
Comparative Analysis of the CERN
Accelerator Control Systems

Chip Watson
26 January 1998

1. Introduction

This report is part of an ongoing analysis of the CERN PS and SL control systems aimed at a
long term evolution into a single integrated system for operations during the LHC era.

The following material focuses primarily upon software, but addresses hardware to some ex-
tent, particularly when it has an impact upon the software design and capabilities. Also, this
analysis is restricted to software which is unique and central to the control system, and excludes
general purpose software such as word processing or spread-sheets. It is, of necessity, sketchy
in many places, with more attention given to areas either where the differences are small (and
convergence is easy), or where work in these areas, though difficult, is of high value to a more
seamless operation of the entire complex. As only 3 months of analysis were done to prepare
this work, there are still many areas of software which have not been examined, and certainly
many additional areas for fruitful software re-use and sharing yet to be found. In particular, the
area of high level physics applications is nearly untouched, as it is necessary to address other
systems first in order to enable integration at such a level.

The discussion will flow from the lowest level of the control system (front ends, I/O), to the
highest level (operator interfaces, some machine physics applications), with a separate section
dealing with infrastructure which spans both levels (timing, alarms, error logging).

Ideas for future convergence of the two control systems are given in the various sections and
summarized at the end of the report (“Prioritized List of Activities” on page 17). These repre-
sent the ideas of the author, and are intended as a starting point for discussions with the PS and
SL divisions’ controls groups.

2. Architecture

The overall architectures of the two control systems are similar in gross details. That is, both
follow thestandard model for accelerator controls in having (1) operator workstations or con-
soles for the operator interface and for high level and global controls, (2) a second tier of dis-
tributed computers for device access, typically running a real-time kernel and typically in a
VME form factor, and finally (3) hardware interfaced via a fieldbus or VME cards, and some-
times containing embedded processors forming a third tier of computing.

In the specifics, however, the two systems are quite different, reflecting both their historical
backgrounds and the developmentcultures which produced them. These differences are most
notable in the server (middle layer) architecture, as well as in the use of databases. These dif-
ferences will be brought out more fully in the following sections, but in order to put the next
sections in context, it is worthwhile to first give an overview of these differences.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25232963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

In the SL control system, there is a database of machine set points, the settings database, imple-
mented as Oracle tables on a Unix host (console level). Many applications read and write these
tables in order to manipulate the machine state (other processes transfer this control data to the
front ends at an appropriate time). Similarly, there is a measurement database implemented in
Oracle into which data collection processes write. In other words, the relational database isbe-
tween the high level applications and the front ends. (Note that applications, for whatever rea-
son, can bypass the Oracle tables).

This architecture was chosen for LEP in part to get a handle on the complex data management
problem existing there due to the open architecture adopted for the front end software (few
standards initially imposed upon developers).

In the PS control system, there is a real-time database implemented in each front end. Client ap-
plications write control values to, and read measurement data from, this database. On the sur-
face, there are some similarities to SL here, but the differences are more significant. First of all,
the database is not inherently persistent, nor is it relational. Secondly, it is accessed transparent-
ly through a client application programming interface (API) which does not present the control
system as a database to the client program.

3. Front End Software

Front end software can cover a wide variety of topics, but for this report it will be defined as
including at least supervisory control capabilities (read / write values to hardware), and a net-
work server and communication protocol for access. It may also include data checking and
alarming (on state or limits), data monitoring (without client polling), and local front end control
algorithms. The client layer will be dealt with in the following section, “Equipment Access Li-
braries” on page 4.

3.1 Architectures

3.1.1 PS Architecture.As a general rule, the PS control system tends to be more database ori-
ented for the front end software, spanning a configuration database (Oracle) on a host, and a real
time database (data tables) in each front end. Conceptually, there is on the front end server a
table per device type, a row per device, and a column per device property. For properties which
are cycle dependent (PPM, or pulse to pulse modulation in PS terminology), there are multiple
columns for a single property, one for each possible virtual machine.

Supervisory access to the hardware is implemented as read/write operations to columns of the
records in that database. Typically, operations read or write to multiple rows or devices in a sin-
gle call. For PPM properties, device type specific real-time tasks transfer data between the da-
tabase and hardware periodically, on particular machine events such as the beginning of a cycle.

The client side accesses to the database are highly structured, with a separate function for each
operation (read/write) on each property of each device type. These property access functions
may be automatically generated if there are no special requirements. Strong type checking is
imposed upon these functions through interface definitions contained in the host database (a
function may be declared to use a property with read-only access, for example).

The real-time tasks may implement some form of surveillance, with the results placed into a de-
vice state property which will later be polled by an alarm client.

- 3 -

A data subscription mechanism which operates on a large number of devices and properties as
a single entity is currently under development to re-implement a feature which existed in an ear-
lier generation of the control system.

3.1.2 SL Architecture.The SL infrastructure and front end server is much more I/O connectiv-
ity oriented than the PS system. Network operations contain physical addressing information
(instead of database references), and the server (message handler) deals with the request based
upon this information. For some types of I/O (e.g. simple MIL 1553 connected devices), the
server executes the request itself, immediately. For complex devices, or those on “unsupported”
bus types, the request is passed to another task, an equipment server. A reference to the correct
equipment server is in this case the “physical” address contained in the request. Argument val-
idation and type checking are deferred to lower level software (either the equipment server or
an embedded system on the 1553 bus), and are not imposed by the front end framework soft-
ware. The SL server itself has no configuration information for each connected device (this in-
formation is instead maintained on the host).

There is currently no support for data subscription in the server. Also, there is no standardization
of surveillance of device state, although there are libraries available for a real-time task to emit
an alarm into an alarm system (discussed later in this report).

