VISUALISATION IN HIGH ENERGY PHYSICS

L. Taylor
Department of Physics, Northeastern University,
360 Huntington Avenue, Boston, MA 02115, USA

Abstract

We describe the concepts underlying successful HEP visualisation systems, for
both statistical analyses of multi-event data sets and for the display of individ-
ual events in the detectors, using examples from current experiments. Future
HEP experiments, such as those at the CERN Large Hadron Collider, are con-
siderably more complex than those currently running. We discuss how new
computing technologies will facilitate the difficult visualisation tasks of these
experiments.

1 INTRODUCTION

Visualisation plays a crucial role in enabling physicists to understand complex multi-dimensional data.
With the advent of powerful computing hardware, sophisticated scientific visualisation software has be-
come a standard part of the analysis toolkit of High Energy Physics experiments. Fig. 1 shows schemat-
ically the flow of data, represented by arrows, between the traditional software modules used for HEP
offline analysis, represented by rounded boxes. The box labelled “Physics analysis” contains many
graphics tools which are not specific to a particular experiment, as well as dedicated ones such as event
visualisation programs. In this paper emphasis is placed on the HEP-specific graphics tools in use. No
attempt is made to review the multitude of other graphics applications such as text editors, document
preparation systems, visual programming tools, WWW browsers, collaborative working tools such as
teleconferencing [1], Computer Aided Design programs, and so on. In particular, after a brief overview
of general principles, we describe in the subsequent sections the tools which are most commonly used
for the statistical and numerical analysis of multi-event data sets and for the visualisation and analysis of
single events. The package predominantly in use for the former is PAW [2] while the latter includes the
generic GEANT package [3—5] and many experiment-specific event display programs.

N
¢ | User analysis
s

’ srastes
g Histogramming

s Numerical analysis
Symbolic math
Event display

etc...

Physics
analysis

Calibration

Detector > Reconstruction
constants

description algorithms

4

Detector

simulation
Physics -
generator pp collision

Fig. 1: Schematic flow of data between the main software tasks of a typical physics analysis system.

OS Windowing system

. § R} Graphics window
Model: Display list: Ul

Primitives | | el Bl
q I
Data Geometrical .
> —>—| Renderer -

Methods Transforms N ek

Lighting Tt

|) |(Camera(s) | T

A

[Softcopy] Hard copy]

Local Interactivity

Global Interactivity

Fig. 2: The basic components of a generic graphics system.

2 GENERAL PRINCIPLES

The basic concepts of computer graphics systems are fairly general, although the implementation, effi-
ciency and underlying technologies of specific packages can vary considerably. In the following sections
we describe each of the generic components of a graphics system, shown schematically in Fig. 2.

2.1 Graphics Model

The graphicsnodelis the underlying system which is to be visualised. In general it is non-graphical in
nature. In HEP, the model consists of: equations, coded algorithms, data, with no associated geometrical
description; descriptions of physical entities (e.g. HEP detector) with associated geometry and other
properties (radiation length, temperature, stress tensor, etc.); abstract entities (e.g. HEP events) with
associated geometry and other properties (specific ionisation, energy deposited, etc.); multi-event data
sets; and physics event reconstruction algorithms. The model may contain both data and methods.

2.2 Graphics Primitives

The fundamental graphics objects to be drawn are knowpriastives These include polymarkers,
polylines, filled areas, arcs, text, splines, surfaces, and so on. The basic primitives are provided by the
underlying graphics library and are optimised in conjunction with hardware. In addition the developer
may definesuper-primitivesvhich use one or more of the basic primitives (for example in a class library
sitting on top of the basic library) such as a silicon wafer with strips or a particle trajectory with the
associated detector hits.

2.3 Geometrical Transformations

Having built up a graphical entity from one or more primitives, its geometrical specification (offset,
scale, and orientation) in space must be defined. It may be convenient to define the geometry in terms
of either a fixed reference frame or relative to another object. Moreover, the geometrical specification of
the graphical entities may change with time, for example as the user changes the scene or the point of
view. Consider the following geometrical transformatibns

IWe describe the 2-D transformations for simplicity. It is straightforward, if tedious, to extend the treatment to 3-D.

-
Translation: ,
y
-
Scaling: ,
y
o
Rotation about (0,0): ,
Yy

O +|F P =T+P
_6y y
S0 0 |2 PP=S-P
0 sy Y

P'=R-P

cos —sinf MK
sinf cos@ Y

For conciseness and efficiency we would prefer to have a uniform treatment of the three types
of transformation and an algebra enabling them to be combined into a single operation which can then
applied to the many graphical objects. We therefore introduten@ogeneous coordinagystem which
requires the addition of an extra (non-physical) dimension, as follows:

z! 10d, T
Translation: y|=1014d, y P =T-P
1 001 1
E4 s; 00 T
Scaling: y|=10s5,0 Yy P =S.-P
1 0 01 1
Ed cosf —sinf 0 x
Rotation: y'| = | sinf cosh 0| - |y P'=R-P
1 0 1 1

Using homogeneous coordinates, all operations consist of matrix multiplication. Thus, an arbitrary
sequence of translations, scales, and rotations can be described by a single matrix. Such a transforma-
tion constitutes amffinetransformation (preserving parallelism of lines but not lengths and angles). It
is therefore important to apply the transformations in well-defined order. For example, Fig. 3 shows
the operations required to rotate an image of a house about an arbitrary(@dint The netsingle
transformation, to be applied to all points of the house, is:

A A

£
(@b)
> >

Translate to origin

Original house

(ab)

-
Translate back

Rotate

Fig. 3: Rotation of an image about a po{iat b).

10a cosf —sinf 0 10 —a
T(a,b)-R(0)-T(—a,—b)=[01b]-|sinf cosf® 0| -|01—b
001 0 0 1 00 1

cosf —sinf a(l — cosf) + bsin6
= | sinf cos@ b(l —cosf)— asinf
0 0 1

2.4 Rendering

Prior to rendering (or drawing) an image, the desired graphical representation of the model must be spec-
ified in terms of graphics primitives with attributes (colour, opacity, etc.), their locations and orientations

in space, and a lighting model, described in terms of ambient, planar, spot, and directional light sources.
For reasons of performance, this description is often stored internally by the graphics packatie as a
play list The rays are then traced through the scene and reflected according to the colour and direction
of the light and the geometry and optical characteristics of the surfaces of the graphics primitives. The
rays are traced, possibly through occluding media, to form an image on the virtual viewing plane of
the observer (sometimes referred to as the camera). The light reaching this plane from many sources is
combined to form the final image which is then reproduced on, for example, the cathode ray tube (CRT)
of a computer screen.

