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ABSTRACT

The uniformity of a slow-extracted beam from a synchrotron is degraded by ripples
from the power converters of the magnetic elements. This effect can be reduced by
making the beam particles cross more quickly from the stable to the unstable region.
Among the various methods that have been proposed for this purpose, RF bucket
channelling seems to be a good candidate for compensating low frequency ripples in
spills of the order of one second. The method is based on the technique of RF phase
displacement acceleration. In the configuration studied, a coasting beam is accelerated
slowly into a third-order resonance by a betatron core. The acceleration rate set by the
betatron core determines the spill length. Empty buckets are then created at the
resonance frequency and adjusted with a phase angle that would decelerate any
trapped beam by an equal and opposite amount. The main RF system can be used for
this purpose.
The empty buckets cause an obstruction in phase space and the beam particles are
forced to channel around the buckets. The particle speed is thus increased as the
particle crosses into the resonance region, making the extraction less sensitive to
ripple. The energy at which the particles enter in the unstable region is not fixed, but
depends on their momentum and betatron amplitude. An improvement factor is
obtained for all momenta and betatron amplitudes, provided that the bucket is properly
positioned and that its half height is greater than the energy spread engaged in the
resonance. The existing theory is extended to show that particles entering at different
energies get different improvement factors, and how the improvement in the spill
depends on the frequency and amplitude of the ripple.
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1. INTRODUCTION

Resonant slow extraction was first proposed by H. Hereward [1] and is often used to
obtain long spills. The basic scheme for extraction is described with the help of the
Steinbach diagram in Figure 1. Sextupoles create a region of instability in the phase
plane. A particle that enters this region is trapped in the resonance, rapidly increases its
betatron amplitude, until it passes through an electrostatic septum (ES), where it
receives a kick and is ejected.
During the spill, the borders of the resonance region are not well defined, due to
ripples in the power supplies of the magnetic elements. The resonance line move as
well as the position of the waiting stack, and this results in a modulation of the spill.
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Figure 1. The Steinbach diagram for the extraction scheme
 (the black arrows show the relative movements of the resonance

 and the stack).

The spill S(t) can be written as:
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where N is the number of particles and Q the horizontal tune. The tune change can be
expressed as the sum of two components, 0Q�  the constant component and rQ�  the

component due to unwanted ripple, so that:
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Extraction can be performed by either accelerating the stack into the resonance, or by
displacing the resonance so as to progressively ‘eat’ the stack. RF bucket channelling
can be used in both cases, but in the following, the first possibility will be considered,
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since this is the solution adopted for the Proton Ion Medical Machine Study (PIMMS)2

at CERN. An induction accelerator, a betatron core, is used to provide the
acceleration. This high inductance device is well suited to deliver a very smooth spill,
and, since the energy stored is high, it has the feature to respond slowly to transients
that could give unintentional beam spikes to the patient (see reference [2]).

For a uniform spill S(t), the product of  dN/dQ and dQ/dt must be kept constant. The
form of the stack determines dN/dQ, but this can be controlled by feedback on the
acceleration rate from the betatron core.

Unfortunately, dQ/dt is affected strongly at all frequencies by �Qr . The purpose of the
empty bucket channelling is to reduce the effect of this contribution.
In general, if the spill time is fixed, the best is to have the largest possible momentum
spread, since this reduces the time needed to cross the resonance boundary, which is
the point at which the ripple disturbs the spill quality.

The contribution of �Qr  can be reduced, if 0Q�  is increased. 0Q�  can not be changed for

the whole stack since it is fixed by the spill time, but it can be increased in particular
phase space regions, if the density of the particles dN/dQ in those regions is decreased
accordingly, so as to keep a constant S(t) (see (1)). The scheme shown in Figure 2 has
a region of high speed, low density created close to the resonance.
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Figure 2. Scheme with the creation of a high speed low density region
   close to the resonance.

