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1 Introduction

A large class of topological quantum field theories (denoted as TQFT s) for a p-form gauge

field A(p) with (p + 1)-form curvature F(p+1) can be understood as theories which explore the

moduli space of (anti-)self-duality equations

±Fµ1···µp+1 =
1

(D/2)!
εµ1···µp+1

µp+2···µDFµp+2···µD . (1.1)

Assuming that the gauge symmetry of the topological theory is arbitrary, local redefinitions of

the classical fields, the self-duality equations (1.1) are relevant as topological gauge-fixing func-

tions. With the method of BRST quantization, one determines the BRST -invariant Lagrangian

to be used in the path integral formulation of the TQFT as well as the observables [1], [2].

Moreover, the topological BRST symmetry can often be (un)twisted to recover an ordinary

space-time supersymmetry [3], [4].

The self-duality equations (1.1) rely on the existence of the totally antisymmetric tensor

εµ1···µD . Thus, one expects that Yang-Mills-like TQFT ’s can only be constructed for p-form

gauge fields satisfying the condition 2(p + 1) = D. However, relaxing some constraints, one

foresees the possibility for new classes of TQFT ’s involving p-forms in various dimensions D.

This seems an interesting perspective to us: it could provide effective field-theories on the

world-volume of branes (see for instance [4], [5], [6], [7]); or a 12-dimensional TQFT for a

3-form gauge field, which could be candidate for the elusive “F -theory”. Furthermore, new

instanton solutions could be of interest, as for p = 1, D = 8 [8].

Such theories reduce the D-dimensional Euclidean invariance down to invariance under a

sub-group H ⊂ SOD (with Lie algebra h), while preserving the SOD covariance. From a

geometrical point of view, in curved space, H would be the holonomy group of theD-dimensional

manifold over which the supersymmetric TQFT is constructed. This generalization is done by

changing εµ1···µD in (1.1) into a more general 2(p + 1)-tensor T . For D > 2(p + 1), T cannot

be invariant (i.e. covariantly constant in curved space) under SOD, but rather under one of its

sub-groups H ⊂ SOD. The determination of such invariant tensors T was first worked out by

Corrigan et al. in [9], for Yang-Mills fields in dimensions up to eight.
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In the same spirit of [4], our purpose here is thus to exhibit equations of the type

λFµ1···µp+1 = Tµ1···µp+1
ν1···νp+1Fν1···νp+1 (1.2)

where λ is to be understood as one of T ’s eigenvalues. Keeping in mind that we wish (1.2) to

be relevant as a gauge-fixing function, we expect that the field equations remain a consequence

of the Bianchi identity together with (1.2). This implies that we ought to restrict ourselves to

totally antisymmetric tensors T . Therefore, equation (1.2) can be called a “generalized self-

duality equation” by analogy with the generic case (1.1) where 2(p + 1) = D. Furthermore,

since it only involves one gauge field, we call (1.2) of “pure” type, as opposed to self-duality

equations that would mix the curvatures for various gauge fields.

If a D-dimensional TQFT can be constructed from (1.2), its Lagrangian will only be SOD-

covariant and H-invariant . Its supersymmetry will be a topological BRST -symmetry, where

all the fermions are ghosts. However, it may happen that the full SOD-invariance be recovered

from a twist of the various fields involved in the theory, and the ordinary supersymmetry

from untwisting the topological BRST symmetry (a further dimensional reduction can be

necessary). An example of this scenario is the one in [4], where a covariant eight-dimensional

TQFT is built for a Yang-Mills field, with the SO8 invariance broken down to a G2 ⊂ SO7 ⊂

SO8 invariance: the action explicitly depends on an SO8 4-form T , invariant under G2 only.

Nevertheless, untwisting the corresponding Lagrangian enables to absorb this dependence into

field redefinitions, giving rise to the ordinary Lorentz invariant supersymmetric action in eight

dimensions. The latter is the one that is obtained by dimensional reduction of the usual N = 1,

D = 10 super-Yang-Mills theory [4], [5].

