View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CERN Document Server

Data Analysis/Visualization for the Object-Oriented LHC era

Y. Adesanya CERN, Geneva, Switzerland
Abstract

The LHC++ [1] (Libraries for HEP Computing) working group was established in
mid-1995, in response to a stated requirement from the LHC collaborations, to investigate a
"CERNLIB-like" environment, but based on C++. The strategy of the working group, which
involves representatives from CERN experiments and outside, has been to adopt standards -
either de-jure and de-facto - wherever appropriate and to concentrate HEP effort on
HEP-specific problems. The presentation will focus on those areas of the proposed LHC++
environment related to data analysis and visualization, and will include a discussion of
HEP-specific histogram classes, why they are needed, and their relationship with other
components of the strategy, including Object Databases (ODBMS) and industry-standard
scientific visuaization frameworks (AV S Express and IRIS Explorer).

Keywords: Object-Oriented; C++; Standards; Histograms; Persistency; Visualization
1 Introduction

TheLHC eraintroducesnew requirementswhich cannot be met by the CERNL I B softwarefoundation.
Effectivere-evaluation demandsachangein our approach. Inthepast, therewasjust causefor CERN’s
in-house devel opment of mechanisms used to handlefundamental computing tasks. Today’smodular
approach, adopted through object-oriented and component-ware environments, enables common
elements of performance demanding applicationsto be identified and exploited. Such elementsare
far more accessibletoday than yesteryear. The movetowards object-oriented perspectivesof problem
solving has left FORTRAN initswake. The latest generation of high energy physicistsregard C++
asthe current leader in high-level languages. Theimminent arrival of the ANSI standard [2] should
resolve large compiler differences, easing the pain of porting code. Many features are introduced

as part of the language. Not all are ground breaking, but the point is that they form a standard, to

be adopted by al who use C++.

The STL [3] (Standard Template Library) need not be used directly by users but we must ensure that
classlibraries are as compatible as possible while avoi ding redundancy. We need to identify which
parts of afutureframework should be devel oped specifically for LHC. Object-Oriented components
will help usto create aconsi stent infrastructure, preserving objectsasthe unitsof operationthroughout
all levels of the dataanalysis process. Nabody believesthat todaysimplementation will address all
the needs of 2006. But we can fuse together a data analysis/visualization environment that is far
more future-proof than its predecessor, i.e. a software foundation that is coherent, mai ntai nable and
based on recognized standards. The prototype data anaysis/visualization framework will addresse
the immediate needs of LHC physicistswith an eye to the future.

2 Areas associated with HEP unique requirements

2.1 Histogram classes

The data analysis/visualization process model relies heavily upon suitable data structures. The
working group considered existing solutions, both commercia and otherwise. General purpose
histogramming packages seemed to fall short of our demands. This prompted the creation of the
Histogram sub-group whoseroleit was to draw up awell defined set of requirements for adesign.
It appeared deceptively easy. What physicist couldn’'t describe the features of a histogram? The
requirements are still being revised.

https://core.ac.uk/display/25228906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2

2.3

Object Peristency

Persistency was not treated as an implicit feature of the histogram classes but it was advised that
prototype coding should begin as soon as possibl e, to hel p validate the analysisand see how much had
to be taken into consideration when making a class persistent capable. Object databases fitted into
the LHC++ scheme. Nobody wanted to see persistent data as rows and columnsin afile. The RD45
[4] group was established in 1995 to research object persistency and to produce recommendations
for HEP projects such as GEANT 4. They understood the storage and performance demands of
future experiments and had chosen the Objectivity ODBMS [5] as a suitable choice for prototype
histogram classlibrary.

Modular interactive visualization for HEP

Interactive dataanaysisand visualizationisamajor concern. Experience comesfrom several working
group members who have spent a considerabl e amount of time both developing and using the PAW
visualization package (amongst others). Over the course of time, lessonswere learned relating to
maintai nability of such systems. The AGOCG (Advisory Group On Computer Graphics) confirmed
our beliefsin Modular Visuaization Systems. They provide well structured functionality which
can be easily extended. The modular approach allows supports encapsulation, vital for the reuse

of legacy code. Although such systemstend to have larger learning curves, their benefits provide
ample justification.