3.1.3 Architecture Summary.In effect, the front end servers for SL and PS span different
amounts of functionality, with the SL network server being much lighter weight, serving only
as a vehicle for location independent connectivity, whereas the PS server includes considerable
data management and validation features. It should be noted that both are using the same remote
procedure call (RPC) system, but with different remote procedures implemented.

This main difference between the two systems reflects the organization of the software devel-
opment within the division. In the PS division, all low level software is developed by a small
number of people within the controls group, whereas for SL division, hardware groups (and oth-
ers) have implemented the embedded software or equipment servers which are responsible for
much of the behaviour of the low level systems. The open architecture of the light weight server
imposes fewer restrictions on this diverse set of developers, which is both an advantage and a
disadvantage.

3.2 Low Level Device Drivers

For the most part, there is no sharing of device drivers, although discussions on this topic are
beginning. No attempt has been made as part of this analysis to catalogue the drivers available
in each system.

3.3 Convergence

Convergence of these two systems will be difficult in that there is much that is different between
them. That said, most of the differences could be hidden behind a compatibility layer most like-
ly implemented on the client side, at which point either both systems could be kept, or one sys-
tem could be frozen and the other chosen for continued development. The next section on client
application programming interfaces (API) adds additional information to this topic, so the dis-
cussion is continued there.

At present, SL is upgrading software for the SPS as part of a project also aimed at LHC opera-
tions, and this upgrade will most likely move the two server systems closer together in terms of
functionality.

- 4 -

4. Equipment Access Libraries

The equipment access libraries provided by the 2 controls groups (PS Equipment Access, and
SL-Equip) have a great many similarities in their most important functionality, namely in read-
ing and writing control system values. The definitions of the API’s have mostly the same argu-
ments for supervisory I/O (albeit arranged differently). The most notable difference between the
two is that the PS API is quite a bit larger in that it contains a considerable amount of support
for generic applications, with list processing and extensive access to meta data (data associated
with a value, such as units, or alarm limits). Some of this functionality for SL division is instead
contained in another library created by the operations group.

4.1 Features and Capabilities Comparisons

It is helpful to compare the libraries on the basis of their capabilities and features, and not in the
exact manner in which arguments are passed. To that end, the following discussion breaks the
problem into 5 topics: (1) the “view” of a control system presented by the API, (2) performance
features like asynchronous operations, buffering, and array operations, (3) data subscription ca-
pability, (4) supported data types, (5) standardized support for “generic” applications, and (6)
other miscellaneous observations. This comparison deals mostly with the equipment access li-
braries, but some additional notes related to the operations library are included as well.

4.1.1 View.Each control system API organizes its methods around a view of the control system.
It is at this level that the PS and SL libraries are most similar. Each treats the control system as
a set of devices upon which operations may be performed. Devices are specified by a family
name or number (class of device) and a member name or number. PS tends to use numbers
more, presumably for performance, and provides mapping functions between name and
number. SL must occasionally also specify the front end host name as family+member is not
always unique.

The views are somewhat different in that PS further defines a device as a collection of properties
against which 3 operations may be performed: read+write+dataless. SL instead only specifies
that devices may be sent a 6 character “action”, which is most often used to select a property,
but this is not imposed. E.g. for the same action, read and write are not forced to be symmetric.

4.1.2 Performance Features.Neither PS nor SL support a truly asynchronous interface; all
calls are complete when the call returns. (Data subscription capabilities are discussed below).

Both PS and SL support array type operations, i.e. operations on arrays of devices. In PS’ case,
all operations are in fact array operations, and the exact operation is specified partly by the
method invoked (e.g. read()) and partly by the property code specified. SL has a more flexible
interface in that the operation is specified entirely as an argument (the “action”), and the array
call includes the specification of an array of actions. This allows mixed operations (operations
on different properties, or in principle mixed read and write) to be performed in a single call.

While SL does not support an asynchronous calling interface, it does internally execute array
calls to multiple servers in parallel, asynchronously waiting inside the library for the (partial)
replies from each.

PS also does not have asynchronous calls, but it does support a mode in which calls are buffered,
and executed later. The system is not truly asynchronous in that the work is not started until the
flush call. For older front ends (Norsk Data), the control system buffers these multiple calls into

- 5 -

a single network operation, achieving higher performance on these older systems. For the newer
DSC’s, this optimization has not yet been performed.

4.1.3 Subscription Capabilities.Neither PS nor SL have a general purpose data subscription
capability that maintains the same view of the control system as a set of devices with properties.
That is, it is not possible to subscribe to an arbitrary set of properties of an arbitrary set of de-
vices.

The PS control system has a new data subscription mechanism now in the testing phase which
allows subscription at the level of a large collection of data called a working set (see “Console
Manager” on page 8) and does not allow subscription at the level of one property. This is opti-
mal for some class of applications such as the working set displays, but forces other applications
to deal with larger amounts of data than they may require.

Also within the PS system is an application, thepasserelle, which serves as a gateway between
PC client applications and the main PS control system. In addition to handing synchronous re-
quests, this application can poll the control system for data, and send asynchronous updates to
attached clients. On the client side it implements the same protocol as is used to control Isolde.

The SL system has a monitoring system built up frommonitoring black boxes, applications
which poll the control system for data, and then write that data to Oracle tables. Client programs
may either read the data from the database, or may subscribe directly to the black boxes to ob-
tain the data with lower latency. While this system is used extensively as an alternative to hav-
ing each application directly poll the hardware, it is not flexible in that it is not possible to
choose arbitrary sets of properties and devices for subscription. The set of data being monitored
is fixed by configuration information for the black boxes, and is not under a client application’s
control.

