α

)1/(p+1)

. (15)

The second slow-roll parameter η is

η (φ) = ε−
MPl

4
√
π

ε′
√
ε

5



=

(
φ0

φ

)2(p+1)

+

(
p+ 1

2
√
π

)(
φ0

φ

)p+1(
MPl

φ

)
. (16)

Note that for φ ' φ0 �MPl, the parameter η becomes large, indicating a breakdown of

the slow-roll approximation. In particular, it is inconsistent to say that inflation begins

at φ = φ0, when ε (φ) in Eq. (14) is equal to unity, since that expression depends on

the assumption of slow-roll. However, for φ � φ0, both ε and η are small and slow-roll

is a consistent approximation. In the region φ0 � φ � MPl, the second term in (16)

dominates, which is equivalent to η � ε, and η can be written in the useful forms

η (φ) '
p+ 1

2
√
π

√
ε (φ)

(
MPl

φ

)

=
p (p+ 1)

8π
α

(
MPl

φ

)p+2

. (17)

The number of e-folds N is given by

N =
2
√
π

MPl

∫ φc

φ

d φ′√
ε (φ′)

=

(
p+ 1

p+ 2

)
1

η − ε

∣∣∣∣∣
φc

φ

'

(
p+ 1

p+ 2

)(
1

η (φc)
−

1

η (φ)

)
, ε� η, (18)

where φc is the critical value at which inflation ends. The value of φc is in general

determined by a coupling of the field φ to some other sector of the theory which we

have here left unspecified. Accordingly, we will treat φc as simply a free parameter.

Noting from Eq. (17) that η ∝ φ−(p+2), for φ� φc the number of e-folds N approaches

a constant, which we call Ntot,

Ntot ≡

(
p+ 1

p+ 2

)
1

η (φc)
=

8π

p (p+ 2)
α−1

(
φc

MPl

)p+2

. (19)

This is quite an unusual feature. The total amount of inflation is bounded from above,

although that upper bound can in principle be very large. Defining φN to be the field

value N e-folds before the end of inflation, we can then write η (φN) in terms of N and

Ntot as

η (φN) =

(
p+ 1

p+ 2

)
1

Ntot −N
, (20)
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so that η approaches a constant value for N � Ntot. The spectral index is given by

n− 1 ≡
d log (PR)

d ln k
= −4ε+ 2η

'

(
p+ 1

p+ 2

)
2

Ntot (1− 50/Ntot)
. (21)

As announced, the spectrum turns out to be blue, but for Ntot � 50 the spectrum

approaches scale-invariance, n ' 1. If we take the example case of p = 2 and φc ∼ V
1/4
0 ,

the COBE constraint on PR is met for V
1/4
0 ' 1010 GeV and Λ3 ' 106 GeV, very

natural values for the fundamental scales in the theory. Since V
1/4
0 �MPl, tensor modes

produced during inflation are of negligible amplitude, a typical feature of hybrid inflation

models.

A blue spectrum and negligible tensor amplitude are familiar features of the great

majority of hybrid inflation models. However, hybrid models typically predict no mea-

surable scale dependence in n, that is, a nearly exact power-law spectrum for the density

fluctuations. In DSI models, however, scale dependence of the spectral index is large for a

spectrum which is significantly blue on large scales. Using now the rule d/dlnk = −d/dN

[5], we can express the scale dependence of the spectral index as a function of the spectral

index itself

dn

dln k
= −

1

2

(
p+ 2

p+ 1

)
(n− 1)2. (22)

Taking p = 2 and n = 1.2, we have dn/d (ln k) ' −0.05, a value readily measurable by

Planck [4]. Note that in all cases, n approaches the scale-invariant limit n = const. ' 1

on small scales, which serves to mitigate difficulties which a strongly blue spectrum

would otherwise have meeting constraints from structure formation or from production

of primordial black holes [13, 14]. Figure 1 shows the scalar spectral index as a function

of e-folds for several choices of parameters.

In conclusion, we have shown that the class of models of inflation inspired by the

idea of dynamical supersymmetry breaking may be be characterized by a significant
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Fig. 1: Scalar spectral index n as a function of the number of e-folds N ∝ ln(k) for several choices

of parameters. Note especially the rapid approach to scale-invariance at short wavelengths (small N).

and measurable deviation from the power-law spectrum of fluctuations. This opens up

the possibility of distinguishing this class of models from the standard hybrid inflation

models and, if the predicted signature is found, of looking at dynamical supersymmetry

breaking on the sky.
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