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Abstract

In this letter we discuss the supersymmetry issue of the self-dual supermembranes

in (8 + 1) and (4 + 1)-dimensions. We �nd that all genuine solutions of the (8 + 1)-

dimensional supermembrane, based on the exceptional group G2, preserve one of the

sixteen supersymmetries while all solutions in (4 + 1)-dimensions preserve eight of

them.
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Recently, a new duality for fundamental membranes [1] in (4+1)-dimensions, has been

extended to (8 + 1)-dimensions using the structure constants of the octonionic algebra [2,

3, 4]. Explicit solutions have been constructed in various dimensions and connections with

string instantons have been found [5].

The fundamental supermembranes as extended objects were �rst described in [6] by a

manifestly space-time supersymmetric Green-Schwarz (GS)-action. It was further shown [7]

that they emerge as a solution of the eleven dimensional supergravity �eld equations with

their zero modes corresponding to the physical degrees of freedom of the GS-action. It

is now known that one of the fundamental problems of supermembrane theory is the ex-

istence of a convenient perturbative expansion and the derivation of e�ective low energy

Lagrangian (which is expected to be the 11-dimensional N = 1 supergravity theory). For

this problem, the existence of a self-dual sector of BPS-states for the supermembrane, pre-

serving a number of supersymmetries which would guarantee the absence of perturbative

corrections could be a way out. An interesting property of the self-duality equations for

supermembrane is that in three dimensions the system is an integrable one and in principle

all the spectrum of the corresponding BPS-states could be determined. In this case, after

the light-cone gauge �xing, one restricts the membrane to the three of the nine dimensions

in order to formulate the self-duality equations. The corresponding integrability of the

seven-dimensional case is still under investigation.

In this letter, we study the supersymmetry transformations for the octonionic self-

dual membranes and we determine the number of supersymmetries left in seven and three

dimensions. We �nd that the seven-dimensional case preserves one supersymmetry, while

the three-dimensional solutions preserve eight of them. The G2 symmetry of the seven-

dimensional case can be used to embed the N = 8, d = 3 BPS-states into N = 8, d = 7

superalgebra.

We start by recalling the light-cone gauge formulation of the supermembrane, where
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half of the rigid space-time supersymmetry as well as the local �-symmetry is �xed. We

then provide the supersymmetries left intact.

It is known that in d = 8 dimensions there is a connection of the Cli�ord algebra with

the octonionic algebra and this is the information needed to study the behaviour of the

octonionic self-duality equations under supersymmetry transformations. The relation with

the octonions has been noticed in the 80's during the studies of the S7-compacti�cations

of the 11-d supergravity as well as for the N = 8 gauged supergravities [8, 9, 10]. Recently,

the embedding of octonionic Yang-Mills (YM) instantons in the ten-dimensional e�ective

supergravity theories of strings has been constructed [11, 12, 13] where it was found that

one supersymmetry survives. More generally, wrapped membrane compacti�cations have

been recently discussed in the literature [14].

In the light-cone gauge, after the elimination of the X� variable from the reparametriza-

tion constraints, the supersymmetric Hamiltonian [6, 15] is de�ned as

H =
1

P+

0

Z
d2�

�
1

2
P IPI +

1

4
fXI ; XJg2 � P+

0
�����IfXI; �g

�
(1)

where PI = _XI and the indices I; J = 1; :::; 9 while we have �xed the area preserving

parameters so that w = 1 [6]. The compatibility condition for the uniqueness of X�, is the

Gauss law

f _XI ; XIg+ f����; �g = 0; I = 1; :::; 9: (2)

where summation over repeated incides is assumed. The Cli�ord generators �I , in (1) are

represented by real 32� 32 matrices which can be chosen in the following form

�I = �3 
 
I (3)

where �3 is the Pauli matrix, 
I represent the 16� 16 matrices and 
9 = 
1 � � �
8. Further,
�� (and �+) correspond to the light-cone coordinates (X10 �X0)=

p
2, thus they are given

by a similar decomposition

�� =
1p
2
(�10 � �0) : (4)
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Thus, we have

�� = {
p
2

0
BB@

0 116

0 0

1
CCA ; �+ = {

p
2

0
BB@

0 0

116 0

1
CCA (5)

The Hamiltonian (1) is invariant under area-preserving transformations of the mem-

brane (which for non-trivial topologies of the membrane contain also global elements 2g

in number, where g is the genus of the membrane [15]). The local area-preserving trans-

formations are generated by the Gauss law (2). Here the canonical variables satisfy Dirac

brackets

�
XI(�); _XJ(�0)

�
DB

= �IJ�2(� � �0) (6)

�
�I(�); ��J(�0)

�
DB

=
1

4
(�+)

IJ
�2(� � �0) (7)

(where we have chosen P+ = 1). It can be veri�ed that in the light-cone gauge there are

two independent spinor supersymmetry charges

Q = Q+ +Q� =
Z
d2�J0 (8)

where Q� = 1

2
����Q, and

Q+ =
Z
d2�(2 _XI�I + fXI; XJg�IJ)� (9)

Q� = 2
Z
d2�S = 2���0 (10)

which are constants of motion and �0 is the momentum conjugate to the center-of-mass

coordinate of the fermionic degrees of freedom of the membrane. The corresponding su-

persymmetry transformations which leave the Hamiltonian invariant, are given by

�XI = �2���I� (11)

�� =
1

2
�+

�
_X�I + ��

�
�+

1

4
fXI; XJg�+�

IJ� (12)

On the other hand, the local fermionic �-symmetry has been �xed by imposing the condition

�+� = 0 (13)
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Due to this gauge condition, the fermionic coordinates are restricted to SO(9) spinors,

satisfying

�1 � � ��9� = � (14)

while the SO(9) �-matrices satisfy �T
I = �I .