4.1.4 Data Types.Both PS and SL support a subset of the primitive data types of C/C++. Nei-
ther supports unsigned short or unsigned long, and SL also does not support floats or long. Each
supports arrays of the supported scalar types. In addition, SL supports mixed type structures de-
scribed by an additional string argument. This ability to pass structures is also used for perform-
ance optimizations in that multiple simple data items may be packed into a structure for I/O in
a single call.

Because the data transfer direction is specified as part of the function name, PS does not support
bidirectional data transfers on a single call. SL does support bidirectional data transfers with
some restrictions. For some calls, the data types must be the same in both directions. For calls
using the string structure descriptions, the 2 structures (sent and received) may be different.

Data conversions are supported for all operations in PS (i.e. conversion between the server’s im-
plementation data type, and the client application’s requested data type). SL defers this conver-
sion to the lower level equipment server, which may not handle it correctly.

4.1.5 Generic Applications Support.Generic applications are those which are driven by an
external file or database description. The control system API can assist in creating generic ap-
plications by managing some of the data needed to describe the control system to the applica-
tion. SL has essentially no standardized support for generic applications built into the
equipment access API. PS has a considerable amount. (For LEP, much of this data is available
in Oracle tables, but without a uniform interface as in PS.)

For each property of a device, it is possible to obtain a number of items describing the data
(property description, data type, read/write flag, continuous / discrete flag, field definitions for

- 6 -

discrete data), plus a number of other items considereddynamic (in addition to value, units, up-
per and lower limits, resolution, tolerance, andcolour, which reflects status and severity).

4.1.6 Miscellaneous.Both of the network layers for these packages are implemented on top of
the SL RPC library, one notable highlight in software sharing between the 2 divisions.

A quick summary comparison of these 2 libraries, along with a comparison to the CDEV API
(a device oriented API with a similarview of the control system), is included in Table 1.

4.2 SL operations library

While the SL-Equip package focuses primarily on data transport, there is another library of da-
tabase routines within the SL system which provides an application with a good deal of infor-
mation describing the configuration of the LEP controls. This library presents to some extent a
differentview of the control system, and in fact presents 3 views. One, a hardware view, is sim-
ilar to the equipment access libraries. A second view, a logical view, provides logical devices
(like magnet, instead of power supply). The third view, a physics view, allows an application to
see the machine in terms of physics parameters liketune.

This library supports discovery operations such as obtaining lists of systems, sub-systems, and
parameters for either hardware or physics systems (different functions operate on these 2 views,
with different names for the categories for each). For the hardware view, the systems are anal-
ogous to device class and parameters are analogous to properties. For the physics view, it be-
haves as if there were meta-devices, like tune, having meta-properties, like horizontal and
vertical tune, although this is not the nomenclature used.

Data type information, that is, the data type of an actual parameter which can be sent to hard-
ware or obtained from hardware, is not as extensive as in PS equipment access. The data type
information available only describes the communication between an application and a helper
daemon, which itself has compiled in knowledge of the structures used in the various front end
systems.

Other meta-data, such as valid values or limits, is available through another set of database rou-
tines.

4.3 Summary Observations on the API’s

The SL equipment access API and implementation is significantly smaller and simpler than its
PS counterpart in that it was designed to be only a location independent operation transport lay-
er.

The PS API is rich in functionality and complexity, containing support for generic applications,
and in many cases having more than one way to accomplish the same task. It is considerably
more difficult to learn fully, and is tightly connected to the configuration database for the PS
front end software.

The SL operations library is likewise rich in descriptive functionality, including both a physics
and a standard controls view. It is not small, and makes extensive use of C structures to pass
requests and results and hence is even more difficult to learn than the PS API.

- 7 -

4.4 API Convergence

Recommendations for convergence can be separated into different steps, each building upon the
previous. Tasks from different steps may in some cases be tackled concurrently, depending up
the ultimate goals of the effort and the resources available.

4.4.1 Basic convergence.At a minimum, there must be a common software interface to both
SL and PS controls if there is to be any software sharing at the higher level. A basic common
API should therefore be worked out between the 2 groups to include at least the following func-
tionality:

1. get/set any named property of any named device

2. standardize at some level a status property for all devices (at least at the level of being
able to ascertain if the device is useable and is providing valid data)

3. obtain for each property the following: value, limits, measurement precision, and units

4. provide data conversion to the application’s preferred type

5. provide at least one performance feature (async calls, list calls, array calls)

6. provide some way of specifying timing information (like PS pls_line argument or SL
event specification)

Both systems would then support explicitly the view that a device is a collection of properties
whose values can be set or obtained.

This level of convergence would be sufficient to support a wide class of applications which
maintain, externally to the equipment access library, all their own necessary additional config-
uration information. For example, a synoptic display program needs no further support as long
as the display description is correct; i.e. it does not attempt to display a status register consisting
of bit fields using an analogue meter. As another example, a steering program would need to
have externally provided a list of measurement devices, correctors, and the desired orbit.

This level of convergence could be provided by providing wrappers around the existing librar-
ies, including the operations libraries for the SL implementation of the wrappers.

4.4.2 Moderate convergence.A higher level of software sharing could be achieved if the
equipment access layer and servers supported additional capabilities:

1. Publish/subscribe, otherwise known as monitoring.

2. “Discovery” capabilities, so that a program can learn, at run time, a list of devices, and
the attributes/properties which a device supports, etc.

The first of these additions,publish/subscribe, is to enhance performance, especially for java
applications, by filtering the amount of data a client must process. It would involve not just an
API change, but also new capabilities for both control systems. With a careful design, much of
the code for a monitoring system could be shared between the two systems. As is done with the
passerelle, the new subscription service could serve as a gateway for new clients, and could it-
self be built on top of the existing subscription services or upon the existing read calls. Alterna-
tively, all servers could be upgraded to support the new monitoring capability, and an optional
gateway could be provided to reduce load on the front end servers.

