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Abstract

Using recently developed methods, we perform high-accuracy calculations

of the susceptibility near �c for the D = 3 version of Dyson's hierarchical

model. Using linear �ts, we estimate the leading () and subleading (�)

exponents. Independent estimates are obtained by calculating the �rst two

eigenvalues of the linearized renormalization group transformation. We found

 = 1:29914073 � 10�8 and, � = 0:4259469 � 10�7 independently of the

choice of local integration measure (Ising or Landau-Ginzburg). After a suit-

able rescaling, the approximate �xed points for a large class of local measure

coincide accurately with a �xed point constructed by Koch and Wittwer.
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Scalar �eld theory has many important applications such as superconductivity, low en-

ergy descriptions of quark-antiquark bound states and possibly the mechanism responsible

for the mass generation of all the experimentally observed particles. However, there exists

no approximate treatment of this theory which could pretend to compete in accuracy with

quantum electrodynamics at low energy, where renormalized perturbation theory can be

used to calculate the magnetic moment of the electron and the muon with more than ten

signi�cant digits. Given the inherent di�culties associated with the experimental probing

of very short distances, accurate calculations compared with accurate \low-energy" experi-

ments may become more of a standard procedure in the next century.

In order to obtain a completely satisfactory treatment of scalar �eld theory in various

dimensions, one needs an approximation scheme such that: a) the zeroth-order approxima-

tion preserves the main qualitative features of the model, b) the zeroth-order approximation

allows very accurate calculations, and c) the zeroth-order approximation can be improved

systematically and in a way which preserves its computational advantages. We advocate

here that hierarchical approximations such as the approximate recursion formula derived by

K. Wilson [1] or the related recursion formula which holds for Dyson's hierarchical model

[2] could be used as such a zeroth-order approximation. The fact that the approximate

recursion formula satis�es the requirement a) is discussed at length in Ref. [1]. The fact
that requirement b) is satis�ed in the symmetric phase is explained in Refs. [3,4] and briey
reviewed below. The use of the hierarchical approximation solves some important problems

encountered in practical calculations in lattice �eld theory. First, it possible to perform all
the integrals appearing in the calculation of the zero-momentum Green's function in a much
more e�cient way than with the Monte-Carlo procedure. Second, the computing time scales

only like the log of the number of sites, and one can eliminate �nite-size e�ects completely.
This can justify the e�ort of trying to solve part c) of the above program which is a very

di�cult problem.
Wilson's approximate recursion formula is closely related to the recursion formula appear-

ing in Dyson's hierarchical model [2]. Both models have no wave function renormalization

(� = 0). It is possible to continuously interpolate between the two models and to show
that during this process, the critical exponent associated with the susceptibility  varies [5]
by less than 5 percent with respect to the nearest neighbor value. However, the numerical

treatment of the two models is completely identical. In the following, we specialize the dis-

cussion to the case of Dyson's model because this model has been studied [3,6{10] in great

detail in the past. We want to make clear that this choice is not essential and anything done
below could have been done for Wilson's approximate formula.

In a typical lattice �eld calculation, we pick some values for the bare parameters entering

in an action and we calculate the renormalized quantities. In general, the physical masses
cannot be too large when expressed in cut-o� units. Ideally, we should be able to cover a

broad range of situations going from e�ective theories with a low cut-o� (e.g., (m�=m�) ' 6
for an e�ective theory of pions) to a \fundamental" theory with a large cuto� and which

requires some �ne-tuning procedure. In the following calculations, the �xed bare parameters

will appear in a local measure of the Landau-Ginzburg (LG) form:

W0(�) / exp�(
1
2
m2�2+g�2p) : (1)

The limit [1] of a large UV cut-o� �, in units of the physical mass mR, can be reached by
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tuning another parameter �, which is the inverse temperature in Dyson's formulation of the

model [2]. More explicitly, �=mR is proportional to (�c � �)�


2 .

By �ne-tuning �, one can approach a �xed point of the renormalization group (RG)

transformation and describe the RG ows using the linear approximation. As we will show

later, for � close enough to �c (i.e. , for � large enough), one can approximate very well the

magnetic susceptibility (zero-momentum two point function) with a linearized expression

taking into account only the �rst irrelevant direction:

� ' (�c � �)�(A0 + A1(�c � �)�) ; (2)

If we were sure that there is only one non-trivial �xed point (universality) and if we we

could calculate accurately the exponents, then the complicated procedure described above

can be reduced to the determination of A0 and A1 in Eq.(2), a procedure that involves no

�ne-tuning.