The rendering process must be highly optimised in order to obtain satisfactory performance in
particular when dealing with many of the complications not described here [6], such as reflection (diffuse
and specular), refraction, transparency, shadows, depth cueing, texture and bump mapping, anti-aliasing,
hidden-line and surface removal, and colour mixing. Genuine 3-D images using stereo vision requires
two rendering operations for the cameras associated to each eye.

2.5 Interactivity

In general, the user wishes to interact with the graphical display system. Such interaction may be classi-
fied as eithetocal or global, as shown schematically in Fig. 4, which follows the notation used by Terry
Hewitt [7]. Local interactivity consists of operations which affect the view but not the representation of
the model, such as the rotation, translation, or zooming of the camera which defines the viewpoint of
the observer. The changing of the visibility of objects in a scene is also a locally interactive operation.
For reasons of performance, locally interactive operations are generally performed on the display list,
without recourse to the underlying model.

Global interactivity refers to operations which involve the underlying model. Examples include
the addition to the scene of objects which are not currently on the display list, a non-Euclidean coordinate
transformation of a scene, or the updating of an existing graphical object to reflect a change in the status
of the corresponding object(s) of the underlying model.

2.6 Graphical User Interface

The Graphical User Interface (GUI) of a visualisation program relies heavily on graphics, albeit with a
somewhat different emphasis and distinct software tools to those used for the graphics application itself.
The GUI should enhance the usability of the application by minimising the learning time, reducing
errors, and increasing the efficiency with which complicated command sequences can be executed. A
well thought out conceptual design for the GUI is crucial in ensuring the ease with which the application
can be used.

The GUI should be self-consistent and resemble, wherever possible, other applications with which
the user is already familiar. Visual consistency would imply, for example, that toggle buttons are square,

Raw Data

v

G D——

Derived Data

(Visualisation Mapping)4

Abstract Visual "Object”

v

..............
; Display

Fig. 4: The rendering pipeline showing local and global interactivity.

Aurnoeiaiul eqojo

Aurnoeiauy 8207

radio buttons are diamond, the default button which is activated byEh@RN key should have a heavy
outline, and so on. Generic commands, such as copy, cut, paste, delete, or move, should perform the
intuitively expected operation independent of whether the object is text, a graphical object, etc. The GUI
should conform to théaw of Least Surprisé which the result of an action matches the expectation of

the user.

The GUI should not allow a user to do inadvertent damage, either to data or the execution of
the program, as a result of misunderstanding the GUI. For example, potentially serious operations such
as deleting a file or data might invoke a dialogue box requesting confirmation prior to completing the
command. The design of the GUI should be such that the user is free to learn by experiment, by inclusion
of error recovery mechanisms such as ert, Cancel, andCorrect operations. Ideally, the GUI
should also include a multi-commanado feature, with a correspondirgedo feature, to permit the
user to reverse the effects of an undesired action.

The GUI should support multiple levels of expertise. For example, a beginner should be able to
find all desired actions graphically (for example by using just the mouse) while the expert should be
permitted to use keyboard accelerator sequences for common operations such as copy, paste, or delete.
Similarly the mouse itself can be overloaded for expert use with, for example, distinct commands as-
signed to single and double clicking. It may prove useful to map each operation of the GUI to a textual
command prior to its execution, thereby enabling the expert user to enter commands as text, to execute
macros containing many commands, to log the actions of a complete session, and so on.

While a well-designed GUI should be largely self-explanatory to the user, even the simplest appli-
cation program should also incorporate a help facility. This should ideally include full explanations as
well as concise context-sensitive help. A familiar example isatligble-helpmethod in which a small
“bubble” containing textual help appears, after a small time delay, as the mouse cursor moves over a
particular element of the GUI.

2.7 Graphics Software

The core offline software of current HEP experiments, shown schematically in Fig. 1, is typically written
in Fortran 77 and C, with some non-standard extensions. The data are managed and stored using a non-

Graphics Standards/Toolkits in HEP
02 dimensional ® 3 dimensional

| |

i e Java (SP)

| @ DirectX (3D)

i e Cosmo ($D)
° Opénlnventor

|

|

|

|

| |

. eOpenGL
*IRIS GL |

|

|

|

|

|

o PEX

|
i
|
' @ PHIGS PLUS
e PHIGS
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
1 O CERN HIGZ
| |

1 ® GKS3D

O GKS |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | | |

i + Precision \/;isuals DIBOOb
O Tektronix Plot10 ! i |

1975 1980 1985 1990 1995 2000

Fig. 5: Standard graphics libraries used by the High Energy Physics community.

commercial package such as ZEBRA [8] or BOS [9]. Code management usually relies on PATCHY [10],
CMZ [11], or cvs [12]. The code development process is evolutionary (Darwinian not e.g. Booch’ian!)
in that many physicists contribute code, some of which is successful and survives while other parts die
out naturally. The resulting code typically has considerable functionality but little semblance of design;
it is therefore rather difficult to maintain and subject to bugs.

The use of standards greatly facilitates the software development process and the maintenance of
the code which is developed and used by many hundreds of physicists running on multiple platforms
and architectures linked by local- and wide-area networks. Standards are provided by national agencies
(ISO, ANSI, BSI, DIN, etc.), professional organisations (IEEE, X Consortium, etc.), or in a proprietary,
open, or de-facto manner by commercial companies. Fig. 5 shows the standard graphics libraries most
commonly used in HEP over the past few decades. Currently, the most prevalent standards used are
GKS [13,14] and PHIGS [15]. The use of GKS has diminished greatly in recent years with the advent of
PHIGS, which is in turn starting to be replaced by the OpenGL [16] graphics library. With the increasing
use of an object-oriented paradigm as discussed in section 5 the use of Openlnventor [17], which is a
higher-level class library based on OpenGL, is increasing.