Determining H-invariant tensors T can be done using the branching rules for irreducible

representations of semi-simple Lie algebras (we used the tables in the book from W.G.McKay,

J.Patera [10]: they provide the information as to semi-simple algebras, while abelian factors

can be found in [11]). Furthermore, we are interested in a situation where a TQFT can be

constructed, with the self duality equation (1.2) as gauge function. In this perspective, (1.2)

must ideally give a number of independent equations on the curvature, matching the number

Neq of gauge invariant components of A(p). As we shall see, the realization of the requirements

towards a TQFT is non trivial, as soon as it comes to cases other than the generic 2(p+1) = D

for even D. It even came as a surprise to us that we found possibilities for other (p, D).

Our paper has two aspects. On one hand, we give the methodology to probe the possible
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relevance of such theories, enlightening the selection of h and T for given (p, D)’s. On another

hand, we implement the method and explicitly determine the eligible sub-algebras h for each

possible value of p and D, using the tables in [10] and unpublished results concerning higher

dimensional cases.1

There are limitations in our analysis. First, the existing tables give the decompositions of

the SOD-representations into maximal semi-simple sub-algebras. We have thus restricted our

analysis to maximal sub-algebras h (except for suD/2 ⊂ soD cases that we obtain explicitly by

complexification). This could lead us to miss possible solutions. For instance, the interesting

octonionic solution of non-maximal g2 ⊂ so7 ⊂ so8 for (p = 1, D = 8) can be extracted from the

solutions of the non-maximal (and thus not recorded in [10]) sub-algebra su4 ⊂ so8. However,

g2 is maximal within so7, and the octonionic solution can nevertheless be found from [10],

through a slightly different and more refined analysis (see subsection 2.1).

Second, we shall not consider in this paper the possible mixing of curvatures in the self-

duality equation (1.2). Mixed self-duality equations involving several gauge fields occur, for

instance, from dimensional reduction of a “pure” case like (1.2). An example was observed in [4]:

the “pure” (p = 1, D = 8) equation gives, when reduced to 4 dimensions, a non abelian version

of the Seiberg-Witten equations, involving a spinor and a Yang-Mills field. We emphasize that

other mixed self-duality equations may exist (that do not come from dimensional reduction of

a “pure” case), but we shall not consider them here.

Despite these points, and despite the fact that we only exhibit the possible h’s without any

certainty that the corresponding TQFT can be given a sense, we nevertheless believe that the

results presented here are already quite interesting by themselves. In particular, they point

out the diversity of the possibilities, depending on the various values of D. They also indicate

the specificity of D = 8 which is the only case where an exceptional group, G2, arises in our

analysis (the only orthogonal groups that have G2 as a maximal sub-group are SO7 and SO14,

but in the later case, the requirements we impose cannot be realized).

The organization is as follows: in section 2 are given the arguments for the selection of the

invariance algebra h and for the conditions on T together with its λ’s. Section 3 contains our

results: we display the possible invariance sub-algebra h for each pair (p, D) and comment on

the peculiarities of each case we have explored.

1We gratefully thank J. Patera for private communication of those.
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2 Analysis of the Generalized Self-Duality Equation

Our aim for this section is to probe the various criteria to be fulfilled for the self-duality equa-

tion (1.2) to count for Neq gauge fixing conditions, and to be appropriate for building TQFT ’s

of various (p, D). Let us first consider equation (1.2) from a general point of view, keeping in

mind that we seek a systematic check of the following requirements:

i) the SOD form T should be an H ⊂ SOD-invariant;

ii) the SOD irreducible representation for F should contain an Neq-dimensional representation

in its decomposition under H;

iii) the eigenvalues λ should have a suitable degeneracy, allowing (1.2) to count for Neq inde-

pendent equations on F ;

iv) the properties of T should enable to put the action under a Yang-Mills-like form.

We shall detail the points i), ii) in the following subsection. Criteria iii) will be the object

of subsection 2.2, and the remaining criteria iv) of subsection 2.3.

2.1 On the selection of the invariance sub-algebra h

Before describing the method, let us set up our notations: we consider a p-form gauge field in

D space-time dimensions. Its curvature is a (pF = p+ 1)-form, and has dF =
(
D
pF

)
independent

components. Consequently, the invariant form T , relevant to write (1.2), is a pT -form with

pT = 2pF = 2(p + 1). Since it is chosen totally antisymmetric, T has dT =
(
D
pT

)
independent

components. Thus, for a given p, we seek a 2(p+ 1)-form T that is invariant under a sub-group

H of SOD, while T (resp. F ) lies in a representation of SOD of dimension dT (resp. dF ).