Designing histograms for HEP

Before the decisionwastaken to devel op HEP histograms, someindividual shad already contemplated
creating their own ad-hoc classes. It wastimefor acommon solution. An eva uation of Rogue Waves
Math.h++ histogram class showed several limitations. Work began on formalizing histogram package
requirements. The criteriainclude:

support for weighted entries;

multi-dimensiona histograms,

recording underflow and overflow;

variety of binning systems which can be extended;

persistence capability;

general transformations;

statistics.

Once adraft requirements document had been produced, an initia class diagram was derived. It's
most striking feature isthe distinct separation between histogram bins and the problem space which
defines their boundaries. Histogram objects contain a collection of bins which store weights and
errors. Partition instances are responsible for generating a bin identifier from a data point.

The classes are connected via a one-to-many relationship. This acknowledges the fact that users
often wish to create create several histograms in a program which share the same characteristics.
Bin contents can be set through the Histogram member functions:

o set_bin_value(X:Datapoint,value:Red)
e set_bin_error(X:Data point,error:Red)

Both calls causethe recipient Histogram to retrieve the bin qualifier ID from itsrespective partition.
The appropriate bin can then be referenced and the value or error is returned. Histograms can also
undergo operations such as addition, multiplication and subtraction. The OMT diagram (Figure
1)) listsoperationswhich accept Histogram objects as arguments. Thiswill be extended to scalar
types in the future. Two subclasses directly inherit from the Histogram class. DataHistogram is
for accumulating weights. The other subclassis ProfileHistogram.

Histogram

- uses
name:String

I‘ ser
get_bin_value(X:Data_Point):Real Partition
get_bin_error(X:Data_Point):Real - - -
set_bin_value(X:Data_Point,value:Real) get_bin(X:Data_Point):Bin
set_bin_error(X:Data_Point,error:Real)
operator+(h:Histogram):Histogram
operator-(h:Histogram):Histogram has
operator*(h:Histogram):Histogram Bin_Content
operator/(h:Histogram):Histogram

value:Real

is_defined:Boolean
error:Real
Profile_Histogram
character_name:String
$create(data_point_list:List<Data_Point>,
character_value_list:List<Character_Value>,
weight_list:List<Weight>) . i
add_data_point(X:Data_Point, is associated to the
y:Character_Value, same data pO/_n_ts and
w:Weight) the same partition as Data_Histogram
operator+(P:Profile_Histogram):Profile_Histogram |@—— 5 nb of data points:integer
operator-(P:Profile_Histogram):Profile_Histogram - = _P -Integ
transform(T:Tra_nsf(?rmat_lpn) $create(data_point_list:List<Data_Point>,
rebin(new_partition:Partition) weight_list:List<Weight>)

add_data_point(X:Data_Point,w:Weight)

operator+(h:Data_Histogram):Data_Histogram
o operator-(h:Data_Histogram):Data_Histogram

Global_Statistics | trgnsform((T:Tran_sformgtion)) e

character_name:String k < rebin(new_partition:Partition)

mean:Real

rms:Real is associated to the

skew:Real same data points as

$create(character_value_list:List<Character_Value>,
weight_list:List<Weight>)
add_value(w:Weight,y:Character_Value)
operator+(stat:Global_Statistics):Global_Statistics
operator-(stat:Global_Statistics):Global_Statistics

Histo_1D

$create(name:String,nBins:Integer,xLow:Real xHigh:Real)
fill(X:Real,w:weight)

Histo_2D

$create(name:String,nxBins:Integer,xLow:Real, xHigh:Real,nyBins:Integer,yLow:Real,yHigh:Real)
fill(X:Real,Y:Real,w:weight)

Figure 1: Top-level OMT diagram of Histogram class structure

The Partition class holds a list of references to elementary partitions. An ElementaryPartition
object is abstract, corresponding to a single dimension within a partition. Through sub-classing,
different kinds of dimension are implemented such as fixed length, variable length, sets, etc. El-
ementaryPartition objects can also be shared amongst different Partition objects. Thedesignis
fairly open interms of extensibility. The initial class structure had been defined but concrete test
cases would aid validation and refinement. Prototypes would act as a catalyst by promoting user
feedback. Other issuesincluded the interface design. Persistency also had to be dealt with. Just
how much work is required in making C++ classes persistent?