Standard GUI environments, or windowing systems,include: X Windows (open); Windows 95
and NT (Microsoft); SunView (Sun); and Macintosh (Apple). HEP graphics applications are typically
based on X Windows [18], running on Unix platforms. Widget sets include the Athena widget set (X
Windows), Motif (OSF collaboration of HP, Digital, Microsoft, IBM, etc.), OpenLook (Sun and AT&T),
and Tcl/Tk. The widget set most prevalent in HEP is Motif [19].

Many image formats are used to greater or lesser degrees in HEP, including: GIF, JPEG, TIFF,
BMP, etc. for static images; MPEG, Quicktime, AVI for multiple images; and Postscript, CGM, |V,
VRML for graphics metafiles (soft copy). The support for a standard hard copy format is important since
it is portable, high resolution, free of format problems, well-suited to long-term archival storage, and
facilitates rapid viewing even for very large documents. The preferred standard in HEP for producing
graphical hard copy is Postscript [20]. In general, vector Postscript is preferred to raster Postscript
since it may be easily printed, scaled, and encapsulated within other documents with no loss of intrinsic
resolution.

3 GENERIC HEP VISUALISATION TOOLS

The most widely used generic physics analysis tools, which require visualisation, are GEANT [3] and
PAW [2] (the Physics Analysis Workstation). GEANT is a toolkit for the simulation of the passage of
particles through matter. Versions 3 and below are based on Fortran and ZEBRA while GEANT4 [4] is a
complete rewrite using an Object-Oriented (OO) paradigm. Since the visualisation aspects of GEANT4
are described by John Allison in these proceedings [5], we shall not consider it further.

PAW is a general purpose tool for the analysis and display of arbitrary data sets. It relies heav-
ily on other HEP packages, in particular: ZEBRA [8] for memory management, I/O and file storage;
HBOOK [21] for the creation and manipulation of histograms and ntuples; HPLOT [22] and HIGZ [23]
for the data presentation; KUIP [24] for the command line interface and macros; the COMIS [25] Fortran
77 interpreter for user data selection and manipulation functions; SIGMA for array manipulation; and
MINUIT [26, 27] for statistical analysis, particularly fitting. PAW, which is based on Fortran 77, was de-
veloped without any formal design or quality control procedures. This resulted in frequent occurrences
of non-intuitive or incorrect behaviour, especially in the early years. Despite these weaknesses, PAW is
the only program inside or outside HEP which comes close to providing physicists with the necessary
environment for interactive graphical analysis of physics data. The PAW software is now frozen apart
from major bug fixes. The graphical representations provided by PAW match reasonably well to the
current expectations of High Energy physicists.

The most commonly used entity is the 1-dimensional histogram in which a dependent variable
(such as number of events) is plotted as a function of an independent variable. For example, Fig. 6
shows a comparison of LEP data and Monte Carlo predictions using 1-dimensional histograms. It is
conventional to represent the data as polymarkers with error bars, Monte Carlo predictions as a stepped
histogram, and analytical predictions from theory as smooth curves. Pie charts and bar charts, in which
the independent variable is a set of discrete categories, are little used in HEP. A variant of the bar chart,
which we shall call the “error bar chart”, is used extensively to summarise sets of measurements of the
same quantity (although it is not provided directly by PAW). Fig. 7 shows an example of an “error bar
chart” which summarises LEP measurements,/at= 172 GeV, of the W boson mass [28]. From
the “error bar chart” the relative and absolute accuracies of the various measurements are immediately
apparent, as are anomalies with respect to an average value (shown by the shaded vertical bar in Fig. 7)

Integral (data) 261036
Key 4000 Integral (MC) 264548
o185 3500}
N
eef) 3000
Hu(y)
2500
B
2000
M hadrons
15001
1000
Fraction J ol
plotted 5001 I d
_10 l § IS PN ARG Yo TR SR SR N A NP A SN NG
0.6 0.8 2 1.4 1.6 1.8 2 2.2 2.4

Polar angle of thrust axis (radians)

Fig. 6: Example of the use of 1-dimensional histograms to compare HEP data (from LEP) and Monte Carlo predictions.

M,, (GeV) from LEP 172

Aleph (qqqq) I i 80.64:0.45+0.18
Aleph (qgb) I i 80.510.51+0.06
Delphi (qqqq) | F——e— 79.6:0.52+0.08
Delphi (qgb) ' 1 80.35:0.56+0.09
L3 (combined) i 80.72:0.34t0.1
OPAL (combined) I | 80.16:0.34+0.09
LEP 172 average 80.3#0.18+0.05
79 80 81

Fig. 7: Example of an “error bar chart”, summarising LEP measurements of the W boson mass from rugfiing 872 GeV.

or a theoretical prediction.

Two-dimensional histograms, in which one dependent variable is studied as a function of two in-
dependent variables, are widely used to study correlations of pairs of variables. Fig. 8 shows an example
of various possible representations of the number of events, in a LEP | data sample, having jets with
energiesk; and E». The scatter plot (Fig. 8a) has a marker for each event and therefore loses no infor-
mation until markers start to obscure one another. It is good for low to medium statistics. The box plot
(Fig. 8b) is better for medium-high statistics although the scaling of the box is ambiguous (by perimeter
or area?) both in definition and in interpretation. The contour plot (Fig. 8c) joins regions of equal value
in the independent variable by polylines. It is best for high statistics and reasonably smooth variations
without a large dynamic range. The independent variable may also be represented by the height of a box
or surface (Figs. 8d, 8e, and 8f) above the plane of the independent variables. Since some parts of the
plot may be obscured from view, these representations benefit from an interactive display in which the
orientation of the axes may be varied. The independent variable may also be mapped to a colour scale
(Fig. 8g). Since there is no unique mapping of colour to the scale of the independent variable, a key is
imperative. In certain cases, a combination of a colour plot and a lego or surface plot may be effective
(Figs. 8h and 8i).

