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Abstract

The trilinear couplings of squarks and sleptons to the Higgs bosons can give rise

to a spectrum of bound states with exotic quantum numbers, for example, those of a

leptoquark.
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The scalar sector of the Minimal Supersymmetric Standard Model (MSSM) com-

prises the Higgs fields and the superpartners of quarks and leptons. The gauge inter-

actions of these particles are well understood because the charges of the scalars, by

virtue of supersymmetry, are the same as those of their fermionic partners. In addi-

tion, the squarks and sleptons can have some scalar interactions. The quartic coupling

of the scalar fields are related to the Yukawa couplings and the gauge couplings by

supersymmetry. However, the strength of the trilinear interactions is to a large ex-

tent unconstrained, except indirectly, from the requirement of vacuum stability. It is

possible (and, in some models, desirable) that these dimensionful couplings be large in

comparison to the masses of some scalar particles. The main focus of our analyses is on

such trilinear scalar interactions because they are effectively “attractive” and can cause

the appearance of bound states in the theory. These bound states can be observed as

resonances in high-energy experiments and can, for example, cause an increase in the

cross-section qualitatively similar to that reported last year at HERA [1].

We denote the SU(2)-doublet chiral superfields of quarks and leptons as Qα
L

and Lα
L

respectively, and use the same notation for their scalar components. The corresponding

right-handed SU(2)-singlets are u
R
, d

R
, and l

R
. Here and below the Greek letters stand

for the SU(2) indices, the color SU(3) indices are suppressed. When relevant, the

additional flavor indices, in Latin characters, will indicate the generations of (s)quarks

and (s)leptons.

The superpotential of the MSSM includes the following terms

W = εαβ [yuQ
α
L
Hβ

2 uR + ydQ
α
L
Hβ

1 dR + ylL
α
L
Hβ

2 lR − µH
α
1 H

β
2 ] + ..., (1)

and generates, in particular, the trilinear interactions of the form

V3,µ = 2yµεαβHα
1 Q

β
L
u
R

+ h.c. (2)

that preserve supersymmetry. In addition, the trilinear terms

V3,A = AεαβHα
2 Q

β
L
u
R

+ h.c., (3)
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which couple the same squark bilinear Q
L
u
R

to the “wrong” Higgs, appear in the scalar

potential as a consequence of supersymmetry breaking. The potential can be written

as follows

V = V2,H + V2 + V3,µ + V3,A + V4, (4)

where V2,H comprises the terms quadratic in the Higgs fields, V2 contains the mass

terms of the squarks and sleptons, V4 comprises the gauge D-terms and the terms of

the form y2Q2q2, y2Q2H2, etc.

The trilinear coupling can play a crucial role in creating the bound states and

resonances of squarks and sleptons through the exchange of the Higgs fields. For

clarity, we will assume a particular form for the scalar potential that will retain all

the relevant features of the general scalar interaction in the MSSM but will greatly

simplify the discussion. First, we make use of a well-known MSSM prediction that

there is a light neutral Higgs h0. It is reasonable to neglect the propagation of heavier

Higgs scalars in the ladder diagrams. Second, we will assume that the squarks and the

sleptons have degenerate masses around m0 (this assumption could be motivated by

the constraints on the FCNC, although the latter can be satisfied without the squark

degeneracy). In addition, we assume the equality of the trilinear couplings for the

squarks and sleptons in question. One can easily generalize on all these assumptions,

none of which is crucial to the main conclusions of our analysis. However, the algebraic

entanglement involved in tracking a large number of parameters may unnecessarily

complicate the discussion. We now want to examine the possibility of a bound state of

two squarks, two sleptons, or a squark and a slepton, that exchange the lightest Higgs

boson. The relevant interaction can be described by the approximate potential written

in the flavor-diagonal basis of squarks and sleptons:

Va = m2
0(|Q

α|2 + |q|2 + |Lα|2 + |l|2)+
1

2
m2

H
|Hα|2−AεαβHαQβq−AεαβHαLβl+ ..., (5)

The quartic couplings V4 can be neglected as long as the interaction relevant for the
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Bethe-Salpeter equation is dominated by the large trilinear terms, the case in which

we are mainly interested.