In this Letter, we provide empirical evidence suggesting that the RG transformation of

Dyson's hierarchical model has only one non-trivial �xed point. We calculate the exponents

 and � with two independent methods (direct �t and linearization). The accuracy of

our results is signi�cantly better than the accuracy reached in the past [3,6,7,9]. All the
approximate �xed points we have constructed below are very close (after rescalings explained
below) to the �xed point calculated with an extraordinary accuracy by Koch and Wittwer

[8]. Our work demonstrates the enormous calculational advantage of using the hierarchical
approximation and addresses the question of understanding to what extent expansions about

a known �xed point can be used as a substitute to the lengthy calculations in terms of bare
parameters described above.

For the sake of completeness, we briey review the steps which lead to the basic expression

of the RG transformation of Eq.(6). The block-spin transformation of the hierarchical model
is an integral formula which transforms the local measure W (�) according to the rule:

Wn+1(�) / e
�
2
( c
4
)n+1�2

Z
d�0Wn(

(�� �0)

2
)Wn(

(�+ �0)

2
) ; (3)

where c = 21�
2
D in order to approximate D-dimensional nearest neighbor models. For more

details, the reader may consult Refs. [4,8,9]. In the following we only consider the case D = 3

in the symmetric phase. We approach criticality for a �xed initial W0 by �ne-tuning � as

described in Ref. [4]. When a critical value �c is reached approximately, a (discrete) scale

invariance is temporarily restored and it is convenient to reabsorb the scale factor (c=4) in
�2. After this rescaling, we obtain the conventional RG transformation of the local measure.

In Fourier form it reads:

Rn+1(k) = Cn+1 exp(�1

2
�
@2

@k2
)(Rn(

k
p
c

2
))2 : (4)

We �x the normalization constant Cn in such way that Rn(0) = 1. We consider the �nite

dimensional approximations of degree lmax:

Rn(k) = 1 + an;1k
2 + an;2k

4 + ::::: + an;lmaxk
2lmax : (5)

The coe�cients an;l are proportional [4,10,9] to the expectation value of the sum of all the

�elds (after n iterations, there are 2n of them) denoted Mn. In particular, the �nite volume
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susceptibility �n(�), de�ned as < (Mn)
2 >n =2

n is simply �2an;1(2c )n . When � < �c, �n

reaches a �nite limit � when n goes to in�nity. The recursion formula for an;m is purely

algebraic:

an+1;m =

Plmax

l=m (
P

p+q=l an;pan;q)
(2l)!

(l�m)!(2m)!
( c
4
)l(�1

2
�)l�m

Plmax

l=0 (
P

p+q=l an;pan;q)
(2l)!

l!
( c
4
)l(�1

2
�)l

: (6)

The initial condition for the Ising measure is R0 = cos(k). For the Landau-Ginsburg mea-

sure, the coe�cients in the k�expansion need to be evaluated numerically.

In a recent article [4],we have shown that the errors on � due to �nite volume and �nite

truncations fell exponentially fast with, respectively, the number of iterations used and the

dimension of the truncated space (lmax). It is possible to make calculations where these

errors play no practical role. The main limitation of the method comes from the round-

o� errors which are ampli�ed when many iterations are spent near the �xed point. If the

arithmetic operations are performed with a precision �, then [4]

j��
�
j � �

�c � �
: (7)

We now proceed to determine the values of the four parameters appearing in Eq. (2) from
direct calculations of � at various temperatures. The calculations which follow have been

performed for two particular choices of W0, one corresponding to the Ising limit (W0(�) =
�(�2 � 1)) and the other to the choice m2 = 1; p = 2, and g = 0:1 in Eq.(1). Unless
speci�ed di�erently, the calculations are performed using double-precision. In the following,

we use the notation x for the quantity �log10(�c � �). If we display log(�) versus x, the
deviations from the linear behavior are not visible to the eye and need to be studied and

understood \locally" in �. In order to get a rough understanding of the corrections, we have
divided the computer data in 14 bins of 100 points. The �rst bin contains data for values
of x = 1:00; 1:01; : : :1:99 and so on. In each bin (indexed i), we make a linear �t of log10(�)

versus x. In the i-th bin, we call the slope (i), and (�(i))2 denotes the sum of the squares
of the di�erence between the data and the linear �t divided by the number of points in a

bin (100) minus 2. The values of �(i) are displayed in Fig. 1. This graph can be interpreted
easily. There are two known sources of deviations from the linear behavior: the subleading
corrections to the scaling laws (which decrease when � gets close to �c) and the round-o�

errors (which increase when � gets close to �c according to Eq.(7)). The approximate slopes

in Fig. 1 con�rm this interpretation. In bin 9, we minimize the combined deviations from
linearity and we can consider (9) as a �rst estimate of . Its numerical value is 1.29917

in the Ising case and 1.29914 in the LG case. With this simple-minded procedure, we have
already gained almost two signi�cant digits compared to the existing estimates [3,7,9] where

the answer  = 1:300 was consistently obtained with errors of order 1 in the last digit.