                                                       
2 PIMMS is the Proton Ion Medical Machine Study. This study is being hosted by the CERN PS
  Division and it is within the framework of this study that the present work has been carried out.
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The parameter that indicates the quality of the extracted spill is the duty factor given
by:
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The improvement in duty factor is given by an increase in 0Q�  by a factor K. Since the

increase in 0Q�  is given by an increase in the local acceleration, the ratio 
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2. THE METHOD
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Figure 3. Particle channelling between buckets (arrow), case of a decelerating
bucket below transition, or accelerating bucket above transition (Is<0). E
is the total energy, Eres=0 is the energy at which the empty bucket is
positioned, and 1/2'Ebucket is the bucket half height. In the case E = Eres

(i.e. 'E = 0), the bucket limits in phase are Ilow and Iup and the channel
width is 'I = I2-I1).
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An empty bucket is created at the resonance frequency corresponding to the resonance
energy Eres. The hardware should be set in order to keep the bucket frequency ‘fixed’
at the resonance frequency for the whole spill time. At the starting time the beam is out
of the resonance. The flux of the extracted particles is set by the acceleration
impressed by the betatron core.
In the longitudinal phase plane, the particles turn around the bucket, ideally without
entering it. This is similar to what happens when accelerating a stack by the RF phase
displacement method [3], except that the stack moves and the bucket remains fixed. At
resonance energy, the particles are swept between the buckets in the small phase
interval 'I limited by the bucket separatrices. In this channel, dN/dQ is reduced, and
dQ/dt increased. In other words, the empty bucket creates a ‘bottle neck’ in the phase
space, through which the particles are swept with increased velocity K �Q0  see Figure 3.

3. CALCULATION OF THE AVERAGE MULTIPLYING FACTOR K

Since dQ/dt is proportional to dp/dt, and dp/dt is proportional to dE/dt, it is sufficient
to calculate the improvement of dE/dt when particles cross the resonance energy.
Using the Hamiltonian formalism (see reference [4]), the motion in the longitudinal
phase plane can be described in terms of two first order differential equations in the
conjugate variables ('E/hZ0 , 'I=I�Is):
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where q is the charge, Z0 is the revolution frequency, V is the RF voltage, E=v/c is the
particle normalised velocity, h is the harmonic number, K=1/J 2-1/Jt 

2 is the phase slip
factor, J is the relativistic mass factor, Jt the J at transition, E is the total energy, I is
the phase of the arbitrary particle and corresponds to the phase of the RF voltage, and
‘s’ refers to the synchronous particle.
The corresponding Hamiltonian H is:

( )H
E

E
qV

h s s s= + − + −
1

2 22
2η

β π
φ φ φ φ φ∆ (sin ( ) cos cos ) . (5)

In the hypothesis that the acceleration is smooth and continuous over one turn, we
have (the bucket is empty, but the outside particles are still affected):

dE

dt

qV
s= −⋅ ⋅

2 0π
ω φ φ(sin sin ) . (6)

A particle that crosses the resonance when I = 0 is not affected by the RF voltage. Its
energy will vary by:
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which is exactly equal to the dE/dt given by the betatron core. Other particles will be
affected in different ways depending on their arbitrary phase and energy. On average:
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I1 and I2 are the minimum and maximum phases of the channel (see Figure 3 in the
case '( = 0). The average multiplying factor is given by:
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which gives:
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where *=sinIs and 'I=I2-I1. Intuitively, it can be seen that the more the bucket
obstructs the available phase space, the faster the particles must move. Thus, the closer
the bucket becomes to a stationary bucket the greater the particle velocity
enhancement. This is the reason to study, in the following, quasi-stationary buckets.

4. AVERAGE MULTIPLYING FACTOR IN THE CASE ''E = E-Eres = 0

In the case 'E = 0, K can be calculated for all the different cases sketched in Figure 4.
Table 1 gives the needed values for all the variables involved.