Adding publish/subscribe also improves portability, by bringing the API up to the level of
CDEV, with a view towards not only sharing between SL and PS, but also with CDEV sites.
Most CDEV applications depend upon this capability.

- 8 -

4.4.3 Physics convergence.At this level, standardization would proceed to the point that the
applications used at LEP which manipulate the machine from a physics view could be portable.

1. Property standardization. Standardization of beam sensors and magnetic elements (class
names and property names) to the point that an optics application such as steering is port-
able between the two systems.

2. Machine description standardization, to the point that an optics application can discover
a beam line layout sufficiently well that optical properties can be calculated.

3. Physics view standardization, with corresponding virtual devices analogous to what is
currently possible in LEP controls.

4.4.4 Full Convergence.At this step, PS and SL would share not only an API, but the imple-
mentation of the configuration database, client libraries, and networking protocol. This would
only be feasible once a common front end system was achieved. This final step may not be prac-
tical in the short run, as it would entail re-writing much of the front end software for the discard-
ed system.

5. General Purpose Console (Client) Software

This category of software implements standard control features for an operator: data presenta-
tion, control input, and saving and restoring data values. It also includes the environment in
which various applications are launched. Rather than just address a single topic at a time, the
entire suite of these applications will be considered as a single entity. The alarm system, timing
system, error system and physics applications will be treated separately.

One significant difference between the two control systems which tends to heavily influence all
of the client software is SL’s insertion of an Oracle (LEP) database between client programs and
the front end servers. This control settings database is where an application writes a new value
which is later propagated to the machine itself. There is also a measurement database from
which data obtained from the hardware can be read. As a result of this architecture, many of the
SL applications tend to be database applications, and not distributed or client-server applica-
tions communicating directly with the front end computers.

The first topic addressed in each section below is the set of applications used by operators to
start other applications, control set points, and view measurements. Due to limited time, many
custom measurement viewing applications, such as orbit displays, could not be covered.

A smaller discussion is also included on the topic of data logging and viewing of logged data.

5.1 PS

5.1.1 Console Manager.PS controls includes a special application (the console manager)
which provides basic views of the control system, and is used to start other applications, as well
as to manage the placement, iconization, and de-iconization of their windows.

One important aspect to understand about the PS console manager and applications is the notion
of a machine (one of the several accelerators in the complex), and a context (the selection of a
beam type and destination). Another key concept is the notion of working sets, which are lists
of arrays of similar devices. A typical application in PS operates on a single machine, most often
looking at one beam, and manipulating a small number of working sets specific to that machine.

- 9 -

The console manager, for example, runs attached to one physical machine, and can change
beam selection via a context menu. Programs are started from the console manager associated
with a single machine and beam. Three special displays are included in the “generic” support:
(1) a tabular working set display, (2) a keyboard driven “knobs” window, and (3) an error view-
er window.

The working set window (part of the console manager) displays a list of all device names (or-
ganized by type) in a particular working set, and a set of properties (typically a control value
and a read-back or acquisition value). Reference values for these properties may also be dis-
played. There is a strong standardization as to how mismatches of various sorts are colour coded
for display.

Users can transfer a (set of) device(s) to the knobs display, and interact with the control values
for that device. The knob program runs as a separate (server) process. A special Motif thumb
switch widget eases control operations. Multiple knobs can be displayed, and keyboard focus
moved among them.

Specialized (non-generic) applications may be started from either the console manager or the
working-set windows.

All configuration information for the console manager and associated working set and knobs
windows is contained in Oracle tables. Valid beam (user) names, menu definitions, program
lists for each machine, working set definitions, properties to display in the working set and knob
windows, etc. are managed via the database.

This is a very well organized system, easily configured through the forms interface of Oracle.
There is nothing in principle which would keep this system from being used on any other control
system front end which had the notion that devices consisted of collections of properties which
could be read/written.

5.1.2 Data Management.The following data management capabilities are included in the PS
console manager: (1) compare control and readback values; (2) compare control to reference
values; (3) copy reference to/from live system; (4) save values to an archive (like reference, but
multiple slots; not for time history but rather to save a particular named setup); (5) log values to
an ASCII file.

5.1.3 Data Logging / Trending.PS currently does no time based recording of values from the
machine, except those captured by the “Log” capability of the console manager (i.e. to ascii
files). It is also possible to capture machine data into Excel, which provides one environment
for trend analysis (but not automated).

5.2 SL

5.2.1 Console Manager.The SL console manager is likewise presented as a menu bar, with
cascading menus to start individualtasks (a task is one or more executables). The command line
for a specific program includes window placement options so that programs can be positioned
on a display in a convenient fashion. The menubar can also contain push buttons for frequently
used operations (like “reset” of trips).

By convention, applications create their main windows with the same name as thetask so that
the console manager may control the windows through the X server, for example to iconize or
de-iconize them, or even kill them (destroy the window). Applications may also be configured
to be stopped through a configured signal number. In summary, this application duplicates the

- 10 -

program start-up capabilities of the PS console manager, and includes similar window manipu-
lations.

(Note: the windows created through the PS console manager are tagged with a particular context
corresponding to a virtual machine or beam+machine selection, whereas the SL windows are
associated with a particular task. Specifically, one selects a context, then starts the application,
and the application may configure itself according to the context given to it. This once again
shows the heavy influence of time slicing in the PS complex.)

5.2.2 Sequencer.One special application which can be started by the SL console manager is the
sequencer. This is an application which likewise contains a menubar of cascading selections,
where a leaf node does not start a single program, but instead executes a sequence of operations,
each of which is a program invocation or function call. Output of spawned programs is dis-
played in a text window within the sequencer GUI. Sequences may be started from any node in
the tree (executes all contained steps), and any node may be skipped, or may have a breakpoint
(halt the sequence at that node).