We can improve this result by estimating the subleading corrections. For this purpose,
we have used the bins 6 and 7 where the next subleading corrections are small (see discussion

later) and where the numerical errors are still not too large. We have divided these two bins
into 10 sub-bins of 100 points each. We use two digit indices for these sub-bins. For instance

sub-bin 6.3 is the third sub-bin of bin 6 and contains the values of x: 6:3; 6:301; : : : ; 6:399.

Using Eq.(2), the same kind of notations as above for  and noting that j + 0:0495 is the
middle of the sub-bin indexed by j, we obtain the approximate decay law:
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(j) '  ��(
A1

A0

)10��(j+0:0495) : (8)

The unknown coe�cients can be extracted from linear �ts of log10(
(j+0:1) � (j)). We

obtained A1

A0
= �0:57 and � = 0:428 for the Ising model and A1

A0
= 0:14 and � = 0:427

for the LG model speci�ed above. Repeating the �rst step (a linear �t in bin 9) but with

� divided by (1 + A1

A0
(�c � �)�), we obtain =1.299141 with an agreement up to the sixth

decimal place between the two models considered above.

Eq. (7) is an unavoidable limitation if we use double precision arithmetic. However, using

Mathematica with a suitably set precision, lmax = 42 for the Ising model and lmax = 50

for the LG model (see ref. [4] for the determination of these quantities), we were able to

calculate � in bins 10,11 and 12 with 11 signi�cant digits. In the following, we call this

data the \high-precision data". Since this procedure is relatively lengthy, we have used only

ten points per bins. We also determined �c with 24 signi�cant digits so that in bin 12, the

subtracted quantity �c�� is also known with at least 11 signi�cant digits. In the Ising case,

the result is easily reproducible and reads �c= 1.17903017044626973251189. We have then

used bin 12 (where the subleading corrections are very small and our errors on them are less

important) with � divided by the subleading correction as described above, to estimate .

We then used this better value of  to obtain the subleading corrections in bin 7 (where they
are more sizable). This procedure can be iterated. This \bootstrap" of linear �ts converges
rapidly. We reach a nine signi�cant digit agreement between the high-precision data and the

�t obtained with the above procedure. The small discrepancies can be analyzed in terms of
�rst order errors made in the estimate of the four parameters. This linear analysis provides

small corrections (< 4�10�9) to  and more sizable corrections (< 4�10�4) to �. The size
of these corrections provide an order magnitude estimate for the errors. After these small
corrections are taken into account, we obtain an agreement between the exponents of the

two models for the following digits:  = 1:299140730 and � = 0:4260. We conclude that
 = 1:29914073 with an estimated error of less than 10�8.

We would like to comment about the corrections to Eq. (2) and how they could a�ect our
estimates. First, since the third eigenvalue of the linearized RG transformation �3 ' 0:48,
the next subleading exponent is approximately 2. For x > 10, these e�ects are negligible.

Second, a general argument [1], suggests that we should replace the constant A0 and A1 in
Eq.(2) by log-periodic function which can be expressed as linear superposition of Fourier

modes of the form (�c � �)
i2�l
ln(�1) , with l an integer. Evidence for non-zero Fourier modes

were found in Ref. [9] by using an estimator of  � 1 called the extrapolated slope and
denoted bSm. In this estimator, oscillating and constant contributions have roughly the

same amplitude. However, using Eqs.(3.7) to (3.10) of Ref. [9], one realizes that in bSm, the

oscillating amplitude is dramatically ampli�ed by a factor of the order j!3=�(+ i!)j where
! = 2�=ln(�1) ' 18. This implies that the Fourier coe�cients of the non-zero modes are
suppressed by at least 14 orders of magnitude. A direct search for these oscillations con�rms

this upper bound. Third, Eq. (2) is obtained from a linearization. Higher order corrections

give contributions proportional to (�c � �)2�. An analysis of the di�erence between �t and

data in low bins indicates that these corrections are the main source of errors in our analysis.