Below transition Above transition
Is~0 (*=sinIs) Accelerating

bucket Is>0

Decelerating
bucket Is<0

Accelerating
bucket Is<0

Decelerating
bucket Is>0

'I = I2-I1 Il-(Iu-2S) (Il+2S)-Iu Il-(Iu-2S) (Il+2S)-Iu

cosIs 21
2Γ− 21

2Γ− 21
2Γ− 21

2Γ−

Il ~ -S -S-Is -S-Is ~ -S
Iu S-Is ~ S ~ S S-Is

cosIl − +
+

1
2

2( )φ πl -cosIs -cosIs − +
+

1
2

2( )φ πl

cosIu -cosIs − +
−

1
2

2( )φ πu − +
−

1
2

2( )φ πu -cosIs

Table 1. Some useful bucket parameters. CosIs, cosIl, and cosIu are given by the
  Taylor series expansions.



6

BELOW TRANSITION
particle rotation is counter clockwise

2 0 2

1

0

1

PHASE

R
F

 V
O

LT
A

G
E

5 0 5

1

0

1

PHASE

E
N

E
R

G
Y

Accelerating bucket. Is>0, 'I Il-�Iu-2S�

2 0 2

1

0

1

PHASE

E
N

E
R

G
Y

Stationary bucket. Is=0, 'I � (no channel)

5 0 5

1

0

1

PHASE

E
N

E
R

G
Y

Decelerating bucket. Is<0, 'I �Il+2S��Iu

ABOVE TRANSITION
particle rotation is clockwise

2 0 2

1

0

1

PHASE

R
F

 V
O

LT
A

G
E

5 0 5

1

0

1

PHASE

E
N

E
R

G
Y

Accelerating bucket. Is<0, 'I �Il+2S��Iu

2 0 2

1

0

1

PHASE

E
N

E
R

G
Y

Stationary bucket. Is=0, 'I � (no channel)

5 0 5

1

0

1

PHASE

E
N

E
R

G
Y

Decelerating bucket. Is>0, 'I �Il-�Iu-2S�

Figure 4. Possible cases for RF bucket channelling. Is is the synchronous phase
  and 'I is the width of the channel for 'E=0.
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Making use of the bucket relation [5]:

φ φ φ φ φ φl s l u s usin cos sin cos+ = + (10)

and finding from Table 1 the values corresponding to the different cases, from equation
(8) in any case we find the result:
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The formula has an easy geometrical interpretation: in the case 'E = 0, K is given by
the ratio between the whole phase segment 0-2S and segment containing the allowed
phases. In the hypothesis (usually true) that Is << 2S, using (10) and Table 1 the
channel width becomes:

∆ Γφ φ φ π π= − + ≈ ⋅l u 2 2

and the multiplying factor:

K = =
2π

φ
π

∆ Γ ('E = 0). (11)

This agrees with the particular case given in reference [6] for the CERN/PS
synchrotron, where an empty bucket is created above transition.

5. LINK BETWEEN THE RF VOLTAGE AND THE STABLE PHASE

The parameters of the RF bucket are determined by considering a fictitious particle
trapped in the bucket at the synchronous phase. The RF frequency will be the
revolution frequency (or harmonics) in order to keep the particle energy constant at
the synchronous phase (in this case dB/dt = 0).
The energy losses or gains in the bucket will be those needed to compensate the
changes that take place in the machine (in this case the energy gain in the betatron),
i.e.:

corebetatroncavity
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dt
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which can be written as [7]:

dt

Bd
RV

)(
2

ρπ ⋅⋅=Γ⋅ (12)

where R is the mean radius of the orbit, BU is the beam rigidity, and all other
parameters as before. The link with the beam momentum p is given by [8]:

ρB
c

A

Zq
p ⋅⋅=

910
(13)

where Zq is the charge of the particle, A its atomic mass number, p is the beam
momentum and c is the velocity of the light. The combination of (12) with (13) gives:

dt

dp

V

R

cZq

A ⋅⋅⋅⋅=Γ
9102π

(14)

thus the RF voltage is proportional to the energy change in the core and inversely
proportional to * = sinIs. In order to have a high multiplying factor, one should keep
the RF voltage high in order to have a low *, since this shrinks the width of the
channel. The limit will be fixed by the maximum RF voltage achievable.