The representations of one- and two-dimensional data described are those most commonly em-
ployed in HEP. Many fields profit from other representations, as discussed by Terry Hewitt [29], which
in some cases provide insight into multi-dimensional relationships. While some of these could doubtless
be used to the advantage of HEP, time is required for those in the field to develop a natural intuition for
them. In general, graphical representations should not to be misleading — they should match the expec-
tations of the audience. For example, the axis scales should be chosen according to the region of interest
while avoiding suppressed zeroes. The bin size should be appropriate to the statistics of the histogram.
Non-uniform binning should generally be avoided since the distribution of the independent variable is
distorted, unless the independent variable is normalised to the bin size. Errors bars frequently have both
statistical and systematic contributions which are combined in quadrature. The showing of, for example,
the statistical and total errors as pairs of overlapping errors bars in each bin should be avoided since the
systematic contribution will appear to be smaller than it is in reality. The use of a 2-dimensional graphic
(i.e. one in which both the height and the width scales with the independent variable) for the display
of 1-dimensional data such as a histogram should also be avoided, since it over-emphasises the larger
entries. Similarly, colour should be used sparingly, if at all, to distinguish and/or emphasise particular
aspects of the data.

E, (GeV)
E, (GeV)

0 20 40 60
E, (GeV)

/>'\60 7 — —
8 000
= I 1000460y
a0 - 800 750\ |
600 500 |
| . 250
20 - 400
O —
0 20 40 60

E, (GeV)

Fig. 8: Representations of the variation of a dependent variable (number of events) on two independent \&riaile £,

which happen to be correlated): a) scatter plot; b) box plot; c) contour plot; d) lego or Manhattan plot; e) surface plot; f)
Gouraud-shaded surface plot; g) colour-coded box plot; h) surface plot with coloured contour plot; i) lego or Manhattan plot
with colour-coded contour levels.

4 EVENT DISPLAY SYSTEMS

An “Event Display” program comprises software which is capable of displaying detector and event data
and of providing interactive control of the display and processing. Such programs satisfy many different
needs. Prior to the running phase of the experiment, they are used for debugging and optimising the de-
tector design and the reconstruction algorithms, such as pattern recognition in the central tracker, shower
reconstruction in the calorimeters, and muon fitting in the outer detectors. During the commissioning
phase of the detector, they are invaluable for understanding and debugging the detector response and,
in this role they must be sufficiently flexible to cope rapidly with unforeseen needs. As more data are
collected the display programs are used to study samples of rare events to check for pathological effects.
Throughout the lifetime of the experiment, such programs are used to produce publicity pictures for
communicating complicated physics concepts to other physicists and the general public.

The event visualisation program should be able to display any combination of detector elements
and event objects which are available in the data store. The event data should include raw information
such as hits and energy deposits, reconstructed objects such as tracks and jets, and information from the
slow control system, such as dead or noisy detector elements. For Monte-Carlo events, both the true and
the reconstructed quantities should be available. The engineers designing the detector need to see details
of the mechanical construction, the readout cables, cooling systiemwhereas the physicist would
prefer to display highly simplified, yet accurate, representations of the detector components in order to
place the event data into context. The sub-detector expert may need to see every hit in a calorimeter
module, whereas the average physicist would generally find clustered energies and reconstructed jets
more useful. The display program must therefore permit sophisticated filtering of information thereby
enabling arbitrary sets of elements to be displayed.

The general flow of an event display program is shown in Fig. 4. The steps involved in the visual-
isation process are described in the following sections.

4.1 Data Preparation

The data preparation stage consists of “data pre-processing”, “event reconstruction”, and “selection”.
Pre-processing consists of the conversion of the raw event data, such as ADC counts, using calibration
data into basic entities such as hits. In addition, the detector description is read from a database, such
as a GEANT structure, and the elements to be visualised are selected and possibly transformed to a
more suitable coordinate system. Reconstruction consists of: pattern recognition (e.g. the association
of hits to form tracks, clusters of energy, etc.); the creation of basic reconstructed “objects” (e.g. the
fitting of hits to form tracks, association of clusters to form jets, etc.); and the creation of higher level
reconstructed “objects” (e.g. the association of a track and a cluster to form an electron candidate).
Finally, the selection algorithms choose events of particular interest as well as the “objects” within each
event which are to be displayed.

4.2 Visualisation Mapping

The next step is to perform the visualisation mapping to create “Abstract Visual Objects” (AVO’s).
While a few experiments work in two dimensions from the outset, most work predominantly with a
3-dimensional coordinate system corresponding to the cartesian world coordinate system of the detector.
Some have dedicated non-cartesian views, such as the energy lego plots as a function of pseudo-rapidity
and azimuthal, in hadron collider experiments.

The detector AVO's generally consist of sets of polyhedra, conic sections, etc. which correspond
to the more interesting elements from a physicist’s point of view, such as the sensitive elements, bulk
absorbers, and so on. Some of the event data AVO's are purely geometrical. For example tracks which
describe the trajectory of a particle through the detector are readily described by a polyline or spline.
Other event data AVO's have additional data associated with them which must be displayed, such as the

10

energy deposited in a calorimeter, in which case there are many ways of constructing the corresponding
AVO’s. For example, calorimeter energies may usefully be described by: uniformly sized markers,
colour-coded according energy; as volumes representing the detector element hit, perhaps scaled or
coloured according to energy; or as histogram bars located at the point of deposition (as shown in Fig. 9).
As in the case of the box plot, there is some arbitrariness as to whether the linear length, area, or volume
of the AVO should scale with energy. One might even consider other scaling laws such as power law or
logarithmic, depending on the dynamic range of energies of interest.

ALEPH oAz Run=11113 E

Fig. 9: Different ways of display energy deposits as a histogram (courtesy of H. Drevermann of ALEPH).

4.3 Presentation

The presentation step consists of rendering the AVO's to form a picture, following the general steps
described in section 2.4. The single most important view is the 3-D cartesian representation of the
detector and event data, with arbitrary magnification, translation, rotation, clipping, and perspective. The
view is projected into 2-D although the future implementation of true 3-D, for example using stereo
views, should be considered.