Theories of the kind described by the potential in equation (5) have historically

been the testing ground for solving the Bethe–Salpeter equation [2],

[(
1

2
E + p

)2

+m2
0

] [(
1

2
E − p

)2

+m2
0

]
ψ(p) =

4iA2

(2π)4

∫
d4k

ψ(k)

(p− k)2 +m2
H

, (6)

where ψ(p) is the wave function, E is the bound state energy, and m
H

is the physical

mass of the (lightest) Higgs. The potential in equation (5) can be re-written in the form

that matches exactly the interaction studied in Ref. [4] if one diagonalizes the squark

and slepton bilinears that enter into the cubic terms by a unitary transformation. We

can, therefore, use the results of Refs. [2, 3, 4] for the energy spectrum of the bound

states.

For fixed energy E, equation (6) is a Fredholm equation that has a discrete spectrum

of eigenvalues λ ≡ A2 that depend on E. In other words, for a given value of the

coupling λ one looks for such energy E that makes λ an eigenvalue. Then the bound

state energy E is characterized by a discrete spectrum. If m
H

= 0 and α is small, the

n’th bound state has energy [2, 3]

En = 2m0

(
1−

α2

8n2

)
, (7)

where

α =
1

16π

A2

m2
0

. (8)

The bound states exist for any value of α if the Higgs field H is massless. In the

ladder approximation, the bound state energy approaches zero at α = πn(n+1), which

can be used as a semi-quantitative reference point for the strength of the attractive

interaction. The exchange of a scalar field with mass m
H

creates a bound state only if

α > αmin ≈ 1.68(m
H
/m0) [3].
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It is interesting to juxtapose these bound states and Q-balls [5]. Bosons can form

a coherent state that allows a semiclassical description in terms of non-topological

solitons if the number of particles is sufficiently large. The connection between sparticle

bound states and Q-balls clarifies the role of the trilinear terms. The existence of small

Q-balls [6] in the MSSM relies on the requisite trilinear couplings [7] that make it

possible for the energy of the coherent state with a given baryon or lepton number to

be less than the combined mass of the free particles that carry the same charge. The

same trilinear term in the scalar potential can be viewed as an attractive interaction

between the constituent squarks that exchange the Higgs fields. The latter description

is more appropriate in the few-body limit, where the semiclassical description of Q-balls

breaks down. Nevertheless, it is tempting to compare the expression for the ground

state energy E1 in equation (7) to the mass of a small Q-ball. One can suspect that

a small Q-ball is merely an alternative description of some bound states. In some

cases, such point of view is justified. For example, a bound state of two leptons can

be thought of as a Q-ball with charge Q = 2 associated with the lepton number U(1)
L

symmetry. A bound state of a slepton and a squark can be seen as a U(1)
B−L soliton,

and so on. Of course, only a subset of sparticle bound states can be linked to Q-balls.

The masses of small Q-balls (those, for which the thin-wall approximation is not valid)

for a potential (5) with m
H

= m0 = m were calculated in Ref. [6]:

E
Q

= Qm

1− Q2

54S2
ψ

(
A2

m2

)2
 , (9)

where Sψ = 4.85 is a quantity found numerically. The expression (9) was obtained

in a semiclassical approximation that becomes unreliable when Q ∼ 1. The energy in

equation (7) was calculated [2, 3] in the ladder approximation from the Bethe-Salpeter

equation. Although there is no reason to expect a good agreement between the two

approximations, one of which (9) is pushed beyond its limit of validity, we notice that

for n = 1 and Q = 2 they give the same dependency on the parameters A and m. In

addition, formula (9) would give the same quantitative result if constant Sψ assumed
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a somewhat higher value.