6. EFFECT DUE TO DIFFERENT BETATRON AMPLITUDES

It can be seen directly from Figure 1 that the resonance energy of the particles depends
on their betatron amplitude, the higher the betatron amplitude the lower the resonance
energy, and vice versa. Qualitatively we can state that in order to obtain a high
multiplying factor for all the particles, two conditions have to be fulfilled. One on the
bucket height and the other on the bucket position.

The first condition says that the beam energy spread engaged into the resonance has to
be smaller than the bucket half height, i.e.:

bucketresonance of spread 2

1
EE ∆⋅<∆ (15)

Since the height of the RF bucket is given by:

( )
ηπ

φβ
h

VqE
YE s

⋅⋅⋅=∆ bucket2

1

where ssssY φπφφφ cos2)2(sin)( +±= , where the ‘+’ sign is valid when Is > 0.

This condition imposes a constraint on the RF voltage:
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The second condition relates the position of the bucket to the resonance energy. In
order to have a positive improvement for all the betatron amplitudes, one should
position the bucket as shown in Figure 5. This is the case of a stack starting from
energies lower than the resonance energy.

Amplitude
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Resonance
region

Resonance line
for lowbetatron
amplitudes

Resonance line
for highbetatron
amplitudes

'E

Sense of stack
acceleration

Figure 5. Position of the bucket with respect to the resonance region (in the
case of PIMMS).

7. AVERAGE MULTIPLYING FACTOR IN THE GENERAL CASE

For the general case it is necessary to solve equation (9), with values of I1 and I2

depending on the value of 'E (see Figure 5). Only 0 < 'E < 'Ebucket/2, will be
considered here, where the conditions of chapter 5 are fulfilled.

It is useful to calculate the Hamiltonians H1 and H2 corresponding to I1 and I2, the
phase limits of the channel. The Hamiltonian H1 corresponds to the ‘internal’
separatrix, and the Hamiltonian H2 to the ‘external’ separatrix. From equation (5), and
equation (10) (that links I1 and I2, in the case 'E=0), H1 and H2 for the accelerating
bucket are found to be:

   
H

qV

h s s s1 2
2 2= ⋅ + −

π
φ φ π φ( cos ( ) sin )    H

qV

h s s s2 2
2 2= ⋅ + +

π
φ φ π φ( cos ( )sin )

For the decelerating bucket H1 becomes H2 and vice versa.

I1 (I2) is the root of the equation:
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Figure 6. Position and parameters of the channel for a general 'E = 'Ep z 0.
H1 is the Hamiltonian corresponding to the ‘internal’ separatrix, H2 is
the Hamiltonian corresponding to the ‘external’ separatrix.

The solution of equation(s) (17) can be found numerically to give the value of the
general multiplying factor K in function of '(.

)]()([

)](cos[)](cos[
1)(

12

12
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EE
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+=∆
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8. DEPENDENCE OF THE AVERAGE MULTIPLYING FACTOR ON THE
RIPPLE

