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Abstract

Using the NMC and E665 nuclear structure function ratios F A
2 /FD

2 and F A
2 /FC

2 from deep in-
elastic lepton-nucleus collisions, and the E772 Drell–Yan dilepton cross sections from proton-
nucleus collisions, and incorporating baryon number and momentum sum rules, we determine
nuclear parton distributions at an initial scale Q2

0. With these distributions, we study QCD
scale evolution of nuclear parton densities. The emphasis is on small values of x, especially
on scale dependence of nuclear shadowing. As the main result, we show that a consistent
picture can be obtained within the leading twist DGLAP evolution, and in particular, that
the calculated Q2 dependence of F Sn

2 /FC
2 agrees very well with the recent NMC data.
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1 Introduction

Structure function F A
2 has been measured in deep inelastic lepton-nucleus scatterings for

a wide range of nuclei A [1]. The ratios of F A
2 to the structure function of deuterium,

F A
2 (x, Q2)/FD

2 (x, Q2), reveal clear deviations from unity. This indicates that parton dis-
tributions of bound nucleons are different from the ones of free nucleons: xfi/A(x, Q2) 6=
xfi/p(x, Q2). The nuclear effects in the ratio F A

2 /FD
2 are usually divided into the following

regions in Bjorken x:

• shadowing; a depletion at x <
∼

0.1,

• anti-shadowing; an excess at 0.1 <
∼

x <
∼

0.3,

• EMC effect; a depletion at 0.3 <
∼

x <
∼

0.7

• Fermi motion; an excess towards x → 1 and beyond.

At the moment, there is no unique theoretical description of these effects; it is believed
that different mechanisms are responsible for them in different kinematic regions. For an
overview of the existing data and different models, we refer the reader to Ref. [1].

While the x dependence of the nuclear effects in F A
2 was observed already in the early

measurements [2], the Q2 dependence is much weaker and has therefore been much more
difficult to detect. Only recently the first observation of a Q2 dependence of the ratio
F Sn

2 /FC
2 has been published by the New Muon Collaboration (NMC) [3]. From the point of

view of nuclear parton distributions, a high-precision measurement of the scale dependence
of F A

2 /FD
2 or F A

2 /FC
2 is very important for pinning down the gluon distributions in nuclei [4].

In Ref. [5] preliminary NMC data [6] and the small-x limit of the DGLAP equations [7] were
used to determine the gluon ratio xgSn/xgC from the measured Q2-evolution of F Sn

2 /FC
2 .

In this paper, our goal is to study whether the observed Q2 evolution of F Sn
2 /FC

2 [3] is
consistent with the leading twist DGLAP-evolution. By using the data from deeply inelastic
lepton-nucleus scattering [8]-[13] and from the Drell–Yan process in pA collisions [14], and
by simultaneously requiring baryon number and momentum conservation [4, 15], we will first
determine a set of nuclear parton distributions at an initial scale Q2

0. When doing so, we
want to avoid using any specific model for the nuclear effects. We then evolve the initial
distributions up to higher scales by using lowest order DGLAP equations without parton
fusion corrections [16]. We will show explicitly how the nuclear effects in F A

2 /FD
2 and the

similarly defined ratio for the Drell–Yan cross sections evolve in Q2, and make a comparison
with the data. Our procedure leads to a consistent picture, and as the main result, we will
show that a very good agreement is obtained between our leading twist QCD approach and
the NMC data [3] for the Q2 dependence of F Sn

2 /FC
2 .

Scale evolution of nuclear effects has been studied already earlier [17, 15, 4] but since
then the parton distributions of proton have become much better known, especially at small
values of x, where a rapid rise of the structure function F p

2 has been observed at HERA
[18]. Consequently, also the gluon distributions can be much better determined. So far,
there has been no signs in the HERA data for the need of parton fusion corrections [16] to
the evolution equations down to Q2 ∼ 1 GeV2 and x ∼ 10−4 [19]. The situation has also
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improved regarding nuclear data; more high-precision nuclear data for several mass numbers
A are available [8]-[13] at small values of x where our main interest is focussed. The QCD
scale evolution of nuclear effects in parton distributions, especially with specific models for
the initial distributions at Q2 = Q2

0, has been studied in [15, 20, 21]. See also Refs. [22]-[26].

2 Nuclear parton distributions at Q2
0

As the first task, we determine the nuclear parton distributions at an initial scale Q2
0 as

model-independently as possible. It turns out that some assumptions are needed about the
nuclear effects on the initial distributions of individual parton flavours; we will try to be
quite explicit on these assumptions.

Fig. 1 illustrates the problem: both the deep inelastic lepton-nucleus data (DIS) and the
proton-nucleus Drell–Yan data (DY) lie on some curves in the (x, Q2)-plane, determined by
the kinematical limits and the experimental acceptances. In particular, they are not along
a constant Q2 line, as would be preferable for solving the DGLAP evolution. Therefore, the
initial distributions have to be determined iteratively in such a way that the scale evolved
distributions are consistent with the data. Like in the case of a free proton, the initial parton
distributions at the chosen Q2

0 serve as nonperturbative input. Our aim here is mainly to see
whether a consistent description based on leading twist QCD scale evolution can be obtained.
Therefore we do not attempt to implement a χ2-minimization procedure in determining the
initial distributions but plan to return to this in the future.