This application is heavily used to execute, in a repeatable way, all of the steps necessary to pre-
pare for injection, dump the beam, etc. The sequencer program is configured by text written in
a special sequencer language which is then compiled into the sequencer program itself. Each
line of this file represents a well defined operation on the machine. Any sequence is more easily
modified than a typical program would be, and the “lines” of the sequence can in fact be com-
plex programs.

5.2.3 Data Management.Two different general purpose windows into the control system are
presented to an operator in order to edit the configuration of the machine. The first of these, the
“trim” program, is used to edit the ramp functions for the cyclic part of the control system. The
operator can choose a particular control category and parameter from menus, and (for the SPS)
can graphically pick a section of the cycle from a supercycle display. Magnetic trims (edits) may
be applied at the level of power supply current, bending strength, or at the level of machine tune
(i.e. in a physics parameter space). The trim interface contains a powerful graphical editor, with
an ability to change a single point or a time range up or down, the ability to add and remove
points from the vector, and many other options.

Each edit of the trim results in an update to a database, and the history of the change is kept. The
graphical interface is capable of overlaying any previous (historical) curve for comparison.

A second application allows an operator to manipulate a single time slice of the machine, one
parameter at a time. Again, there is support for changing either low level parameters, or high
level parameters.

Machine setup is captured in a “hyperrun” -- a database of all (time varying) machine settings.
Each item has a history of edits associated with it as well as a most recent value, and these edits
may be removed, and then compared to the most recent value. This rollback+compare capability
is included in the trim program, for example. New hyperruns may be created by copying an ex-
isting one, or from an off-line model based calculation.

Whenever a parameter is changed, both of these programs update the Oracle settings database,
not only for the changed parameter, but also any other coupled parameters. That is, the control
database contains both the high and the low level parameter settings, so when one is changed,
the other(s) must be as well. If one parameter effects many others, all must be changed.

- 11 -

Because it is the client application’s responsibility to effect all of these changes in an internally
consistent manner, these applications tend to be more complex, and include a good deal of
knowledge of the accelerator and its configuration database within them.

That said, there are re-useable pieces in this software. The data viewer used by the trim program
is implemented as a separate program communicating with the trim program through shared
memory. Also, there is a graphical timing cycle selector application which is also re-used by
many SPS applications, and which also communicates with other applications via shared mem-
ory.

5.2.4 Data Logging / Trending.The LEP logging system is built upon a measurement system
consisting of a single measurement server, plus multiple measurement black boxes each of
which acquires data for one type of hardware, and writes the data to a measurement database.
Client programs may obtain the data either directly from the black boxes via TCP/IP, or from
the database.

The LEP logging system is a client of this measurement system, and logs data into Oracle tables
in a ring-buffer fashion. The logging server monitors conditions and controls logging black box-
es (on/off) based on the state of the accelerator. A clever design optimizes the storage require-
ments, and ameliorates the lower performance of using a relational database instead of a custom
file format. A surveillance program checks data freshness and consistency (values in range), and
generates an alarm if there is a problem.

There is a graphical user interface to the logging system which supports browsing the SL log-
ging database, as well as the ST logging database. Not unlike the LEP Trim program, it presents
a view of the parameter space as system, sub-system, sub-sub system, parameter, where the
highest point in the parameter tree is the choice of data source (LEP, ST, etc.). One possible im-
provement in this approach is to have the view of the parameter space for logging be identical
to the view of the parameter space for controls, namely device, property. Properties or devices
which are not being logged could either (optionally) be greyed out or removed from the menu
lists.

5.3 Convergence

5.3.1 Console Managers.There is a large functionality overlap between these two applica-
tions. A single one could be re-used if the notion of “context” were made abstract, and there was
an option to switch between tracking via context and tracking via task. In the menu initializa-
tion, programs could be marked as to whether they were context dependent (beam/machine de-
pendent). Some agreement would need to be reached on initialization via database or
initialization via file, and the working set displays would probably be moved into a separate ap-
plication. The view presented to operators would not need to be noticeably different from what
exists today, and the amount of software maintained would be correspondingly reduced.

5.3.2 Sequencer.The SL sequencer could potentially be used as is, except for a few statements
that directly execute operations instead of forking other programs. Because of the aperiodic,
long lived nature of the AD machine is similar to LEP, this might be a useful tool for that
project.

5.3.3 Data Management.The LEP software’s ability to deal with data at the level of physics
operations, in a manner symmetric with hardware control (as presented to the operator), is a
concept worth copying to the PS control system. Additional study would be required to make
recommendations upon how to achieve this goal. One approach is to standardize at the equip-

- 12 -

ment access API level all of the physics parameters into special “devices”, and an alternate ap-
proach is to copy the SL database design for physics parameter support to PS.

PS controls working set displays, and standardization of device status, would similarly be val-
uable both to the cycled SPS machine, and the aperiodic LEP machine. This would be simple
to port if a more advanced API were available as recommended above (see “Moderate conver-
gence” on page 7).

5.3.4 Data Logging / Trending.As there is little in place at PS at this time, convergence is
straightforward in principle. In a short time frame solution, SL style measurement black boxes
could be written to read PS data periodically (or on a supercycle basis), and inject the results
into the existing software framework (tables similar to those used at LEP). In a longer range
time frame, one could use the future publish/subscribe mechanism to support log-on-change as
an option. In any case, the two groups should collaborate on any future upgrades.

6. Physics Applications

By far, the most complex software in a control system deals with the accelerator as an acceler-
ator, and not just as a collection of I/O points. This type of software includes orbit analysis,
emittance measurement, model driven beam steering, beta matching, chromaticity measure-
ment and correction, and a long list of others. This type of software makes the most sophisticat-
ed use of the underlying control system, and can therefore become tightly coupled to a particular
system.