The self-duality equations for the bosonic part of the supermembrane have been initially

introduced in the light-cone gauge �xing X4; : : :X9 to be constants [1],

_Xi =
1

2
�ijkfXj; Xkg; i; j = 1; 2; 3 (15)

These equations have been proposed as an analogue of the electric-magnetic duality where

the local velocity of the membrane corresponds to the electric �eld while the RHS which

is the normal to the membrane surface, corresponds to the magnetic �eld. They imply the

Gauss law and the Euclidean-time equations of motion with fermionic degrees of freedom

(dof) set to zero [1, 16]. This system has been shown to be integrable and a Lax pair was

found. In order to go to higher dimensions one should have the notion of cross product of

two vectors and this is provided as the unique other possibility by the structure constants of

the algebra of octonions (Cayley numbers) [17]. The octonionic units oi satisfy the algebra

oioj = ��ij +	ijkok: (16)

where i = 1; : : : ; 7 are the 7 octonionic imaginary units with the property

foi; ojg = �2�ij (17)

The totally antisymmetric symbol 	ijk appearing in (16) is de�ned to be equal to 1 when

the indices are [17]

	ijk =

8>>>>>><
>>>>>>:

1 2 4 3 6 5 7

2 4 3 6 5 7 1

3 6 5 7 1 2 4

(18)

and zero for all other cases. With this multiplication table, 	ijk provides for every two

seven-dimensional vectors a third one, normal to the �rst two. Thus, it is possible to extend
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the three-dimesional self-duality equations to seven dimensions, �xing only the values of

X8; X9 membrane coordinates. Then, the self-duality equations [2] become

_Xi =
1

2
	ijkfXj; Xkg (19)

The Gauss law results automatically by making use of the 	ijk cyclic symmetry

f _Xi; Xig = 0 (20)

The Euclidean equations of motion are obtained easily from (19)

�Xi = fXk; fXi; Xkgg (21)

where use has been made of the identity

	ijk	lmk = �il�jm � �im�jl + �ijlm (22)

and of the cyclic property of the symbol �ijlm [17] which is de�ned to be equal to 1 when

its indices take values of the following table

�ijkl =

8>>>>>>>>>><
>>>>>>>>>>:

4 3 6 5 7 1 2

5 7 1 2 4 3 6

6 5 7 1 2 4 3

7 1 2 4 3 6 5

(23)

whilst it is zero for any other combination of indices. In terms of these units an octonion

can be written as follows

X = x0o0 +
7X

i=1

xioi (24)

with o0 the identity element. The conjugate is

�X = x0o0 �
7X

i=1

xioi (25)

The octonions over the real numbers can also be de�ned as pairs of quaternions

X = (x1; x2) (26)
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where x1 = x
�
1
��, x2 = x

�
2
�� and the indices � run from 0 to 3, while x0

1;2 are real numbers

and xi
1;2; (i = 1; 2; 3) are imaginary numbers. Finally, �0 is the identity 2 � 2 matrix and

�i are the three standard Pauli matrices.

If q = (q1; q2) and r = (r1; r2) are two octonions, the multiplication law is de�ned as

q � r � (q1; q2) � (r1; r2) = (q1r1 � �r2q2; r2q1 + q2�r1); (27)

where q1 = q0
1
+ qi

1
�i and �q1 = q0

1
� qi

1
�i. One can also de�ne a conjugate operation for an

octonion as

�q � (q1; q2) = (�q1;�q2) (28)

and we get the possibility to de�ne the norm and the scalar product q and r

q�q = (q1�q1 + �q2q2; 0)

=
3X

�=0

�
q
�
1

2
+ q

�
2

2
�

(29)

hqjri =
1

2
(q�r + �qr) (30)

In terms of the above formalism, the self-duality equations can be written as follows

_X =
1

2
fX;Xg; (31)

where X = X ioi with i = 1; � � � ; 7 and the Poisson bracket for two octonions is de�ned as

fX; Y g = @X

@�1

@Y

@�2
� @X

@�2

@Y

@�1
: (32)

After these preliminaries, we come now to the question regarding the number of su-

persymmetries preserved by the self-duality equations. In our analysis we will explore

the number of supersymmetries preserved by (3+1)- and (7+1)-dimensional solutions. We

will see that 3-d solutions preserve as many as eight out of the sixteen supersymmetries

while the 7-d self-duality equations preserve only one supersymmetry. The supersymmetry
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transformation is de�ned [6]