The ratio of the structure function F A
2 per nucleon in a nucleus A with Z protons and

A − Z neutrons, and F D
2 of deuterium can be written as

RA
F2

(x, Q2) ≡
F A

2 (x, Q2)

F D
2 (x, Q2)

(1)

=
[F

p/A
2 (x, Q2) + F

n/A
2 (x, Q2)] + (2Z/A − 1)[F

p/A
2 (x, Q2) − F

n/A
2 (x, Q2)]

F
p/D
2 (x, Q2) + F

n/D
2 (x, Q2)

.(2)

In the lowest order in QCD-improved parton model F2(x, Q2) =
∑

q e2
q [xq(x, Q2)+xq̄(x, Q2)].

Below the charm-mass threshold we then have

RA
F2

(x, Q2) =
5(uA + ūA + dA + d̄A) + 4sA + (2Z

A
− 1)3(uA + ūA − dA − d̄A)

5(u + ū + d + d̄) + 4s
, (3)

where u ≡ u(x, Q2) is the known distribution of u quarks in a free proton, and uA ≡
up/A(x, Q2) is the average u-quark distribution in a bound proton of a nucleus A, and similarly
for other quark flavours. For isoscalar nuclei dn/A = uA and un/A = dA, and in the formula
(3) above we have assumed that this is a good approximation for the non-isoscalar nuclei as
well. Nuclear (shadowing) effects in deuterium have been neglected in Eq. (3). These have
been studied in [28], where it is shown that the shadowing corrections to (F p

2 + F n
2 )/2 are

of order 1 % at x >
∼

0.007. Cumulative effects for x > 1 will also be neglected as well as the
binding energy effects when using MA/A ≈ mp ≈ mn.

We define the nuclear valence quark distributions in a usual way, qA
V ≡ qA − q̄A, assuming

that any differences between quarks and antiquarks in the nuclear sea [29] can be neglected.
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Let us also define the following ratios for each sea- and valence-quark flavour:

RA
q̄ (x, Q2) ≡

q̄A(x, Q2)

q̄(x, Q2)
, (4)

RA
qV

(x, Q2) ≡
qA
V (x, Q2)

qV (x, Q2)
. (5)

For later use, it is convenient to define also the corresponding ratios for the total nuclear
valence-quark and light sea-quark distributions:

RA
V (x, Q2) ≡

uA
V (x, Q2) + dA

V (x, Q2)

uV (x, Q2) + dV (x, Q2)
, (6)

RA
S (x, Q2) ≡

ūA(x, Q2) + d̄A(x, Q2) + s̄A(x, Q2)

ū(x, Q2) + d̄(x, Q2) + s̄(x, Q2)
, (7)

and similarly for the sum ū + d̄, and for the differences (appearing in the non-isoscalar part)
ū − d̄ and uV − dV

RA
ū+d̄(x, Q2) ≡

ūA(x, Q2) + d̄A(x, Q2)

ū(x, Q2) + d̄(x, Q2)
, (8)

RA
ū−d̄(x, Q2) ≡

ūA(x, Q2) − d̄A(x, Q2)

ū(x, Q2) − d̄(x, Q2)
, (9)

RA
uV −dV

(x, Q2) ≡
uA

V (x, Q2) − dA
V (x, Q2)

uV (x, Q2) − dV (x, Q2)
. (10)

The relations between RA
V , RA

uV −dV
and RA

uV
, RA

dV
, and between RA

ū+d̄, R
A
ū−d̄ and RA

ū , RA
d̄ are

obvious. Then Eq. (3) becomes

RA
F2

(x, Q2) = AIS
V (x, Q2)RA

V (x, Q2) + AIS
ud(x, Q2)RA

ū+d̄(x, Q2) + As(x, Q2)RA
s (x, Q2)

+(
2Z

A
− 1)[ANIS

V (x, Q2)RA
uV −dV

(x, Q2) + ANIS
ud (x, Q2)RA

ū−d̄(x, Q2)], (11)

where the coefficients are known:

AIS
V (x, Q2) = 5[uV (x, Q2) + dV (x, Q2)]/NF2

(x, Q2) (12)

AIS
ud(x, Q2) = 10[ū(x, Q2) + d̄(x, Q2)]/NF2

(x, Q2) (13)

As(x, Q2) = 4s(x, Q2)/NF2
(x, Q2) (14)

ANIS
V (x, Q2) = 3[uV (x, Q2) − dV (x, Q2)]/NF2

(x, Q2) (15)

ANIS
ud (x, Q2) = 6[ū(x, Q2) − d̄(x, Q2)]/NF2

(x, Q2) (16)

NF2
(x, Q2) = 5[uV (x, Q2) + dV (x, Q2)] + 10[ū(x, Q2) + d̄(x, Q2)] + 4s(x, Q2). (17)

In order to have further constraints for the individual nuclear ratios above, we will con-
sider differential Drell–Yan cross sections in pA collisions. For a nucleus with Z protons and
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A−Z neutrons the ratio of cross section to that for deuterium can be written in the lowest
order as4

RA
DY (x2, Q

2) ≡
1
A
dσpA

DY /dx2dQ2

1
2
dσpD

DY /dx2dQ2

= {4[u1(ū
A
2 + d̄A

2 ) + ū1(u
A
2 + dA

2 )] + [d1(d̄
A
2 + ūA

2 ) + d̄1(d
A
2 + uA

2 )] + 4s1s
A
2 + ...}/NDY

+(
2Z

A
− 1){4[u1(ū

A
2 − d̄A

2 ) + ū1(u
A
2 − dA

2 )] + [d1(d̄
A
2 − ūA

2 ) + d̄1(d
A
2 − uA

2 )]}/NDY (18)

where

NDY = 4[u1(ū2 + d̄2) + ū1(u2 + d2)] + [d1(d̄2 + ū2) + d̄1(d2 + u2)] + 4s1s2 + ... (19)

and we have used the notation q
(A)
i ≡ q(A)(xi, Q

2) for i = 1, 2 and q = u, d, s, .... The variable
Q2 is the invariant mass of the lepton pair. The target (projectile) momentum fraction is
x2 (x1), and x1 = Q2/(sx2). With the definitions in Eqs. (4)-(10), we obtain