There was insufficient time to do a great deal of analysis of this type of software, but a few gen-
eral comments can be made. First of all, the LEP software is quite rich in functionality at the
physics level. This is true of the Trim program mentioned already, but also includes a large
package for beam correction (COCU — Closed Orbit Correction Utility) and many others. Most
of this software is more coupled to the databases of LEP and their access library than they are
to the front end server implementation, and deserve further analysis for re-use.

At PS, there is not as much software at this level, but there is one notable recent development,
namely ABS — Automated Beam Steering. ABS was written intentionally to be loosely cou-
pled to the control system. It has its own beam line description database, and the application it-
self is driven by this database. There are already some discussions underway to re-use this
application for beam line steering at the Prevessin site. One suggested approach (endorsed here)
is to have ABS use CDEV for device access, i.e. for the adaptor to the 2 control systems.

Pursuing this project would be a valuable testbed for sharing of high level physics software be-
tween 2 control systems.

7. Distributed Infrastructure

This category includes the software which other software may expect to have available in addi-
tion to the equipment access software. The major subsystems looked at include:

Timing System.The timing system is responsible for generating significant time events to con-
trol hardware and software processes. It includes software support for distributing events to cli-
ent hosts with no timing hardware.

- 13 -

Alarm System.The alarm system is responsible for acquiring significant alarm events through-
out the complex, recording them for later analysis, and presenting them to multiple operators.
Alarms can be selected on the basis of source computer, alarm type, or other fields. For a given
alarm, additional information may be made available to an operator, such as physical location
of the alarming item, or help in resolving the problem (either a program or documentation).

Error System. The error system covers translating an error code returned by a front end or li-
brary into a readable string, logging errors to a file for later analysis, and presenting (a subset
of) errors to one or more operators.

7.1 Timing System

The timing system spans front end hardware and software, plus network client software.

7.1.1 Hardware.As part of a joint development activity, SL and PS have adopted mostly iden-
tical hardware for their timing systems based upon older SL designs. (Each division continues
to support different legacy timing hardware.) This timing system consists of a master timing
system plus any number of timing receiver cards. The master timing node is implemented as a
VME crate with a processor running LynxOS plus one or more master timing generator (MTG)
cards. This VME crate is replicated so that there is a hot spare slaved to the master at all times,
and special synchronization signals flow between these two. At each complex, there is one
MTG card per major machine (CPS, PSB, LPI for PS, and SPS and LEP for SL). Each MTG
feeds a cable connected to timing receiver cards Tg8 (or in the case of SL, older generation Tg3
cards). PS is currently using the new hardware, while SL has prototyped using it to replace the
previous generation PC based cards.

7.1.2 Usage.The new MTG and Tg8 cards are able to support the differing PS and SL historical
usages, with PS primarily employing a “telegram” style of usage, and SL employing an “event”
style of usage.

To be more specific, the timing system may be used in both the traditional sense of sending time
markers (events) to various pieces of equipment or CPU’s to initiate ramps, etc., and may also
be used as a fast deterministic network carrying data from the MTG to various other systems.
The telegram is a set of data events each carrying 16 bits of data tagged by the high 16 bits of
the event. In the PS, these telegrams inform the remote equipment about what cycle is now be-
ing executed, plus what cycle will be executed next. In this way, the variations in the supercycle
(as pieces of the spare supercycle are substituted for corresponding pieces of the normal super-
cycle) are conveyed to all equipment which needs this information.

As SL does not currently operate with a normal/spare supercycle, there is not as much decision
making taking place on the fly in the CPU controlling the MTG predecessor, which is mainly
used to transmit a previously generated pattern of events during each supercycle. Instead, SL
uses the notion of accelerator modes (store/economy, pulsed, store, etc.) to conditionally exe-
cute parts of the event list.

Because of their differing usage patterns for the timing system, PS and SL have used (1) differ-
ent firmware on the MTG (PS) and MTG predecessor (SL) and Tg8 cards, (2) different means
(language and support software) for programming them, and (3) different means for handling
the events generated on the distributed nodes (front ends and host client applications).

Each Tg8 card contains a 256 word content addressable memory (CAM) which is used to de-
termine local interest in a particular event. The resulting data from the CAM is used to program
1 of 8 counters which delay the event locally, and may be used to interrupt the CPU. PS allocates

- 14 -

32 CAM words for each of the 8 output counters. SL has no such allocation policy, and any of
the 256 words may be used to trigger any of the 8 counters. Also on the Tg8 cards, the PS has
more code related to telegram processing, and SL has more software related to tracking the time
of arrival of the events, and statistics about the events. A new version of the Tg8 driver from SL
is due to be tested at PS soon, at which point a common firmware + driver will be in use.

On the MTG cards, the PS firmware is oriented toward multiplexing events and telegrams,
whereas SL tends to process simple event lists (with conditional branching and looping). SL
plans to take the PS developed MTG firmware for testing in the next run, although there is also
some interest in further developing the firmware along the lines of the older system (modal and
conditional event oriented).

7.1.3 Firmware and driver convergence.There are plans in place at this time to share both
firmware and drivers, so convergence appears optimistic at this time. A strong commitment
should be made to using a single software package for both PS and SL, with upgrades specified
by a team from both divisions.

7.1.4 MTG Supporting Software.The software used to program the timing systems at the mo-
ment are quite different, with the view of the timing system (event or telegrams controlling cy-
cle variations) dominating the appearance of the GUI and the database. In addition, PS modifies
the programs of multiple MTG’s in parallel. Software convergence here is not practical unless
these views are first reconciled.