Solid volumes, such as the detector elements, are traditionally drawn as wire-frames. This is partly
for historical reasons of performance and partly to enable the observer to see through the whole picture
which would otherwise be impenetrable. As performance has improved, some event display programs
now draw solid volumes and exploit techniques such as clipping planes, cutaways, and transparency to
see the otherwise hidden volumes. Although the AVO’s are generally 3-D they are ultimately rendered
on a 2-D device. Graphics systems invariable project the view from 3-D into 2-D, however, this is not
always the optimum choice from a physics standpoint. Consider, for example, viewing energies in a
cylindrically symmetric detector with the axis along the beam direction (a common situation). The 3-

D representations of the energy clusters may be projected graphically intg, thiene, as shown in
Fig. 9a). Alternatively, one could first integrated the energies oward then display the resulting sums,

11

as shown in Fig. 9b). Since the choice of representation is not unique, the event display program should
be sufficiently flexible to support multiple visual representations of the same quantity, depending on the
specific needs of the user.

Visualisation does not consist merely of 3-D cartesian views (projected into 2-D). Physics data
are intrinsically multi-dimensional and transformed views of data play a crucial role in our ability to
assimilate important features [29—31]. For example, hits on high momentum tracks are separated in
x,1, z but are tightly clustered in the versusf view, while jet structures are clearly seen in a lego
plot of energy as a function af and pseudo-rapidity. The physicist may imagine many useful non-
Euclidean, Lorentzianetc. transformations and a display program should be prepared to support the
resulting views. The LHC beam crossing time of 25 ns renders inter- and intra-event times crucial for
triggering and reconstruction. This adds a “fourth dimension” which needs to be considered in the
context of event visualisation.

Colour is used in HEP event displays for various purposes. In a few cases it is purely cosmetic
while in most it is used to distinguish between sub-detector systems and different elements of the event.
The continuity of colour usage within a given experiment enables physicists to rapidly interpret the
context and key features of events. Itis also used to facilitate the correlation of graphical entities between
different views of the same event, or even between the display and the GUI controls [32]. Figs 9b)-9f)
show how colour (grey-scale for these proceedings) and outlining can be used to improve the clarity of
the image.

4.4 Graphical User Interface

A well-designed GUI greatly facilitates the use of event display programs by minimising the learning
time, reducing errors, and increasing the efficiency with which complicated command sequences can
be executed. Current event display programs in HEP typically use X Windows with the Motif widget
set [19] which yields a familiar style. Fig. 10 shows the OPAL event display program, the features of
which are fairly typical of current programs in HEP. The programs generally provide basic steering and
I/O control, local and global interactivity, and multiple output graphics windows containing cartesian
views of the detector and the event as well as abstracted views such as the lego plot of energies in the
calorimeter.

4.4.1 Local Interactivity

Fig. 11 shows the motion widget used for manipulations in the “CMSCAN Classic” CMS event display
program, which is typical of the local geometrical operations desired. Smooth rotations about three axes,
translations, and zooming, may be performed with arbitrary step sizes using either the intuitively labelled
buttons or by dragging the mouse across the screen. Commonly used views suchapldre or a

zoom to a given sub-detector are also provided. The slice view excludes all objects outside a given
clipping plane, parallel to the screen, which has arbitrary thickness and depth location. The possibilities
to reset the view and to save and restore the parameters describing the view have proven to be extremely
useful.

Typically control of which elements are visible is performed locally at the level of the display list,
under the control of the GUI. In some experimental environments, such as CMS, the overhead associated
with including all possible AVO's in the display list is extremely large. The strategy is therefore to add
AVO'’s only upon request, such that a request to see a new AVO is a global operation which requires the
raw data and methods. Once the AVO is added to the display list its visibility control becomes a local
operation. The GUI controls do not distinguish between such global or local operations such that the
only difference which is apparent to the user is the response time.

12

B HCAL)
8 FDET4SIW -~

GV, - =

Fig. 10: The graphical display of the OPAL event visualisation program.

Matiorn
Rotate————— — Zooim—— — Transiafe——— — Sfice

| | | . [~ Slice ON/JOFF
| l . Ld
: Eaam sfep
|_ X—Zoom Slice step

Rotatfe step Verte)(Si Translate step 12 50

Mouse MSGC ECAL ’ Center Mouse Thickness
| (Mouse) |
HCAL Muon

Heset Save"-.-"W Hest‘v‘W Close

Fig. 11: The CMS motion widget showing local geometrical transformations.

13

4.4.2 Global Interactivity

The event display program should be more than just a viewing program. Much of its value comes from
the ability to interact with the data displayed on the screen with rgtmieal functionality than merely

local manipulation of the graphical image [33]. The program should serve as an interface to the data
and reconstruction code and support such actions as: application of selection cuts (e.gpenevent

timing, trigger, etc); plotting (e.g. hit residuals with respect to a fitted track, lego plots (as shown in
Fig. 10), etc); re-reconstruction (e.g. track fitting, jet findingtc); kinematic analysis (e.g. invariant
masses, Lorentz transformatiomesc); statistical analysis (e.qg. fitting, hypothesis testigig,); database
interrogation (e.g. trigger conditions, HV status, dead/noisy regein$, Where appropriate, the results

of any such action should cause an automatic and consistent update of all displayed views. The interfaces
between the various software modules should support sophisticated bi-directional interactivity between
the graphics and the data and the rapid implementation of new tasks, perhaps even at run-time.

The design and implementation of such global functionality is probably the hardest task in the cre-
ation of an effective event display program. Many powerful commercial tools, such as the Openlnventor
viewers, concentrate on the local aspects of viewing an image and provide little support for effective in-
teraction with the underlying data and methods from which the view was derived. Neglect of the global
aspects of event display in the design phase can result in a program which, although capable of producing
beautiful pictures, is of little use as an interactive physics analysis tool.

5 FUTURE DIRECTIONS FOR HEP VISUALISATION

The environment of future HEP experiments is generally much more demanding than that of High Energy
Physics experiments today. For example, the number of readout channels for the LHC experiments will
increase by typically one or two orders of magnitude-td0” compared to the LEP experiments. The
event data will also be considerably more complicated. Each beam crossing will contain typically 20
minimum bias events, in addition to the event of potential interest, such that each crossing contains
many hundreds of charged tracks. The beam crossing time of 25 ns is so short that signals from several
crossings are present in the detector and the readout chain at any particular moment. To compound these
difficulties, the events of interest are extremely rare. For example, prior to any trigger or offline selection,
only one event i~ 10'? is expected to contain an observable Higgs boson decay. In addition to the
increasing intrinsic complexity of the visualisation tasks, the organisational aspects of the software are
becoming more challenging. Future large HEP collaborations consist of up to several thousand scientists
around the world, working on a multitude of hardware platforms.