RA
DY (x, Q2) = BIS

ud (x1, x2, Q
2)RA

ū+d̄(x2, Q
2) + BIS

V (x1, x2, Q
2)RA

V (x2, Q
2) +

+Bs(x1, x2, Q
2)RA

s (x2, Q
2) + (

2Z

A
− 1)[BNIS

ud (x1, x2, Q
2)RA

ū−d̄(x2, Q
2) +

+BNIS
V (x1, x2, Q

2)RA
uV −dV

(x2, Q
2)] (20)

where the coefficients are:

BIS
ud (x1, x2, Q

2) = [4(u1 + ū1) + d1 + d̄1](ū2 + d̄2)/NDY (21)

BIS
V (x1, x2, Q

2) = (4ū1 + d̄1)(uV 2 + dV 2)/NDY (22)

Bs(x1, x2, Q
2) = 4s1s2/NDY (23)

BNIS
ud (x1, x2, Q

2) = [4(u1 + ū1) − d1 − d̄1](ū2 − d̄2)/NDY (24)

BNIS
V (x1, x2, Q

2) = (4ū1 − d̄1)(uV 2 − dV 2)/NDY (25)

NDY = [4(u1 + ū1) + d1 + d̄1](ū2 + d̄2) + 4s1s2 + (4ū1 + d̄1)(uV 2 + dV 2)(26)

with qV 2 ≡ qV (x2, Q
2) and q1 = qV (x1, Q

2) + q̄(x1, Q
2), q = u, d.

The DIS data [8, 10, 11, 3] which we use in determining the nuclear ratios, are ap-
proximately corrected for non-isoscalar effects, so we may consider isoscalar nuclei first. In
Eqs. (11) and (20) the terms proportional to (2Z/A − 1) can be dropped, and we are left
with RA

V , RA
ū+d̄ and RA

s only. Without additional information we cannot fix three ratios from
two equations. Further constraints could in principle be obtained from the measurements
of nuclear structure functions F νA

2 /F νD
2 and F νA

3 /F νD
3 with neutrino beams [30], but more

statistics and mass number systematics would be needed. Instead, as a first approximation,
we take for the sea quarks RA

s (x, Q2
0) = RA

ū+d̄(x, Q2
0). For evolving each flavour separately, we

will also assume that initially RA
q̄ (x, Q2

0) = RA
S (x, Q2

0), and similarly for the valence quarks
RA

uV
(x, Q2

0) = RA
dV

(x, Q2
0) = RA

V (x, Q2
0). It should be emphasized that this approximation is

4In Ref. [4], the corresponding formula is incorrect, but it has the correct large-xF limit, which was used
only.
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needed only at the initial scale Q2
0, in determining the initial distributions for the DGLAP

evolution. In this paper we use, for simplicity, the parton distribution set GRV-LO [31],
where the massive quarks evolve as massless ones above each mass-threshold. This set also
assumes ū = d̄, so RA

ū = RA
d̄ at all scales for this particular set.

In this approximation, we obtain two equations for the ratios at an initial scale Q2
0,

RA
F2

(x, Q2
0) = AIS

V (x, Q2
0)RA

V (x, Q2
0) + [AIS

ud(x, Q2
0) + As(x, Q2

0)]R
A
S (x, Q2

0), (27)

RA
DY (x, Q2

0) = BIS
V (x1, x, Q2

0)RA
V (x, Q2

0) + [BIS
ud (x1, x, Q2

0) + Bs(x1, x, Q2
0)]RA

S (x, Q2
0) (28)

where Q2
0 is chosen below the charm threshold. Eqs. (27) and (28) would fix RA

V and RA
S if

the DIS and DY data would lie at the same values of x and Q2
0. Since this is not the case

(see Fig. 1), the initial profiles RA
S (x, Q2

0) and RA
V (x, Q2

0) are determined iteratively after
comparing the evolved distributions with the data. As is clear from Eqs. (27) and (28), the
initial nuclear ratios acquire some dependence on the particular parton distribution set used
for the proton. With the modern sets, however, this dependence can be expected to be quite
weak.

As a further constraint for nuclear valence quarks [15, 4], baryon number conservation

∫ 1

0
dx[uV (x, Q2

0) + dV (x, Q2
0)]R

A
V (x, Q2

0) =
∫ 1

0
dx[uV (x, Q2

0) + dV (x, Q2
0)] = 3. (29)

will also be required [15, 4].
In practice, our iteration procedure for determining the ratios RA

S (x, Q2
0) and RA

V (x, Q2
0)

proceeds with the following steps:

• make an ansatz for RA
F2

(x, Q2
0) based on the DIS data;

• decompose RA
F2

(x, Q2
0) into RA

V and RA
S , and constrain RA

V with baryon number conser-
vation;

• estimate RA
G(x, Q2

0) (see the discussion below);

• perform DGLAP evolution with the obtained initial nuclear parton distributions;

• constrain RA
S (x, Q2

0) and RA
V (x, Q2

0) with the DY data.