An alternative calculation of the exponents consists in linearizing the RG transformation
near a �xed point. An approximate �xed point can be found by approaching �c from below

with our best resolution and iterating until an+1;1=an;1 takes a value which is as close as
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possible to 1. In the present formulation, the linearized RG transformation is given by the

lmax � lmax matrix

Ml;m =
@an+1;l

@an;m
(9)

evaluated at the (approximated) �xed point. Using the high-precision Mathematica-based

method described above, we obtained this approximate �xed point for n = 101 for the Ising

model and for n = 97 for the LG model. Calculating the eigenvalues of Eq.(9) for the

two models used for the �rst estimates, we obtain discrepancies of 2 � 10�8 for �1 and of

4 � 10�8 for �2. The average values are �1 = 1:42717246 and �2 = 0:85941163. Changing

n by one or improving the �xed point using Newton's method produce variations in these

eigenvalues which are smaller than 3 � 10�8. Using the relations  = 2ln(2)=3ln(�1) and

� = �ln(�2)=ln(�1), we obtain  = 1:29914078 and � = 0:4259469 both with estimated

errors of order 10�7. The new estimate of  is compatible with the previous one but is less

accurate. On the other hand, the new estimate of � is more accurate. The discrepancy with

the previous estimate is less than 10�4 which is compatible with our previous error estimate.

The two approximated �xed points obtained in the above calculation depend on �c. We

denote them R?(k; �c). However, it is possible to obtain what will turn out to be a universal
function U(k) by absorbing � into k. More explicitly, we found that

U(k) = R?(
q
�ck; �c) (10)

is in very good approximation independent of the model considered. This function is related
to a �xed point f(s2) constructed in Ref. [8] by the relation

U(k) / f((
c� 4

2c
)k2) : (11)

The Taylor coe�cients of f can be found in the �le approx.t in [8]. Normalizing Eq.(11)

with U(0) = 1, we obtain

U(k) = 1:� 0:358711349882k2 + 0:053537288227k4 � : : : (12)

It is not known if there is only one non-trivial �xed point for Dyson's model. Both the two
approximate �xed points we have constructed above give a function U(k) very close to Eq.

(12). The closeness can be characterized by the �-norms introduced in [8]. For � = 2 and

l � 42 we found that the error �ul on the l-th coe�cients of the approximate U(k) with

respect to the accurate expression obtained from Ref. [8] were bounded by j�ulj < 3�10�8

l!2l
.

In order to further explore the possibility of having di�erent �xed points, we have con-

sidered more LG models. Using the parametrization of Eq. (1), we have considered the 12

cases obtained by choosing among the following possibilities: m2 = �1 (single or double-well
potentials), p = 2; 3 or 4 (coupling constants of positive, zero and negative dimensions when
the cut-o� is restored) and g = 10 or 0.1 (moderately large and small couplings). These

searchs have been performed using regular double-precision calculations. We have not aimed

at great accuracy. For all these twelve models, we found that using the same notations and

conventions as a above j�ulj < 5�10�5

l!2l
. In other words, the function U(k) seems to be inde-

pendent of the general shape of the potential, the strength of the interactions and whether

or not the model is perturbatively renormalizable.
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In conclusion, our best estimates of the critical exponents  = 1:29914073� 10�8 and,

� = 0:4259469� 10�7 have an accuracy signi�cantly better than existing estimates [3,7,9].

Our results demonstrate the power of the methods developed in Ref. [4]. They provide an

incentive to develop more e�cient perturbative calculations of the critical exponents and

to attack the problem of the improvement of the hierarchical approximation. We found no

indications for the existence of a non-trivial �xed point di�erent from the one obtainable

from Ref. [8]. Near criticality, or in �eld theoretical language for a large UV cut-o�, the

parametrization of Eq.(2) �ts the data very well. The quantities A0 and A1 depend on the

bare parameters in a complicated way. However, the fact that we can use con�dently the

universal features suggests that it is possible to shortcut the use of bare parameters and

consider directly A0, A1 as an input. More generally, we are in position to check if the

following conjecture is true: an expansion about the non-trivial �xed point can be used as a

substitute for the calculations in terms of bare parameters. If true, this would mean that the

result of Ref. [8] e�ectively \solves" the hierarchical model even far away from criticality.
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FIGURES

FIG. 1. The deviations from the linear �ts �(i) de�ned in the text as functions of the bins, for

the Ising model (circles) and the Landau-Ginzburg model (stars).
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