5.1 Hardware strategy

The hardware requirements of the LHC experiments are on an unprecedented scale. Fig. 12 shows
schematically and quantitatively the layout of the proposed CMS computing systems [34]. The data
rate will be in excess of 1 PB/year and the total CPU requirement will be approximately 20 TIPS. Such
requirements will be met at a reasonable cost by virtue of the decreasing unit costs with time [34], shown
in Fig. 13.

The evolution of computer graphics systems is expected to have a similar cost profile. In the early
1980’s the UA1 collaboration used the Megatek system for 3-D event display at an approximate cost
of ~ 200 kSF. Around 1989, L3 used Apollo DN10000 3-D graphics systems at a cost @fkSF.

Today, similar performances can be achieved on a multitude of Unix workstations flokSF. A clear

trend, which has already started, is to exploit developments in commodity hardware developed for such
concerns as the games industry, in particular PC’s with on-board graphics acceleration, using for example
the OpenGL chip-sets from Intergraph, 3-Dlabs, or 3dPro. It is clearly prudent not to tie applications to
a particular hardware architecture or vendor, nor should the developer assume that all users will have
a high-end machine. It is, however, desirable to design applications which can take advantage of the

14

(. -\
SLOW CONTROL & \Object Database)

CALIBRATION DATA PHYSICS
0.001 PB /year RECONSTRUCTED ANALYSIS
A 5 RAWDATA DATA DATA
1PB /year 0.1 PB /year
100 Hz Y ¢ 1 t
(Level 3\ Reconstruction Kr}gf"gé
S Facility y Regional

Facility

2 TIPS

Centres

2 TIPS
0.05 PB Disk

8 TIPS
Level 2 0.2 PB Disk
2 TIPS Tape Robot

10 Hz \
Level 1 1PB = 10" Bytes
4 =10° MB >>
4.10 Hz

CMS 1 TIPS = 10" Instructions Per Second
=10° MIPS

il

Fig. 12: Schematic layout of the proposed CMS computing systems.

106 Processing M$/TIPS 108 Disk M$/PB
5§‘~_ Half-life of raw CPU=1.1 years Half-life of disk cost = 1.4 years
10 3 "\‘Half-life of system =1.5 years 10 5—
104 N 104
103 5
10 2] 10 3
10 ; 104
14 10 4
-13 |]
10 HANR S N AL SRS RS 1 M L RS SRR W
1985 1990 1995 2000 2005 1985 1990 1995 2000 2005

Tape M$/PB WAN (M$/yr)/(MB/s)

103, 10%
Half-life of tape cost = 2.1 years 3 Half-life of WAN cost = 8 years I
2; (not including cost of robot) (N.B. based on transatlantic link),

105
10 10 4

14

10 4 1
'1985 1990 1995 2000 2005 1985 1990 1995 2000 2005

Fig. 13: Evolution of computing hardware costs. The polymarkers denote actual purchases by the L3 collaboration (courtesy
of R. P. Mount).

15

enhanced capabilities of more powerful graphics stations while still performing acceptably on more
modest machines.

Despite the ever improving cost:performance ratio, it is unlikely that graphics systems in 2005 will
provide acceptable performance without a careful choice of what to display. High-end desktop graphics
systems today can render10° triangles per second. Given that real-time interactivity requires a refresh
rate in excess of about 10 frames/sec, this limits the current model size to less th@htriangles.

Models of the LHC experiments can contain in exces$(3felements. Assuming that the rendering
performance follows a similar trend as CPU, as shown in Fig. 13, then one would predict approximately
two orders of magnitude increase in speed by 2005. This would enable one to render a model of less
than~ 107 triangles which is considerably less thaiY elements. Moreover, not everybody will have
access to a high end graphics desktop system. Clearly, the answer to this “problem” is not to show all the
elements at any one time. This requires the developer and physicist to make choices of what to display
at any particular time. In any case, an attempt to display more elements than the number of pixels on the
screen is rather futile.

5.2 Software strategy

The software of the LHC experiments will be developed and used over a period of several decades. The
design and maintenance of this software poses major problems for the collaborations. The software
strategy of most large future experiments at CERN, FNAL, SLAC, and elsewhere is to migrate to an
Object Oriented paradigm for the complete offline software by the end of the century [34-36]. The
physics generator, simulation, reconstruction, analysis, and calibration software will be written in C++
for the foreseeable future. The use of other languages, such as Java, is not ruled out although all “modern”
languages, including C++, suffer somewhat from the lack of stability and well-defined standards.

The use of common-HEP modules and commercial software components is encouraged wherever
they fulfil the requirements; development of code by physicists should preferably be restricted to tasks
specific to High Energy Physics. Fig. 14 shows schematically the modules required for the offline physics
analysis environment, together with the estimated contributions to each module from the experiment, the
HEP community, and commercial vendors. Central to the model is a (largely commercial) object data
base and mass storage system [37—42] which contains event and slow control data, parameters describing
the detector, results from test beam studies, and so on. The software engineering, information system,
and data presentation software is also expected to come predominantly from commercial companies.
The experiment-specific DAQ, simulation, reconstruction, and analysis software will rely heavily on
HEP-wide software such as GEANT4 [4, 5] and the LHC++ [43, 44] libraries.

A detailed strategy for the event visualisation software is difficult to define since commercial
applications are developing very rapidly. The current aim is to use commercial software for rendering,
development of the graphical user interface [45], and for the underlying graphics library functions. For
the latter, the obsolete GKS and PHIGS libraries will certainly be replaced by more modern products [46]
such as the OpenGL graphics library, the Open Inventor class library (which in turn uses OpenGL), or
newer products based for example on VRML, and Java.