We believe that taking into account the detailed structure of the mass terms in

the MSSM and the inclusion of all degrees of freedom in the Higgs sector is unlikely

to alter one’s conclusions with respect to the existence of the bound states. Some

generalizations of formula (7) to the case of the scalar fields with different masses and

unequal trilinear couplings can be found in [4]. We conclude that the squarks and

sleptons of the MSSM can form bound states. The binding energy is determined by

the coupling α in equation (8). If the squarks and the sleptons have different masses

m1 and m2, and couple to the light Higgs with the couplings A1 and A2 respectively,

then the relevant coupling is α̃ = (1/16π)A1A2/m1m2 [4].

Phenomenologically, the trilinear coupling A in equation (3) can be as large as a

few TeV. The upper limit on the value of A comes from considerations of vacuum

stability with respect to tunneling into a possibly lower color and charge breaking

(CCB) minimum in the scalar potential [8, 9]. The strongest limit of this kind exists for

the third generation trilinear coupling, At, because the tunneling into a CCB minimum

associated with a small Yukawa coupling is suppressed [10]. The empirical formula

inferred from the numerical analyses [9] is

(At/yt)
2 + 3µ2 < 7.5(m2

t̃L
+m2

t̃R
), (10)

where mt̃L
and mt̃R

are the squark masses and yt ≈ 1 is the top Yukawa coupling4.

Clearly, the ratio At/mt̃R
can be of order 10 if the right-handed stop is very light.

While the masses and widths of the bound states may vary, their quantum numbers

are determined by the particle content of the MSSM. Many of them can produce reso-

nances at present and future experiments. For example, let us consider a “leptoquark”

bound state that can show up as a resonance in an electron-proton collider. The cor-

responding diagram is shown in Fig. 1. This resonance can be observed through an

4If one requires that the color and charge conserving vacuum be the global minimum of the po-
tential, the coefficient 7.5 in equation (10) is replaced by 3 [8]. We note that At in Refs. [8, 9] differs
from ours because we absorbed the Yukawa coupling into the definition of A.
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Figure 1: The scalar “leptoquark” bound state can create a resonance at an electron-
proton collider. The SU(2)-doublets Q̃ and L̃ are the first-generation squark and
slepton if the gaugino is Z̃ or γ̃. They can be of a different flavor (for example,
stop and τ̃) for the W̃ exchange. Only one of many possible diagrams is shown.

increase in the cross-section, much like that reported by HERA experiments [1] at high

Q2. The experimental status of these events remains uncertain but will undoubtedly be

clarified in the near future. A squark with mass ∼ 200 GeV and with R-parity violating

couplings [11] has been proposed as an explanation of the HERA events. We emphasize

that the leptoquark resonances can exist in the MSSM with conserved R-parity. They

correspond to the bound states of squarks and sleptons of the type illustrated in Fig. 1.

Perhaps, the resonances in the 200 GeV mass range can account for the HERA events

if their coupling to the light fermions is sufficiently large. Of course, the parameters of

such resonances are model-dependent.

We expect a variety of resonances to be detectable at a lepton collider, for instance,

at LEP, NLC, or a muon collider (Fig. 2).

The two-particle bound states can have two squarks (including a “positronium”

state that comprises a squark and an anti-squark), two sleptons, or a slepton and a

squark. Depending on the trilinear terms, the leptoquark resonances can have different

quantum numbers that correspond to e±d, e±u, etc. In addition, there can be colorless

three-particle states bound by the exchange of the Higgs fields (cf. Ref. [4]) as well as

gluons. The states of greatest interest are, presumably, those that correspond to the

large trilinear couplings and have, therefore, a greater binding energy. Some of these
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Figure 2: An example of a resonance at the e+e− or µ+µ− collider.

multi-particle states may also show up as resonances. We leave the details for future

publication.

In summary, we have shown that large trilinear couplings in the scalar sector of

the MSSM can give rise to a new family of bound states and resonances, in particular

those with the exotic quantum numbers, that may be observed in experiment.
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