First, we introduce an initial parametrization for RA
F2

(x, Q2
0). We choose Q2

0 = 2.25 GeV2,
which is the charm-mass threshold for the GRV-LO set. Rather than trying to make a
separate analysis for each nucleus, we parameterize also the A dependence of RA

F2
. The

functional form is given in the Appendix. Note also, that as the existing parametrizations
[32, 33] are fits to the data along the kinematical curves in Fig. 1, we cannot use them
directly for obtaining the distributions at fixed scale Q0. Furthermore, we have to make
an assumption on the behaviour of RA

F2
(x, Q2

0) at x <
∼

10−3. In this region a saturation of
shadowing has been observed [12, 9] at nonperturbative scales, 〈Q2〉 ≪ Q2

0 (see Figs. 1 and
5). Motivated by this, we will also assume saturation of shadowing in RA

F2
(x, Q2

0), keeping
in mind, however, that consistency of this assumption must be verified after evolving the
distributions (see Figs. 4).
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We then decompose RA
F2

into RA
V and RA

S according to Eq. (27). First observation is
that we cannot have RA

V = RA
F2

at all values of x, because up to 9 % of baryon number
would be missing for the heaviest nuclei. Second observation is that RA

F2
≈ RA

V (RA
S ) at large

(small) values of x. In practice, in the region of large (small) x, it becomes impossible to
determine RA

S (RA
V ) directly from the data for RA

F2
, because of the negligible sea (valence)-

quark contribution. Therefore, we apply a piecewize construction: at x < xp ∼ 0.1 we fix
RA

V with the same functional form as for RA
F2

but with different parameters. Then, through
Eq. (27) RA

S becomes fixed. At xp < x < xeq ∼ 0.4 we fix RA
S in turn, with a simple form of

a plateau RA
S (xp < x < xeq, Q

2
0) = RA

S (xp, Q
2
0). Now the approximate plateau in RA

S controls
the height of the anti-shadowing peak in RA

V . At x = xeq the sea-quark ratio RA
S (xp, Q

2
0)

becomes equal to RA
F2

(xp, Q0), and at x > xeq, in lack of further information on RA
S , we again

use the simplest approximation RA
V = RA

S = RA
F2

. The precise values of xp and xeq, (i.e.
the location and height of the plateau in RA

S ), together with the parameters for RA
V are first

constrained by the baryon number conservation at Q2 = Q2
0 and after the DGLAP evolution

by the DY data [14].
Finally, we define the nuclear gluon ratio by

RA
G(x, Q2) ≡ gA(x, Q2)/g(x, Q2), (30)

and specify RA
G(x, Q2

0) to have the full input for the DGLAP evolution. We constrain
RA

G(x, Q2
0) with momentum conservation [15, 4]:

1 =
∫ 1

0
dx x

{

g(x, Q2
0)R

A
G(x, Q2

0) + [uV (x, Q2
0) + dV (x, Q2

0)]RA
V (x, Q2

0) +

2[ū(x, Q2
0) + d̄(x, Q2

0) + s(x, Q2
0)]RA

S (x, Q2)
}

, (31)

where RA
V and RA

S are determined as described above. Compared to free nucleons, we find
that some momentum is transferred from quarks to gluons in nuclei. This effect is not very
large: in A= 208 the glue carries about 4 % more momentum than in a free nucleon. This
is in agreement with the earlier studies [15, 4]. Consequently, without any x-dependence in
RA

G(x, Q2
0) we would have RA

G(x, Q2
0) = 1.04.

Since the sea quarks are shadowed at small x, we expect shadowing of the nuclear gluons
as well. A requirement of stable scale evolution can be used together with the recent NMC
data [3] to further constrain nuclear gluon shadowing. At the small-x limit of the DGLAP
equations one obtains

∂RA
F2

(x, Q2)

∂ log Q2
=

∂F D
2 (x, Q2)/∂ log Q2

F D
2 (x, Q2)

{

∂F A
2 (x, Q2)/∂ log Q2

∂F D
2 (x, Q2)/∂ log Q2

− RA
F2

(x, Q2)
}

(32)

≈
5αs

9π

xg(2x, Q2)

F D
2 (x, Q2)

{

RA
G(2x, Q2) − RA

F2
(x, Q2)

}

, (33)

where we have used the result ∂F2(x, Q2)/∂ log Q2 ≈ 5αsxg(2x, Q2)/9π, derived in [34]. As
for the initial RA

F2
(x, Q2

0), we will also assume a saturation in shadowing of the glue, so
that RA

G(2x, Q2
0) ≈ RA

G(x, Q2
0) at the limit x → 0. For the GRV-LO set we are using, the

ratio xg(2x, Q2
0)/F2(x, Q2

0) is non-zero and grows slowly at small values of x, so RA
F2

evolves

6



towards RA
G due to the factor RA

G − RA
F2

in Eq. (33). An initial condition stable in the
evolution is obtained by requiring RA

G(x, Q2
0) ≈ RA

F2
(x, Q2

0) at very small values of x.
Due to momentum conservation, the loss of gluons in the shadowing region must lead

to an increase of gluon distribution somewhere at larger x. In Ref. [4], it was assumed that
RA

G(x, Q2) is constant at large x. This, however, resulted in somewhat unstable profiles for
RA

G and RA
S in the evolution. Therefore, we expect that there is an EMC-effect also for the

glue, and that RA
G(x, Q2

0) is peaked around the same values as RA
V (x, Q2

0) and RA
S (x, Q2

0).
In practice, we determine the gluon ratio as follows. We start with RA

G(x, Q2
0) ≈ RA

F2
(x, Q2

0)
at small values of x. Should we use this equality for all values of x, some momentum would
be missing for all nuclei (11 % for A=208). This indicates that conservation of momentum
requires quite strong anti-shadowing for the gluons. For RA