In the hypothesis of a smooth and continuous momentum increase during extraction,
we have:

spill

0

0 T

p
p

p

p

∆

=� (18)
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where p0 is the momentum of the particle (without ripple), 'p/p is the momentum
spread at extraction energy, Tspill is the spill time in seconds.
The ripple contribution to the momentum at the frequency Z can be written as:

p p p tr r r( ) sinω ωω= +0 (19)

where pr0 is the constant component, and prZ is the modulated component of the
amplitude of the ripple at the particular frequency considered.
By defining:
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In the general case (0 < 'E < 'Ebucket/2) the average multiplying factor is given by (9).
Inserting in (9) the results of (14) and (20) gives the new multiplying factor (for
simplicity � ( ) �p pr rω = ):
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The duty factor is given by (3), inserting the new value for K:
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In the case 'E = 0, we find a new expression for K: let K0 be the average improving
factor coming from (11). Inserting in (11) the results of (14) and (20) gives:
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The duty factor can be written as:
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It is also interesting to know the minimum K and hence the poorest value to be
expected for F. The minimum K and F are calculated for 'E = 0 and for rp�

maximum, and are given by:
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One sees that the multiplying factor decreases if the frequency of the ripple increases,
or if the spill time increases. As an example, the multiplying factor for a 100%
modulation (i.e. � �p pr = 0 ) from (21) leads to:

2
),0( 0

min

K
K =ω

9. EFFECT DUE TO THE TRANSIT TIME INTO THE RESONANCE

Once in the resonance, the particles stay inside the machine for a certain time before
they are extracted. This time is called transit time in the resonance and depends on the
initial betatron amplitude of the particle. It is on average higher for particles with low
betatron amplitudes [9]. During this time, the RF varies the energy of all the particles
following hamiltonian trajectories and they are extracted at an energy different from
the one at which they entered into the resonance. If this time is too long, some of the
particles can cross back out of the resonance region and remain in the machine.
To analyse this behaviour, it is necessary to consider the particle motion outside the
separatrix, when the motion is no longer oscillatory. From equation (4.1):

d h
E

E dtφ ω
η

β
= − ⋅0 2 ∆ (23)

where 'E is found from equation (5):

( )φ
πη

β
U

h

qV
H

E
E

2

2 2

−⋅=∆ (24)
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with: 0
1

2
< <∆ ∆E Ebucket and U s s s( ) sin ( ) cos cosφ φ φ φ φ φ= − + −

After substitution (23):
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and integration:
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∫ ⋅
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2

1

2
(25)

where H is the Hamiltonian associated with the particle and E is the total energy of the
particle. The integration has to start at the phase at which the particle crosses the
resonance line, and ends at the phase of the re-crossing.

-2 S
0 2 S

0

½ 'E bucket

PHASE

'(

+1 +2

'Ep

½ 'E bucket

Figure 7. High betatron amplitude particles crossing into and then back out
of the resonance (errors).

These integration limits are found solving equation (24) numerically for 'E = 'Ep, and
H = Hp where 'Ep is the height of the resonance line for an arbitrary particle (see
Figures 5 and 7), and Hp its Hamiltonian, which has two solutions in the interval
− < <π φ π . From the value of W one can estimate the number of turns needed for the
particle to re-cross (for the first time) the resonance.
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In practice, this method gives an absolute minimum number of turns for the particle to
cross back out of the resonance (the case of quasi-zero resonance excitation). While
the particle is in the resonance its betatron amplitude grows and the resonance region
expands downwards in Figure 5. The finite transit time into the resonance has no effect
on the ripple, but can give a variation of the momentum spread of the extracted beam.

10. TYPICAL PARAMETERS FOR MEDICAL SLOW EXTRACTION

In the studied extraction scheme, the beam is prepared in a coasting stack outside the
resonance region, with a suited momentum spread and then slowly accelerated into the
resonance. The horizontal tune (i.e. the energy of the resonance) is kept constant and
the stack is accelerated by a betatron core. In this way, the momentum spread of the
beam delivered is small, because it is limited to the momentum spread engaged into the
resonance and not influenced by the momentum spread in the stack. All the parameters
of the lattice elements are also kept constant.
The list given follows the parameters chosen in PIMMS study, but the maximum
energies considered are just indicative, since they can change depending on medical
requests. The RF voltage satisfies the need to have a bucket half height bigger than the
energy spread engaged.