4

4.1

4.2

The impact of the Objectivity on class design

A subset of the histogram class structure was chosen for immediate coding, enabling the creation

of data histograms of n-dimension (fixed/variable width bins). Thefirst stage was simple enough.
Transient C++ classeswere written using normal pointersto handleassociations. The basetypesof the
datamembers bel onging to persistent capabl e classeswere switched to ODMG [6] (Object Database
Management Group) compliant types. Thesetypeshave afixed implementationto overcome compiler
and machinearchitecturedifferences. C++ memory pointerscannot be stored inside persistent classes.
Objectivity providesa set of generic “smart” pointers used to reference persistent objects. The de-
reference operators are overloaded so object datamembers and functions can be accessed just like
any normal object pointer. These smart pointers are also used to implement associ ations between
persistent objects. Objectivity also providespersistent string classesand STL likecontainersincluding
vectors and ordered lists which can hold persistent objects or their references.

The role of HepRef

The provisionsare there but what if youwishto build aclassthat will exist in transient and persistent
forms without having to make extensive code changes? The RD45 group were aready tackling the
problem. Using smart pointers and macros a generic interface to references and containers was
developed. In its persistent state, Objectivity references and containers were used. In transient
form, containers were implemented using Rogue Wave's Tools.h++ [7] class library. The generic
reference isknown as HepRef.

Creating and accessing persistent histograms

In Objectivity the key unit of database operations is the Transaction class. There can be only
onhe active transaction open at any time (per-process). While atransaction is running, objects can
be created, deleted and amended but changes are only made to the database once the transactionis
closed. Thereisa sothe option of aborting atransaction. Everything must be donethrough persistent
references. Thisisan important point to remember because when you de-reference in order to access
an objects member functions, objectivity hands the controls over to the C++ compiler.

Some test code was written to perform the simpletask of creating a Histogram, binning some values
and storingitin adatabase. Objectivity allowsfor different object clustering schemeswithin databases
based around “ containers” (not to be confused with STL container classes). Hashing algorithmscan
be used for optimized access. At this stage, we simply used the default database containers. Here
are the stages involved for creating a 2-D histogram:

Start atransaction

Obtain the desired database clustering handle

Create an ElementaryPartition object for 1st Dimension
Create an ElementaryPartition object for 2nd Dimension
Create a Partition object

Register ElementaryPartition objects with the Partition object
Create a DataHistogram using the Partition object

Fill the DataHistogram

¢ Closetransaction

There are several stepsinvolved, but one must be aware that the above exampl e represents the most
detailed case since al the associated objects are created from scratch. Partition and Elementary-
Partition can bereferenced by many client objectssoif severa histogramsare created using similar
dimensions and base types, steps can be omitted. It’s straightforward but it was felt more could be
done to simplify matters. During many meetings, the subject of HBOOK was raised because its
represents the bare minimum which the histogram package hasto provide. Thiscovered the API too.

5.1

5.2

Two new DataHistogram subclasseswere created: Histo_1D and Histo_2D. They contain no new
datamembers, just more convenient functions. Their constructorscreate 1D and 2D fixed width bin
histogramsrespectively. They take care of Partition creation and provideaHBOOK styleinterface.
A Session class provides a high level interface encapsulating the behavior of Transaction, simpli-
fying the task of database access. The C++ Objectivity interface did not produce any unwelcome
surprises. The APl doesn’'t pose any problems for competent C++ programmers. Clearly, things
were taken into consideration when writing persistent capable classes but the effect on the design
was hot overwhelming. Currently, the class library has been compiled for Silicon Graphics and
HP-UX platforms.

Histogram Interfaces for Visualization

In reality, no vendor supplies a shrink-wrapped HEP visualization system ready to ship. AnMVS
(Modular Visualization System) is designed to allow a high degree of extensibility through code
integration. A HEP tailored visualization package could include function fitting and minimalization
through a MINUIT interface as well as tools to manipulate the persistent histograms. The code
prototyping continued in conjunctionwiththeevaluation of twoleading MV S packages: AV SEXxpress
[8] and IRIS Explorer [9].

Modular as opposed to monolithic

MV S environments are a far cry from the unmaintainable “black box” designs of the past. The

process model is now seen as being composed of discrete, re-useable functiona units connected

together to form a user application. Groups of modul es can be encapsulated in order to derive new
features. Typicaly, an off-the-shelf MV'S environment will consist of general purpose modules.