�� =
1

2

�
�+(�I

_XI + ��) +
1

2
�+�

IJfXI ; XJg
�
0
BB@

{�A

�B

1
CCA

In terms of the 16� 16 
-matrices, the above is written

�� =

0
BB@

0 0

{
p
2
�

I _XI +

1

2

IJfXI ; XJg

�
�2 � 116

1
CCA

0
BB@

{�A

�B

1
CCA (33)

which implies that

p
2

�

I _XI +

1

2

IJfXI; XJg

�
�A + 2 � 116�B = 0 (34)

where �A; �B are 16-dimensional spinors. From the form of eq.(34), we observe that if

self-duality equations are going to play a role in the preservation of a number of super-

symmetries, we should necessarily impose the condition �B = 0. Thus, at least half of the

supersymmetries are broken. Now, the last term in (34) is zero and eq.(34) simply becomes

�

I _XI +

1

2

IJfXI; XJg

�
�A = 0 (35)

Under the assumption that _X8;9 = 0, it can be shown that the above reduces to a simpler

{8 � 8{ matrix equation. In order to �nd a convenient explicit form, we �rst express the

16�16 matrices in terms of the octonionic structure constants 	ijk as follows: let the index

n run from 1 to 7; then we de�ne


8 =

0
BB@

0 18

�18 0

1
CCA ; 
n =

0
BB@

0 �n

��n 0

1
CCA (36)

where 18 is the 8� 8-identity matrix and �n are seven 8� 8 
-matrices with elements [10]

(�n)
i
j = 	imj; (�n)

i
8
= �ij; (�n)

8

j = ��ij (37)

while it can be easily checked that �1 � � ��7 = �18 and


9 =

0
BB@

18 0

0 �18

1
CCA (38)



{9{

The commutation relations of �m give:

([�m; �n])
8

j = +2	nmj (39)

([�m; �n])
j

8
= �2	nmj (40)

([�m; �n])
i

j = �2Xmn
ij(�4) (41)

where the tensors Xmn
ij(u) are de�ned as follows [3]

X ij
kl(u) = �ij

kl +
u

4
�ijkl (42)

where �ij
kl =

1

2
(�ik�

j
l � �il�

j
k). Next, we impose the following condition on the components

of the 16-spinor �A

�A =

0
BB@

1

�{

1
CCA
 " (43)

where 
 stands for the direct product and " is an eight-component spinor whose components

are left unspeci�ed. Clearly, condition (43) reduces further the sixteen supersymmetry

charges to eight. Separating the eight components of " = ("7; "1) where "7(1) is a seven-

(one-) dimensional vector, we �nd that eq.(35) reduces to the matrix equation

O " �

0
BB@

	imj
_Xm + {

2
Xmn

ij(�4)fXm; Xng _Xi +
{
2
	imnfXm; Xng

�
�
_Xi +

{
2
	imnfXm; Xng

�
0

1
CCA

0
BB@

"7

"1

1
CCA = 0 (44)

The rather interesting fact here is that the matrix elements O8j and Oj8, (j = 1; :::; 7) mul-

tiplying the "1-component are the self-duality equations (15) in eight dimensions when the

Euclidean time-parameter t is replaced with {t (Minkowski). Thus, "1-component remains

unspeci�ed and there is always one supersymmetry unbroken for any eight-dimensional

solution of the self-duality equations.

Let us now turn our discussion to the upper 7� 7 part of the matrix equation (44). In

general, the quantity specifying these elements, namely

	imj
_Xm +

{

2
Xmn

ij(�4)fXm; Xng (45)
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is not automatically zero. However, there is a particular case {which turns out to be the

most interesting one{ where the above quantity is the self-duality equation itself. In fact,

if we consider only three-dimensional solutions of the equations, the `curvature' factor �ijkl

is automatically zero while the tensor X ij
kl simply becomes

X ij
kl = �ij

kl =
1

2
(�ik�

j
l � �il�

j
k) for �ijkl = 0: (46)

In this case, it can be easily seen that (45) reduces to the self-duality equations in three-

dimensions. In this latter case, all eight supersymmetries survive.

We summarize this note discussing also the importance of the supersymmetric self-

duality con�gurations in three and seven dimensions. The absence of a natural perturba-

tive expansion for the 11-d fundamental supermembrane prohibits so far the derivation of

its low energy e�ective Lagrangian which is expected to contain 11-d, N=1 supergravity

interacting with solitonic two- and �ve-branes in a duality symmetric way. The Euclidean

self-dual membrane con�gurations in three and seven dimensions, after light-cone gauge

�xing, provide non-perturbative minima of the action, which could survive perturbative

corrections if enough supersymmetries are left intact. The quantum mechanical ampli-

tudes calculated in supermembrane theory could be then determined by transforming the

path-integral integration around these minima into the in�nite moduli-space integration

of the self-dual con�gurations of supermembranes. The best candidate for these seem to

be the three-dimensional integrable self-dual sector where eight supersymmetries survive.

The problem then is reduced to �nd the moduli space and its integration measure of the

minimum action 3-d con�gurations. We hope to come back to this problem in a future

work.
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