Parameters of the machine:

Type of particle protons C12
6+

Energy [MeV/u] 300 425
Jt 1.89 1.89
J 1.32 1.456
E 0.653 0.727
K 0.294 0.192
Circumference [m] 75 75
Revolution time [Ps] 0.3831 0.3439

Parameters of the stack:

Beam rigidity BU [Tm] 2.695 6.578
Flux variation [Weber] 0.809 1.974
'p/p momentum spread 4‰ 4‰
'p/p momentum spread engaged into the resonance 1‰ 1‰
'T energy spread engaged into the resonance [MeV] 0.5273 8.602

Parameters of the empty bucket (decelerating bucket below transition):

RF Voltage [kV] 4 4
Harmonic number h 1 1
Spill time [s] 0.5 1
Number of turns needed for extraction 1.305E6 2.908E6
*=sinIs -4.043E-4 -4.933E-4
Bucket half height [MeV] 2.135 26.18
Hamiltonian of internal separatrix H1 1272 7634
Hamiltonian of external separatrix H2 1274 7645
Multiplying factor K0 ('E=0, no ripple) 88.131 79.77
Minimum number of turns to cross-back the resonance 1100 >5000
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Figure 8.  PROTONS 300MeV, Multiplying factor K versus 'E for Z�= 0 (PIMMS
values).

The horizontal line corresponds to the value of K for 'E = 0. Dependence
on the ripple frequency and amplitude is not taken into account (Z�= 0).
The curve has a maximum inside the '( range. At the extremes, (i.e. for '(

= 0 and '(�  '(bucket/2), the value given by equation (11) is still obtained.
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Figure 9. 425 MeV/u CARBON IONS C12
6+, Multiplying factor K versus 'E for Z�= 0

(PIMMS values).

The horizontal line corresponds to the value of K for 'E = 0. Dependence
from the ripple frequency and amplitude is not taken into account (Z�= 0).
The curve has a maximum inside the '( range. At the extremes, (i.e. for '(

= 0 and '(�  '(bucket/2), the value given by equation (11) is still obtained.
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Figure 10.  PROTONS 300 MeV: K versus Z��the ripple frequency.
    (PIMMS values, with Dr(Z) = pr /p0 = 10-4 taken arbitrarily).
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Figure 11. PROTONS 300MeV: improved duty factor versus Z��the ripple
    frequency.

        (PIMMS values, with Dr(Z)=pr /p0=10-4 taken arbitrarily).
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Figure 12.  CARBON IONS 425MeV/u: multiplying factor K as function of Z�

��the ripple frequency.
 (PIMMS values, with Dr(Z) = pr /p0 = 10-4 taken arbitrarily).
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Figure 13.  CARBON IONS 425MeV/u: improved duty factor versus Z��the
 ripple frequency.
 (PIMMS values, with Dr(Z) = pr /p0 = 10-4 taken arbitrarily).
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CONCLUSION

RF empty bucket channelling increases the spill quality during slow extraction by
increasing the dp/dt at the resonance crossing.
The improvement is not constant for all the particles, but depends on their betatron
amplitude. Furthermore, it depends on the amplitude and the frequency of the ripple.
The method becomes less effective as the frequency increases.
The bucket half height should be higher than the energy spread engaged in the
resonance, which sets a minimum value needed for the RF voltage. The bucket should
be properly positioned with respect to the resonance region. The RF voltage value will
depend on the machine, on the hardware at disposition, and on beam parameters. The
empty bucket must always give the same and opposite acceleration rate as that given
by the betatron core.
Another characteristic of the method is due to the fact that the particles are extracted
in a small interval of 0-2S. This results in a modulation of the spill at the harmonics of
the RF frequency (few MHz). In the case of medical machines, the degradation of the
spill quality at frequencies above 10 kHz is of no concern, because modulation coming
from higher frequencies is averaged by the slow extraction process, the physical spot
size and the integration time in the on-line dosimetry system [10].
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