7.1.5 (Unix) Timing Client Software.Client software is of two types: software to manipulate
the definition of the timing or analyse the performance of the timing system, and software to use
the time events to do other work. For the first type of software, PS has a more elaborate interface
in that each timing event definition is accessible as a first class device with properties, and the
software is very much database driven. The SL software treats the timing system more as a soft-
ware program (source code), and so manipulates the timing at that level. This software can only
converge to the extent that the user interfaces used at PS are (made to be) acceptable to those in
SL who need to modify the timing. It is unlikely that PS would be able to move in the direction
of treating the MTG software as algorithmic code.

The other type of client software is that which uses the events. Both PS and SL have mecha-
nisms for distributing timing system events/telegrams to clients running on computers any-
where on the network. This software consists of (1) a program which is essentially a direct client
of the timing hardware/driver (e.g. using a Tg8 card), plus (2) networking software to distribute
data via multicast and/or broadcast and/or direct socket connections to all interested machines
on multiple networks, plus (3) a daemon on each node to receive the data and repeat it to all
interested client applications on that node.

The application programming interface (API) varies, again, between one aimed at transporting
events and one aimed at replicating a block of memory (the telegram in PS’ case).

The SL software (SSM -- Software Synchronization Mechanism) views events as a 4-tuple con-
sisting of (1) header (SPS or LEP), (2) event type, (3) cycle type (beam type), and (4) cycle
number (within the supercycle). The configuration and administration functions are also some-
what customized to SPS/LEP operations.

The PS software (DTM -- Distributed Table Manager) transports named data tables, and sup-
ports 2 different API’s, one for older programs, and one for newer programs. DTM itself has
more capabilities for data transport than SSM, but event propagation does not need these fea-
tures, and in fact these additional features are for the most part not used.

- 15 -

7.1.6 Recommendation.There is considerable duplication of software in the network infra-
structure for SSM and DTM, and a combined system based upon a unified view of events (time
markers plus small telegrams) with a common API would be not too difficult to achieve. The
SSM package is cleaner in that it was designed to do only event distribution so it might be the
better starting point. The other capabilities of DTM not used by a timing system (bulk data
transport, sending data on change, etc.) should be moved to the standard RPC system and/or an
asynchronous data monitoring system (discussed in “Subscription Capabilities” on page 5 and
in “Moderate convergence” on page 7).

7.2 Alarm System

TheAlarm System is that software which continually checks the validity of the state of the con-
trol system, and gathers alarm state information for logging and presentation to operators. Both
SL and PS have alarm systems, albeit with different emphasis upon capabilities.

The SL alarm system, also known as the CERN Alarm System, is composed of the following
major pieces:

1. software to test data and generate faults (functionality split between low level device
code and a Standard Surveillance Program).

2. software to locally compress faults (multiple devices, oscillation) and detect if the
upstream software has stopped working (corresponds to the Standard Surveillance Pro-
grams plus the Local Alarm Server)

3. a central server (redundant) to receive all faults and log them

4. multiple consoles, displaying a subset of all active faults (GUI)

5. a database of all possible alarms, providing a mapping between alarm number and a
number of other items (priority, responsible person, location, action, display string, etc.)

This system emphasizes a central server and database, and employs a push event data transmis-
sion. This central database contains much information (such as location of devices) which is not
available through the existing equipment access layer (for historical reasons); this information
could be of value in other operator interface applications.

It must be noted that this CERN Alarm System is being used not just for the SL accelerator com-
plex, but also for technical services, fire alarms, and other non-accelerator purposes. This dem-
onstrates its robustness and adaptability, but also flags it as being difficult to evolve because of
its current heavy usage.

The PS alarm system comprises:

1. standardization of how to obtain alarm state through the equipment access layer (using
named properties of devices)

2. standardization of how to specify alarms (analogue limits, valid digital data patterns),
again contained in the database, plus standardization of the mapping between error status
bits and character strings per device class

3. operator GUI program, which polls a subset of the control system and presents alarms to
the operator

This system emphasizes standardization, within the database and the equipment servers, of how
to obtain alarm/status information, and employs a polling method to move data from the front
ends to the displays. There is no central alarm server or logger at present.

- 16 -

7.2.1 Basic Convergence.As in the equipment access discussion above, there is a choice of the
depth to which convergence is attempted. For a simple convergence, one could integrate PS
alarms into the site-wide SL/CERN Alarm System, allowing a single view for LHC operations.

1. write a new client program which polls the PS complex (as the existing GUI does), and
pushes fault states into an SL alarm server.

2. write an application which extracts information from the PS database, and formats it to
be included into the SL/CERN Central Alarm database.

7.2.2 Advanced convergence.Simplify and then use the SL/CERN alarm system for PS. As a
starting point, a more advanced equipment access layer is assumed (as in “Moderate conver-
gence” on page 7).

1. Add a standardized mechanism for monitoring (subscribing to) alarms to both PS and SL
controls, and create a Standard Surveillance Program which uses this subscription mech-
anism and then pushes alarm states upward. This new SSP could be used at both sites.

2. Modify the SL/CERN Alarm System to be able to use the more advanced features of the
new, merged, equipment access. For such intelligent systems, there would no longer be a
need to copy information from the device database into an alarm database -- the informa-
tion would be obtained from the advanced equipment access instead of the private data-
base as is now done.

7.3 Error System

When applications encounter errors, it is best if there is a standardized mechanism for logging
those errors and/or presenting them to operators.

7.3.1 PS.PS has an error logging library, with a call similar to printf, including an argument to
specify severity, and an ability to add a local error handler. An error log daemon receives errors
from all applications, and forwards them to an error viewer application (one per console), which
displays the program name, error severity, and error string; it also has some filtering capability.