For event visualisation, the display and interactivity pertaining to the detector and events is likely
to be based on the GEANT4 and HEPVIS [47, 48] HEP-wide projects. The task of replacing PAW is
more difficult, both in terms of the functionality and the prevalence of use. The LHC++ strategy [43, 44]
is to develop a generic physics analysis and visualisation toolkit of modules for use within a commercial
Modular Visualisation Environment [7], the current choice being Iris Explorer [49]. Wherever possible,
commercial components will be used in preference to a “HEP-grown” solution, for example for the
rendering and data presentation modules.

Looking even further ahead one might envisage a unified physics analysis environment [50] in
which the event visualisation is homogeneously integrated with modules for statistical, numerical, sym-

16

Information Systems W

Software Engineering ||H||||||||l " l
“‘“““ " online DAQ& — -~ Data Presentation ‘I

Slow Control

Reconstruction &
— Numerical &Stat-
Calibration & istical Analysis

Event & Detector & , ' =
Generators & Simulation L p
g == S Event Display

Object Oriented Database Management System |||‘||||||||| =

Commercial M]M:HI High Energy Physics . CMS

Fig. 14: Software modules for the CMS experiment in an Object Oriented paradigm. The shading indicates approximately the
relative quantities of experiment-specific, HEP-wide, and commercial software.

Hierarchical Mass Storage System

bolic, and user analysis. This could make use of the current MVE model or perhaps a fully distributed
paradigm based, for example, on Java [46,51-53]. Given the speed of commercial software developments
in recent years, however, the only safe prediction for the future is that it is unpredictable.

6 CONCLUSIONS

Visualisation programs fulfil an invaluable role in the analysis of large multi-dimensional physics data
sets, in the design and debugging of the detector, readout, and software, in the evaluation of event re-
construction algorithms, and in the production of understandable images for communicating complex
physics concepts to the physics community and the general public.

The detectors and event data of future HEP experiments are considerably more complex than
current experiments, the signal events are generally extremely rare and the backgrounds are immense.
At the LHC, the short beam-crossing time causes event pile-up which adds a new time dimension to the
three spatial dimensions. The visualisation programs need to support arbitrary choices of visibility and
imaginative new transformations of the data and the ways in which they are displayed. They need to be
flexible with well-designed interfaces to the reconstruction code and data structures. These aims will be
more easily achieved using a software-engineered OO paradigm and commaodity software components
wherever possible. This strategy should enable physicists to concentrate on their field of expertise —
namely physics.

ACKNOWLEDGEMENTS

I would like to thank the organisers, lecturers, and participants for such a well-organised, informative, and
congenial school. | am grateful to the many colleagues who, sometimes unknowingly, greatly facilitated

the preparation of these lectures, especially John Allison, George Alverson, Joe Boudreau, Olivier Couet,
Mark Donszelmann, Hans Drevermann, Terry Hewitt, David McNally, Howard Stone, and John Swain.

17

REFERENCES

[1] J. Bunn. Collaborative Computing Environments for HEPInvited talk at the CHEP'97 Confer-
ence Berlin, Germany, April 7-11 1997http://www.ifh.de/CHEP97/chep97 . html.

[2] R. Brun et al. PAW Physics Analysis Workstation. CERN/CN Long Write-Up Q121, 1989. (see
also:http://wwwecn.cern.ch/asdoc/Welcome.html).

[3] R.Brunetal. CERN-DD/78/2, 1978. (see al3@:tp://wwwcn.cern.ch
/asdoc/Welcome.html).

[4] S. Giani. GEANT4: a world-wide collaboration to build Object Oriented HEP simulation
software. Inlnvited talk at the CHEP’97 ConferencéBerlin, Germany, April 7-11 1997.
http://www.ifh.de/CHEP97/chep97.html.

[5] J. Allison. GEANT4 Experience. In C. Vandoni, editdnyvited lectures at the CERN Computing
Schoo] Pruhonice (Prague), Czech Republic, 17-30 August 1997.

[6] J. D. Foley and A. Van DamFundamentals of Interactive Computer Graphigsddison-Wesley,
1982.

[7] W. T. Hewitt. Systems and Architectures for Visualisations. In C. Vandoni, ediitated lectures
at the CERN Computing Schoélruhonice (Prague), Czech Republic, 17-30 August 1997.

[8] R.Brun and J. Zoll. ZEBRA user guide. CERN-CN Long Writeup Q100.
[9] V. Blobel. The BOS System. DESY R1-88-01, 1988.
[10] H.J. Klein and J. Zoll. PATCHY Reference Manual. Available from CN division, CERN, 1988.

[11] CERN and CodeME S.A.R.L. CMZ — A Source Code Management System. Available from CN
division, CERN, 1990.

[12] See, for exampleattp://www.sdsu.edu/doc/texi/cvs_toc.html.
[13] F. R. A. Hopgood et alintroduction to the Graphical Kernel System — GK¥&ademic Press, 1983.
[14] D. R. Myers. GKS/GKS-3D Primer. CERN/DD/US/110, 1990.

[15] T. Gaskins. PHIGS Programming Manual O'Reilly & Assocs. see also: PHIGS Standard:
ISO/IEC 9592-1,2,3989(E);9593:1989(E).

[16] See, for exampleittp://wuw.sgi.com/Products/Dev_environ ds.html
See also: T. Davis, Jackie, Neider, M. WagpenGL Programming Guide: The Official Guide to
Learning OpenGlLAddison-Wesley, Massachusetts, (1993).

[17] See, for exampleittp://wuw.sgi.com/Technology/Inventor.html.

[18] A.Nye and T. O'Reilly.X Toolkit Intrinsics Programming Manual, OSF/Motif 1.2 Editid'Reilly
& Assocs., 1992.

[19] D. Heller and P. Fergusomotif Programming Manual O’Reilly & Assocs., 1994.

[20] Adobe Systems IncorporatedPostscript Language Reference Manual, 2nd édidison Wesley,
Reading, MA, USA, 1990.

[21] R. Brun and D. Lienart. HBOOK User Guide. CERN/CN Long Write-Up Y250, 1987. (see also:
http://wwwcn.cern.ch/asdoc/Welcome.html).

18

[22] R. Brun and N. Cremel Somon. HPLOT User Guide. CERN/CN Long Write-Up Y251, 1988. (see
also:http://wwwcn.cern.ch/asdoc/Welcome.html).