G(x, Q2
0) we use the functional form

given in the Appendix. In determination of the position and width of the anti-shadowing
peak (which we assume to be independent of A) we use Ref. [5] to constrain the value of x
where xgSn/xgC ≈ 1. The amount of anti-shadowing then follows from momentum conser-
vation, leading to a good agreement with Ref. [5] once the position and width parameters of
the peak in RA

G are fixed.
The initial nuclear ratios RA

G(x, Q2
0), RA

V (x, Q2
0) and RA

S (x, Q2
0) at Q2

0 = 2.25 GeV2 are
shown for isoscalar nuclei in Fig. 2 together with the ratios RA

F2
(x, Q2

0). Correlations in these
ratios are easily understood from the figures: the more RA

V is shadowed, the more it has
anti-shadowing, and the more RA

S is suppressed in the anti-shadowing region. Similarly, due
to momentum conservation, the more shadowing RA

G has, the more anti-shadowing is needed.
As seen in the figures, there is more anti-shadowing and less shadowing for RA

V than for RA
F2

.
Correspondingly, RA

S is more shadowed and not anti-shadowed at all at Q2
0 = 2.25 GeV2. The

gluon ratios RA
G turn out to be clearly more anti-shadowed than RA

F2
and RA

V . In comparison
with the earlier studies, the lack of sea-quark anti-shadowing agrees with [15, 4]. We get,
however, somewhat more anti-shadowing for gluons than in [15, 4], which is a consequence
of the small-x enhancement of gluon densities in a proton.

3 Scale evolution and results

Scale evolution is straightforward to carry out once the parton fusion corrections [16] are
neglected. In the HERA data for F p

2 (x, Q2) [18, 19] there is no evidence of the fusion cor-
rections at Q2 >

∼
1 GeV2 and x >

∼
10−4. For nuclei, parton fusion should be stronger due to its

expected A1/3 scaling [16, 25], but since we start the evolution at Q2
0 = 2.25 GeV2 > 1 GeV2,

the effects of these corrections should be small [4], at least in the x range of the NMC data
[3]. The role of the fusion corrections is, however, a very interesting question [17, 4, 20, 25]
which deserves further analyses with constraints for the proton from the new HERA data
[35] at very small Q2 and very small x.

We use the parametrization of GRV-LO [31] for the initial parton distributions of free
protons. We evolve these and the initial nuclear distributions from Q2

0 = 2.25 GeV2 to
Q2 ∼ 10000 GeV2 by using the DGLAP equations for gluons and valence and sea quarks of
each flavor. Massive quarks are generated through the evolution above each mass threshold
as in [31]. We solve the evolution equations directly in (x, Q2)-space. The resulting scale
evolution of the ratios RA

G, RA
S and RA

V is shown in Figs. 3 for A= 208. Compared with an
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earlier study [4], the difference in the evolution of RA
G and RA

F2
is not as dramatic, due to the

enhanced, more stable gluon and sea-quark distributions at small vales of x.
In Figs. 4 we plot the scale evolution of the ratio RA

F2
(x, Q2) for isoscalars 4

2He, 12
6C, 40

20Ca
and for an artificial isoscalar nucleus A = 208 at different fixed Q2. The data shown and
used in the analysis, are the re-analyzed data from NMC [8] and SLAC [11]. For a more
transparent comparison, we show our calculation with filled circles at Q2 equal to the 〈Q2〉
of the NMC data at different x.

In Fig. 5, we show the behaviour of RA
F2

(x, Q2) at very small x, together with the NMC
data [9] and [8] for 12C. This figure confirms the consistency of our initial assumption of
the saturation of shadowing in RA

F2
(x, Q2

0): at fixed x, shadowing decreases with increasing
Q2 and therefore our initial RA

F2
(x, Q2

0) should not lie below the data measured at Q2 <
Q2

0. This of course implies an implicit assumption that the scale dependence of RA
F2

in
the nonperturbative region is towards the same direction as in the perturbative region. It
should be kept in mind, however, that at Q2 > Q2

0 the sign of ∂RA
F2

(x, Q2)/∂Q2, as indicated
by Eq. (33), actually depends on the gluon shadowing at small x, i.e. if the gluons were
more shadowed, the decrease of shadowing in RA

F2
would be slower, or shadowing could even

increase. In this case RA
F2

(x, Q2
0) should be re-determined accordingly. In this way, as pointed

out in [4], at small values of x the scale evolution of RA
F2

reflects the amount of nuclear gluon
shadowing.

Small-x data for RA
F2

exist also from the E665 collaboration [13], but they lie above the
NMC data (see e.g. [10]). Because of the smaller error bars in the NMC data, we decided not
to use the absolute E665 data for determining RA

F2
(x, Q2

0) here. However, as pointed out in
[10], if one considers the ratios of different nuclei, the two data sets are consistent. Therefore,
we have also used the ratio FPb

2 /FC
2 as obtained from the E665 data [13]. In Fig. 6 we show

the results at small x as in Fig. 5 but for the ratio of ratios, RPb
F2

/RC
F2

with the data from [10]
and [13]. Note that the inner (outer) error bars under(over)estimate the real errors of the
E665 data (see the figure caption). Even without a more precise χ2 minimization, this figure
partly helps us in constraining the A dependence at small values of x in the parametrization
of RA

F2
given in the Appendix.