The application frame (shell program used in console manager integration) also includes a con-
venience routine to pop up a window containing the error message prior to logging it.

7.3.2 SL.SL has a small library to allow daemons to print to a log file, automatically open a
new file when a particular size is reached, and a signal handler to toggle a logging flag on and
off. There is no support in this library for viewing errors from multiple applications in a single
window.

7.3.3 Convergence.As these libraries address different needs, and are not tightly coupled to
other software packages, they could both be easily shared.

7.4 Other Infrastructure

Another type of software infrastructure not really investigated is software for ensuring that cli-
ents and servers that should run all of the time are always alive. SL has a software manager (SM)
which forks required applications and watches for dying processes and restarts them. PS has a
command line utility with a similar capability for a single child process. Both of these represent
sharable software.

- 17 -

8. Summary Recommendations

The recommendations below are in priority order, where high priority is given to tasks which
have high impact on convergence or software sharing, have moderate impact but are easily ac-
complished, or are required by other tasks of high priority. The list below is a first cut, and will
certainly evolve as others provide additional information. Each is marked with a proposed time-
scale for implementation whereshort range implies less than 6 months,medium range implies
one year, andlong range implies several years.

Overall, the flow of recommendations is to first develop a common equipment access library,
second begin to share client applications (utility programs and libraries, and also physics appli-
cations), and finally, share in the development of next generation servers.

8.1 Prioritized List of Activities

1. (short range) Develop a common Java equipment access API. As Java is new to both sys-
tems, and holds high promise, and is being used on the AD project in PS and a GUILS
upgrade in SL, it is ideally suited for collaborative activities at this time.

Implementation should be at the moderate convergence level discussed above. It should
hide the existence of the SL/Oracle settings database while merging capabilities in both
the SL-Equip library and the SL operations library, and should similarly hide the PS/
DSC equipment tables. Furthermore, it should support monitoring at the fine grain
(device list, property) level. (See also the list in the API section.)

(medium range) Work on merging the Java-CDEV and Java-Eqp packages to foster bet-
ter world-wide collaboration, with anticipated benefits to CERN.

2. (short range) Set up a common source code repository for shared software, with clear
procedures for adding and updating software. Initially, each package should have an
owner, who is normally the only person changing the source code. CVS is recommended
in that it provides good support for 2 distinct groups running on different development
platforms.

3. (short range) Place the new MTG and Tg8 software into the source code repository, and
place into production at both sites.

4. (short range) Port the SL Data Viewer, stand-alone or embedded version, to PS for use on
the AD project.

(long range) Develop an equivalent Java data viewer/editor package, most likely in the
form of a java bean, which encapsulates vector editing, zoom and pan, plot and table
view, and hot cursor tracking. Use a more java beans-like API, with event passing,
instead of the existing library API.

5. (medium range) Timing event network distribution merger (SSM and DTM packages),
with support for Java clients. Define events to optionally carry data so that PS telegrams
can be carried in a way identical to other events. The resulting capability could be folded
in as an extension to the equipment access API, first for Java, then for C/C++. Subscrip-
tion should allow specifying which timing “system” to which one wants to subscribe.

6. (short range) For C/C++ shared software, implement the CDEV API on both PS and SL
controls, with a view toward having a common equipment access API for C/C++. Pro-
pose extensions to CDEV where necessary. Choosing CDEV also allows re-using a

- 18 -

growing amount of software from other labs (stripChart, z-plot, correlation measure-
ment, synoptic display, etc.).

7. (medium range) Implement a common subscription service, resident on each front end
(LynxOS on powerPC only) OR on a Unix machine as a gateway. It should accept sub-
scription requests at the (device, property) level, pushing data to the clients either period-
ically or on machine events.

8. (short range) Form a joint PS/SL team for beam steering, with the goal of having a com-
mon package for both complexes. Evaluate PS ABS at the SPS complex (beam line
steering). Note: collaborative discussions have already started between members
of the two divisions, and this activity is currently planned in an off-line sense, i.e. no
direct connection to the control system.

(medium to long range) Port the new ABS software to CDEV or other common API in
order to make it an on-line tool for both PS and SL. Evaluate database structure for use at
SPS and LEP. Either adopt the same table layout, or create an API to machine description
information (as described above under API convergence), possibly extending the equip-
ment access API or using CDEV message dispatch.

This will be the first step in sharing optics software, and should be considered in that
light. This project will serve to evaluate the types of machine description / discovery
needed by these applications. Addressing these questions should be considered the major
part of this activity.

9. (long range) Evaluate use of RESOLVE, from SLAC, for lattice diagnostics, and if it
looks valuable, collaborate in turning that into an on-line application (their plans are to
use CDEV).

10. (long range) Alarm system integration with a standard push client API, and a standard
surveillance program using the new common API with either monitoring and/or polling.
Adopt much of the server and network message format from SL Alarms, but with
decreased dependence upon its private database for PS and SL controls, and instead an
increased use of meta-data support contained in the new API. Alarm browsers should be
integrated, including the live interaction capabilities of the PS browser, and having his-
torical browsing capabilities.

11. (long term) Add data logging capabilities to PS, based initially on SL software, and using
the proposed new Java/GUILS browser. Evaluate CDEV logging software plans for pos-
sible collaboration activities, especially at the browser level.

12. (long range) Evaluate the use of an object oriented front end, using CORBA as the net-
work layer. Evaluate, as part of this project, existing OO servers within ECP/IT controls
group, and at BNL.

9. Conclusions

There are no technical reasons which would prevent greatly increased re-use of software be-
tween the control systems for the PS complex, SPS, and LEP (and LHC). There is considerable
duplication of effort represented in the existing systems, and there are areas which each system
shines and where each could profit from the other’s capabilities.