[23] Application Software Group. HIGZ and HPLOT User's Guide. CERN Program Library Writeups
Q120 and Y251, 1992. (see alam:tp://wwwcn.cern.ch/asdoc/Welcome.html).

[24] R. Brun and P. Zanarini. KUIP — Kit for an User Interface. CERN Long Write-up 1202, 1988. (see
also:http://wwwcn.cern.ch/asdoc/Welcome.html).

[25] V. Berezhnoi et al. COMIS — Compilation and Interpretation System. CERN-CN Long writeup
L120, 1988. (see alstttp://wuwcn.cern.ch/asdoc/Welcome.html).

[26] Application Software Group. MINUIT Reference Manual. CERN/CN Long Writeup D506, 1992.
(see alsohttp://wwwcn.cern.ch/asdoc/Welcome.html).

[27] F. James. Interpretation of the Errors on Parameters as Given by Minuit. Supplement to CERN-CN
Long Writeup D506, 1978.

[28] L. Taylor. Properties of the W Boson. KVIith International Conference on Physics in Collisjon
Bristol, UK, 25-27 June 1997. To be published.

[29] W. T. Hewitt. Visualisation of Multidimensional and Multivariate Data. In C. Vandoni, editor,
vited lectures at the CERN Computing Sch&suhonice (Prague), Czech Republic, 17-30 August
1997.

[30] H. Drevermann, D. Kuhn, and B. S. Nilsson. Is there a Future for Event Display?obreedings
of the 1992CERN School of Computing-Aquila, Italy, September 1992.

[31] H. Drevermann et al. Imaginative Transformations for High Multiplicity Events. In L. Taylor
and C. Vandoni, editord®2roceedings of the HEPVIS 96 Worksh@ERN, Geneva, Switzerland,
September 2-4 1996. CERN 97-01 (Yellow Report).

[32] P.R. Avery C. D. Jones and D. D. Roscigno. The Cleo3D Event Display. In L. Taylor and C. Van-
doni, editors,Proceedings of the HEPVIS 96 Worksh@ERN, Geneva, Switzerland, September
2-4 1996. CERN 97-01 (Yellow Report).

[33] H. Stone. Event Visualisation — a Physicist’s perspective. In L. Taylor and C. Vandoni, eBitors,
ceedings of the HEPVIS 96 Worksh@ERN, Geneva, Switzerland, September 2-4 1996. CERN
97-01 (Yellow Report).

[34] The CMS Collaboration. Computing Technical PropoSaERN/LHCC 96-45, 1996. ISBN 92-
9083-096-4.

[35] The ATLAS Collaboration. Computing Technical ProposSaERN/LHCGC 96-43, 1996.

[36] M. Mazzucato. The LHC Computing Model. In C. Vandoni, editakited lectures at the CERN
Computing SchopPruhonice (Prague), Czech Republic, 17-30 August 1997.

[37] D. Duellmann. HEP Data analysis based on an ODBMS store. In L. Taylor and C. Vandoni,
editors, Proceedings of the HEPVIS 96 Worksh&ERN, Geneva, Switzerland, September 2-4
1996. CERN 97-01 (Yellow Report).

[38] RD45. Object databases and Their Impact on Storage-Related Aspects of HEP Computing.
CERN/LHCC97-7, 1997.

[39] RD45. Using an Object Database and Mass Storage System for Physics An@g&tsl/LHCC
97-9, 1997.

19

[40]

[41]
[42]

[43]
[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

J. Shiers (representing RD45). Obijectivity/DB Performance and Scalabilitywited talk at the
CHEP’97 ConferenceBerlin, Germany, April 7-11 1997.

RD45. Project Execution PlalCERN/LCB 97-10, 1997.

P. Binko. OO Databases. In C. Vandoni, editoxited lectures at the CERN Computing School
Pruhonice (Prague), Czech Republic, 17-30 August 1997.

LHC++ - Libraries for HEP Computingattp://wwwen. cern.ch/asd/lhc++/index.

J. Shiers. LHC++ - "CERNLIB” for LHC? Irnvited talk at the CHEP'97 ConferencBerlin,
Germany, April 7-11 1997http://www.ifh.de/CHEP97/chep97 .html.

G. Cosmo. Graphical User Interfaces. In L. Taylor and C. Vandoni, edi®vageedings of the
HEPVIS 96 WorkshgpCERN, Geneva, Switzerland, September 2-4 1996. CERN 97-01 (Yellow
Report).

See, for exampleattp://hpl3sn02.cern.ch/taylorl/hepvis/products.html.

The HEPVIS Project. Se&ttp://cactus.phyast.pitt.edu/~joe/hepvis

/hepvis.html

See also: Proceedings of the HEPVIS 96 Workshop, Eds: L. Taylor and C. Vandoni CERN, Geneva,
Switzerland, September 2-4 1996.

G. Alverson et al. The HEPVIS Class Library for Event Visualization. In
Invited talk at the CHEP'97 Conference Berlin, Germany, April 7-11 1997.
http://www.ifh.de/CHEP97/chep97.html.

The Numerical Algorithms Group (NAG), “IRIS Explorer Center”,
http://www.nag.co.uk:70/Welcome IEC.html.

J. Swain and L. Taylor. Data Analysis — a Physicist’s perspective. In L. Taylor and C. Vandoni,
editors, Proceedings of the HEPVIS 96 Worksh&ERN, Geneva, Switzerland, September 2-4
1996. CERN 97-01 (Yellow Report).

A. Johnson. Distributed Data Analysis using JAVA. Ihvited talk at the CHEP’97 Conference
Berlin, Germany, April 7-11 1997ttp://www.ifh.de/CHEP97/chep97 .html.

M. Donszelmann. WIRED - World-Wide Web Interactive Remote Event Display.
In Invited talk at the CHEP’97 Conference Berlin, Germany, April 7-11 1997.
http://www.ifh.de/CHEP97/chep97.html.

M. Donszelmann and B. Rousseau. Information Systems for Physics Experiments. In C. Vandoni,
editor, Invited lectures at the CERN Computing Sch&wuhonice (Prague), Czech Republic, 17-30
August 1997.

20