The systematics in nuclear mass number A, especially at x <
∼

0.1, is presented by the
NMC collaboration in [10], and we have also made use of these data. In Figs. 7 we show the
scale evolution of F A

2 /FC
2 , i.e. of RA

F2
/RC

F2
, and the comparison with the NMC data. Since

the data are (approximatively) corrected for non-isoscalar effects, we have always A=2Z. In
our analysis, the data for the (A=117)/C ratio gives the most stringent constraints. Again,
for an easier comparison, the filled symbols show our calculation at the 〈Q2〉 of the data at
different x.

How the Drell–Yan data from the E772-collaboration [14] enters our analysis, can be seen
from Figs. 8 where we have plotted the ratio of Drell–Yan cross sections as defined in Eq.
(20) at different invariant masses Q2 for 12

6C, 40
20Ca, 56

26Fe and 184
74W. The non-isoscalar terms

for Fe and W have been taken into account according to Eq. (20), by using the corrections
obtained with isoscalar nuclei. As before, the filled symbols show our calculation at the mass
values 〈Q2〉 of the data [27]. The constraint for determining the initial ratios RA

S (x, Q2
0) and

RA
V (x, Q2

0) enters as follows: let us suppose that valence quarks are shadowed less than in
Figs. 2. This leads to a smaller anti-shadowing for RA

V (x, Q2
0) because of baryon number
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conservation, Eq. (29). At the same time, Eq. (3) brings RA
S (x, Q2

0) closer to RA
F2

at x ∼ 0.1,
i.e. RA

S becomes less suppressed. In the scale evolution, there is a cross-over region in RA
DY

where evolution is very weak (see Figs. 8), and the location of which depends on the plateau
in RA

S (x ∼ 0.1, Q2
0). With less suppressed RA

S at x ∼ 0.1, the location of the cross-over region
shifts to larger x. Consequently, the evolution of RA

DY becomes too fast at small values of
x, and the calculated values overshoot the data. On the other hand, if RA

V is much more
shadowed than in Figs. 2, the cross-over region in RA

DY shifts to the left, scale evolution
becomes too fast at x >

∼
0.1, and the calculation falls below the data. Iterating between these

possibilities we have obtained the initial RA
S (x, Q2

0) shown in the figures.
In Fig. 9, comparison with the results of Ref. [5] for the gluon ratio gSn/gC is shown.

Again, the curves are plotted at fixed values of Q2 and the filled symbols show our calculation
at the 〈Q2〉 of the preliminary NMC data [6] as quoted in [5]. It should be noted that even
though only the point where gSn/gC ∼ 1 was constrained to agree with [5], the resulting
amount of shadowing and anti-shadowing comes out in a very good agreement with the
results of Gousset and Pirner.

Finally, in Figs. 10, we present the main result of our study, comparison of the calcu-
lated scale evolution of F Sn

2 /FC
2 with the recent NMC data [3]. The data is plotted with

statistical errors only because we are more interested in the slopes of Q2 evolution than in
the absolute normalization to the data. Notice that normalization of our curves at each
fixed x in Figs. 10 depends on the initial ratio shown for Sn/C in Fig. 7. In fact we obtain
a fairly good agreement also for the overall normalization of the data. The changes in the
sign of ∂(F Sn

2 /FC
2 )/∂Q2 do not seem to be in contradiction with the data, either. It is also

interesting to notice that at small values of x the slope is not linear in log Q2.
After performing the scale evolution, let us look back into the assumptions made in

constraining the nuclear ratios at the initial scale Q2
0. As expected on the basis of Eq. (33),

the approximation RA
G = RA

F2
for the initial distributions at extremely small x turns out

to be quite stable in the evolution; at the smallest x we consider, x = 10−6, deviations
from RA

G = RA
F2

are only about 5 % up to Q2 = 10000 GeV2 for A = 208. For the valence
quarks, the initial approximations RA

uV
= RA

V (x, Q2
0) and RA

dV
= RA

V (x, Q2
0) are very stable:

deviations are within 1 % at x < 0.7 at all scales considered. For the GRV-LO set [31], there
is no difference between ū and d̄, so once the initial approximation RA

ū = RA
d̄ is made, it

holds exactly at all scales. The initial approximation RA
ū+d̄ = RA

S is also a stable one, the

deviations are within 2 % during the evolution. Initial approximation RA
s̄ = RA

S is slightly
less stable, but deviations do stay within 7 % at all scales considered. The deviations are
concentrated in the region x = 0.01...0.1, where the nuclear effects for sea quarks are small
in any case. During the evolution, the strange quarks tend to develop more anti-shadowing
than RA

S , while the ū and d̄ have an opposite tendency relative to RA
S . More work is needed

to relax the assumption RA
s (x, Q2

0) = RA
ū+d̄(x, Q2

0) but this additional correction is beyond
the scope of this study.

4 Discussion and Conclusions

The main emphasis of this study is in the Q2-evolution of nuclear effects in parton distri-
butions in the region of small x. We have used the deep inelastic scattering data from lA
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collisions [8]-[13] and the Drell–Yan dilepton data from pA collisions [14] together with con-
servation of baryon number and momentum to constrain the initial nuclear distributions as
model-independently as possible. As the main result, we have shown that a consistent pic-
ture arises, and a very good — almost surprisingly good — agreement with the measured Q2

evolution of the structure function ratio F Sn
2 /FC

2 [3] can be obtained already with the lowest
order leading twist DGLAP evolution. We can therefore conclude that the effect of parton
fusion corrections in the evolution [16] is negligible, at least at x >

∼
0.01 and Q2 > 2.25 GeV2.

In this region, the nuclear modifications are effectively built in the nonperturbative initial
conditions for the DGLAP evolution. This result also agrees with Ref. [20].