Categoriesinclude:

File readers/writers
Filters for extracting data subsets
Transformers which apply functionsto datasets
2-D and 3-D graphicstoolkits
New modules can be built with existing code using an API provided by the MV S. Datais shared
between modules through a variety of types designed to handle different forms of visualization
information, from array-like datasets to graphics geometry. There is aso the possibility to create
user-defined types. The protoyping objectives were:

¢ Readin histograms

¢ Provide an interface to operations

¢ Render the histogram data

Share the histograms or database references?

A decision had to be made asto how histogramswere to be shared between the prototype modules.
The choice was either transient C++ classes or persistent database references. MV S packages make
use of shared memory mechanisms to reduce the need for data copying. Support of shared C++
objectsisof great importance but thiswould imply that the persi sent object would haveto beinitially
duplicated. The dternative wasto share database references. Objectivity has a caching system for
efficient object access but at the moment, the scope of each cache islimited per-process. Theided
scenario would be either a global, machine scope database cache or an MV S which alows many
modul es to be executed as asingle process.

GUI buildingfacilties allow widgetsto be associated to module parameters. HistogramReader was
thefirst module to be written, allowing persistent histogramsto beread into the MV S using a browser
front-end. Databases can be scanned for classesand their titlesdisplayedin ascrolledlist. Objectivity

classiteratorsare used to perform the scanning with the use of run-timetypeidentification. Operator
functionshad been partially implemented and they were complemented withan MV Sinterfacewhich
alows hinary operationsto be performed interactively. In order to display the histogram datait was
necessary totransformit into asuitable MV S datatype which could in turn be converted into geometry
through graphics tool kit modules.

The result was the ability to visualize histogramsin two or three dimensionsin avariety of ways.
These included traditional graph plots, contours and 3D rendered scenes, annotated with axis and
legends. OpenGL [10] and Open Inventor [11] are widely regarded asthe leading graphicslibraries.
They also provide standard means of accessing 3D scenes viathe World-Wide-Web using the VRML
[12] (Virtual Reality Modelling Language).

Standards and vendor collaboration

So if industry can give solutions, they are worth our consideration. CERN’ s program devel opment
should center around HEP uniquefunctionality. A great deal of manpower can be saved by sharing
the burden of software support but critics of the LHC++ approach raise two common questions:

¢ How longwill vendors and their productslast?

e Can you assure product interoperability?
Many developments will take place during the next ten years. Our aim should be to try and make
future transitions as smooth as possible. LHC++ strategy involves building layered foundations,
based on leading standards. But that isn't enough to guarantee compatibility between products
originating from different vendors. The intention is not only to form strong links between CERN
and vendors but to get vendors collaborating between themsel ves.

References

1 TheLHC++ group, “Librariesfor HEP Computing - LHC++",

http://wwwecnl.cern.ch/asd/lhc++.html.

P. J. Plauger, The Draft Sandard C++ Library, Prentice Hall, (1994).

3 M. Lee A. Stepanov, The Standard Template Library, Hewlett-Packard, California,
(1995).

4 The RD45 group, RD45 - A Persistent Object Manager for HEP, CERN/LHCC,
Geneva, (1996).

5 Objectivity inc., Choosing an ODBMS, Objectivity, California, (1996).

6 The ODMG, The Object Database Sandard - ODMG-93, ed. R. G. G. Cattell, Morgan
Kaufmann.

7 Rogue Wave, “The Standard C++ Library and Tools.h++",
http://www.roguewave.com/products/stdlib/stdlibtools.html.

8 Advanced Visual Systems, “AV S Express information and resources”,
http://www.avs.com.

9 The Numerical Algorithms Group, “IRIS Explorer Center”,
http://www.nag.co.uk:70/Welcomel EC.html.

10 T. Davis, Jackie, Neider, M. Woo, OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Addison-Wesl ey, Massachusetts, (1993).

11 J. Wernecke, The Inventor Mentor, Addison-Wesl ey,Massachusetts, (1994).

12 Silicon Graphics, “The Virtua Reality Modeling Language Specification”,
http://vrml.sgi.com/moving-worl ds/index.html.

N