We point out, however, that even though we obtain a very good agreement with the
NMC data [3] and with the analysis of Ref. [5], we can confirm our initial assumption of
gluon shadowing at small values of x only on fairly qualitative grounds (stability of the
evolution), rather than through a direct comparison with the data. The reason for this
is seen qualitatively from Eq. (33): the data on F Sn

2 /FC
2 at x = 0.0125 constrains RA

G at
x = 0.025, which is only the beginning of the gluon shadowing region and where nuclear
effects in RA

G are not very strong (see Figs. 2). To constrain the gluon shadowing further, it
would be very important to have data for the Q2 dependence of F Sn

2 /FC
2 available at smaller

values of x.
The NMC data on deep inelastic J/Ψ-production in Sn/C [36] is not included in our

analysis but it is interesting to notice, as pointed out in [5], that the amount of gluon
anti-shadowing in the ratio Sn/C agrees with the excess reported in [36]. The gluon anti-
shadowing we obtain is also consistent with the E789 data on D meson production in pA
collisions [37], although the error bar on the data point is quite large. With the strongly
interacting final states, higher twist production mechanisms [38] may well make the picture
more complicated regarding factorization. However, if the initial state effects can be factor-
ized into the nuclear parton densities [39], our analysis on RA

G should be of direct use also
for computing strongly interacting final states in nuclear collisions. Our results should also
provide more insight in understanding the recently measured increase in J/Ψ suppression
relative to the Drell–Yan background in central Pb-Pb collisions at the CERN SPS [40].

Nuclear structure functions F νFe
2 , F νFe

3 [41] are used in the global analyses of parton
distributions for a free proton [42]. Our results should offer a more consistent way of unfolding
the nuclear effects there.5 Also the coordinate space description of nuclear parton densities
[43] could be studied in more detail by using the scale evolved nuclear ratios we have presented
here. Related to the coordinate space description and scale evolution of nuclear parton
distributions, the connection of our results with those in the region of very small x and very
large A where the higher twist terms can be expected to be more important [26], should also
be studied in more detail.

To conclude, the results of our study are encouraging. They show that further QCD-
analysis on nuclear parton distributions is worth performing. For a more detailed analysis,
this study can be improved in obvious ways: A more quantitative error analysis should be
done by performing a minimization of χ2 in fits to the data. In determining the nuclear
gluon distributions by using the NMC data [3] in a more consistent manner such analysis
would be required. Also more work remains to be done in determining the nuclear ratios

5We thank C.A. Salgado for discussions on this point.
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for individual quark flavors. This should be done, however, model-independently by using
the measured data wherever possible. More systematics on mass number dependence of
the structure functions F νA

2 and F νA
3 and increased statistics against deuterium would be

helpful in extracting the nuclear ratios of individual parton distributions (see also [44]). Also
data on F A

2 /FD
2 (or e.g. F A

2 /FC
2 ), not corrected for non-isoscalar effects, might be useful

for constraining the difference between RA
u and RA

d , provided that precision of the data is
sufficient. Naturally, further measurements of the Drell–Yan cross sections in pA collisions
with more statistics would be very useful.

We do not expect the nuclear ratios to depend strongly on the choice for the (modern)
parton distributions of the free proton, but an explicit study of this is in progress. For
numerical applications we are also preparing a package which produces scale dependent
nuclear ratios RA

f (x, Q2) for any parton flavour f in an arbitrary nucleus A [45].
Eventually, our analysis should be extended to next-to-leading order in the cross sections

and in the scale evolution6. It will also be interesting to study the role of the parton fusion
corrections in more detail in the light of the HERA results.
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Appendix

We use the following piecewize parametrization for the ratio RA
F2

(x, Q2
0), motivated by

[4, 33]:

RF2
(x, A) = 1 + s(x, A) + emc(x, A) + f(x, A), (34)

with the shadowing part given by

s(x, A) = [s0(x, A) − 1]e−x2/x2

0Θ(xm − x), (35)

where Θ is a step function, and

s0(x, A) =
1 + ask2(1/x − 1/xse)p(x)

1 + asAp2(1/x − 1/xse)p(x)
, (36)

and p(x) = max[1, (x/xse)
p3] and p3 ≥ 0.

The emc-part is controlled by a function

emc(x, A) = (a0 + a1x + a2x
2 + a3x

3 − 1)(1 − e−(x/xA

0e
)2)Θ(xm − x), (37)

6NLO evolution of nuclear parton distributions is studied in [20]
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parameter RA
F2

(x, Q2
0) RA

V (x < xp, Q
2
0)

xse 0.075 0.028
x0 0.10 0.11
xC

0e 0.14 0.14
xe 0.32 0.32
xm 0.74 0.74
xf 0.84 0.84
as 0.016 0.019
k2 1.1 1.03
p2 0.113 0.03
p3 0.3 0.3
pe 0.05 0.05
fCa

m 0.87 0.87

Table 1: The parameters used for RA
F2

(x,Q2
0) and RA

V (x < xp, Q
2
0) with xp = 0.09 (see Sec. 2).

where xA
0e = xC

0e(A/12)pe. We fix the location of the minimum in RF2
(x, A) at xm = 0.74 for

all nuclei. With the parameter x0 for s(x, A) and with the parameter xA
0e for emc(x, A), we

obtain a smoothly behaving anti-shadowing region in RF2
(x, A).

The Fermi-motion region is parametrized with

f(x, A) =
[

(1 − fA
m)

(x − xm)2

(xf − xm)2
+ fA

m − 1
]

Θ(x − xm) (38)

with fA
m = fCa

m (A/40)α, where α is given by Eq. (9) of Ref. [11] with x = xm. For simplicity,
we have fixed RF2

(xf , A) = 1 for all nuclei.
The parameters a0, a1, a2, a3 above are determined from the following conditions:

e(xe) = 1, e(xm) = fA
m,

∂e(x)

∂x

∣

∣

∣

∣

x=x0e

= 0,
∂e(x)

∂x

∣

∣

∣

∣

x=xm

= 0, (39)

where e(x) = a0 + a1x + a2x
2 + a3x

3. In the Table 1 below, we give the parameters for the
parametrizations of RA

F2
(x, Q2

0) and RA
V (x < xp, Q

2
0).

The form of the initial nuclear gluon ratio RA
G(x, Q2

0) is the following:

RA
G(x, Q2

0) = RF2
(x, A)

{

1 + N
[

exp
(

−
(log x − (log xg − ∆g/1.5))2

∆2
g

)

+

exp
(

−
(log x − (log xg + ∆g/1.5))2

∆2
g

)]}

, (40)

where xg gives the position for the additional anti-shadowing bump in RA
G, and ∆g determines

its width in log x. The amplitude N for the enhancement can be directly determined by using
the momentum sum rule (31). In Figs. 2, we have xg = 0.09 and ∆g = 0.9.
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Figure 1: Typical correlation of the scale 〈Q2〉 and x in measurements of FA
2 (x,Q2) in deeply

inelastic lA scatterings and correlation of the invariant mass 〈Q2〉 and x = x2 of Drell-Yan cross

sections measured in pA collisions. The correlations in some of the NMC data [8] (solid lines), [10]

(dotted-dashed), [9] (dotted) and in some of the E665 data [12] (dashed), and in the E772 data

[14, 27] (long dashed) are shown. The horizontal dotted line illustrates the initial scale Q2
0 we have

chosen and above which we perform the DGLAP evolution of nuclear parton densities.
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S (x,Q2), RA
V (x,Q2) and RA

F2
(x,Q2) for an

isoscalar nucleus A=208. The ratios are shown as functions of x at fixed values of Q2 = 2.25 GeV2

(solid lines), 5.39 GeV2 (dotted), 14.7 GeV2 (dashed), 39.9 GeV2 (dotted-dashed), 108 GeV2

(double-dashed), equidistant in log Q2, and 10000 GeV2 (dashed). For RA
V only the first and last

ones are shown.
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Figure 4: Scale evolution of the ratio RA
F2

(x,Q2) for isoscalar nuclei A=4, 12 and 40. As in

Fig. 3, the ratios are plotted as functions of x but with Q2 fixed to 2.25, 3.70, 6.93, 12.9, 24.2 GeV2,

equidistant in log Q2, and 10000 GeV2. The reanalyzed NMC data [8] is shown by the boxes, the

reanalyzed SLAC data by the triangles [11]. The statistical and systematic errors have been added

in quadrature. The filled circles show our calculation at the 〈Q2〉 values of the NMC data. Notice

that the vertical scale of each panel is different.
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Figure 5: The ratio RC
F2

(x,Q2) shown together with the renanalyzed NMC data [8] (boxes) and

the combined NMC data [9] (triangles). The calculated RC
F2

are shown at the same fixed values of

Q2 as in Fig. 4. Notice that at x < 0.01 the scales 〈Q2〉 of the data are less than our Q2
0 = 2.25 GeV2.

The statistical and systematic errors of the data are added in quadrature.
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Figure 6: The ratio RPb
F2

(x,Q2)/RC
F2

(x,Q2) as a function of x at the same fixed values of Q2 as in

Fig. 4. The NMC data for Pb/C [10] is shown by the squares and with statistical and systematic

errors added in quadrature. The ratio of the E665 data for RPb
F2

and RC
F2

[13] is shown with the

triangles. The inner error bars are obtained by including the independent statistical errors only,

and the outer ones by adding first the statistical and systematic errors separately for Pb/D and

C/D in quadrature, and then taking these errors to be independent. This figure shows how our

calculation relates to the small-x region where the measurements are at nonperturbative scales.
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Figure 7: The ratios RA
F2

(x,Q2)/RC
F2

(x,Q2) as functions of x for isoscalar nuclei. The values of

Q2 are the same as in Fig. 4. For comparison with the NMC data [10] (boxes), the filled circles

show our calculation at the 〈Q2〉 of the data. The inner error bars stand for the statistical errors

only, the outer ones for statistical and systematic errors added in quadrature.
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Figure 8: The ratios of differential Drell-Yan cross sections in pA and pD as functions of x = x2

for 12
6C/D, 40

20Ca/D, 56
26Fe/D and 184

74W/D. Our calculation for RA
DY (x,Q2) of Eq. (20) is shown at

fixed values of the invariant mass Q2 = 2.25 GeV2 (solid line), 24.2 GeV2 (dashed), and 139 GeV2

(dotted-dashed). The data shown by the boxes is from E772 [14]. In the graph the statistical

errors and the quoted 2 % systematic errors are added in quadrature. The filled circles show our

calculation at the 〈Q2〉 of the data [27].
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Figure 9: The gluon ratios RSn
G (x,Q2)/RC

G(x,Q2) as functions of x at fixed values of Q2 = 2.25,

3.27, 5.39, 8.89, 14.7 GeV2, equidistant in log Q2, and 10000 GeV2. The filled circles show the

comparison with the results of Ref. [5], presented by the boxes.
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Figure 10: The calculated scale evolution of F Sn
2 (x,Q2)/FC

2 (x,Q2) compared with the NMC data

[3] at different fixed values of x. The data are plotted with statistical errors only.

25