The first check i) is to examine whether an SOD pT -form can be left invariant by the trans-

formations of some sub-group H ⊂ SOD. It consists in inspecting, in [10], the decomposition of

the soD-representation dT upon irreducible representations of all the possible sub-algebras h.

We then select the h’s that leave the pT -form invariant, i.e. the sub-algebra under which the

decomposition of dT produces a singlet 1. Notice that we restrict ourselves to maximal sub-

algebras, except for the particular case of a sub-algebra h leaving dT irreducible. In this case,

we pick up the sub-algebra h̃ ⊂ h that leaves T invariant. This is the situation of the (p = 1,

D = 8) case, where the 4-form T can be decomposed into self and anti-self-dual parts, irreducible

under so7. More generally, this occurs for D = 4(p+ 1).
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Once such a sub-algebra h (or h̃) has been selected, we impose that it satisfies criteria ii):

to end up with a proper TQFT for the p-form gauge field, the self-duality equations (1.2) must

count for as many equations as there are of gauge-invariant components of A(p) (the longitudinal

gauge degrees of freedom can be fixed with the conventional BRST formalism for forms [2]). A

p-form gauge field has a total of
(
D
p

)
components, but is defined up to an anticommuting gauge

symmetry parameter ξ(p−1). The latter has a total of
(
D
p−1

)
components, but is also defined up

to a commuting gauge symmetry parameter ξ(p−2) with
(
D
p−2

)
components, and so on. Thus,

the number Neq of gauge-invariant components of A(p) is the number of components of a p-form

in (D − 1) dimensions, that is

Neq =

(
D

p− 1

)
−

(
D

p− 2

)
+ · · · ±

(
D

0

)
=

(
D − 1

p

)
. (2.1)

Therefore, criteria ii) consists in checking whether the soD-representation dF contains, in its

h-decomposition dF =
⊕

dF
i (i = 1 · · ·n), a representation Neq =

⊕
dF

j with total dimen-

sion Neq. The right number of constraints on the gauge field A(p) can then be obtained by

imposing (1.2) if the latter allows to project F on the space corresponding to (dF −Neq). In

this final sorting of the sub-algebras, we do not impose that Neq, nor (dF −Neq), be irreducible

representations of h. Allowing these representations to be a sum of irreducible representations

does not lead to inconsistencies: (1.2) is then expressed as independant sets of equations that

involve independant combinations of F ’s components.

T can be understood as a linear operator, mapping the space of (p + 1)-forms into itself;

and since it has been chosen a singlet of h, Schur’s lemma implies that T acts block diagonally

in each of the dF
i’s (T being an invariant of H, its action on an irreducible representation of

H remains in the same representation). Each dF
i is associated with an eigenvalue λi, and one

can always choose an appropriate basis to diagonalize T in each dF
i so that it reads:

Tdiag =



[λ1I(1)]

[λ2I(2)]

[
. . .]

[λiI(i)]

[
. . .]


(2.2)

where I(i) denotes the relevant (dF
i)-dimensional identity operator involved in the associated

sub-space.2

2This actually holds as long as each dF
i appears only once in the decomposition dF =

⊕
dF

i. If a given
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Taking into account the possible degeneracy of the eigenvalues, the (λ1, · · · , λi, · · · , λn) take

m distinct values (µ1, · · · , µa, · · · , µm)(m≤n). One can then re-write T in terms of the µ’s, and

define the h-invariant operator Pµa , key to the gauge fixing, as Pµa = T − µaI(a). According to

the degeneracy of the λ’s, each µa is now associated to one or a sum of representations (with

the same λj : da =
⊕

dF
j), of total dimension da. Imposing PµaF = 0 projects F on the

sub-space corresponding to da. It amounts to cancelling the projection of F onto all the other

sub-spaces corresponding to µb 6= µa. This gives a number of independent equations on F equal

to the total dimension
∑
db = (dF − da) of the (

⊕
db) representation. Hence, PµaF = 0 may

be suitable as a gauge fixing function in the sense described above, provided that it counts for

Neq equations, i.e. provided that (dF − da) = Neq.

Before taking this any further (we shall come back on this point in subsection 2.3), let us

first probe the conditions that one has on the λi’s, and in particular the issue of criteria iii).

2.2 On the degeneracy of the eigenvalues λ

Suppose that one has found a sub-algebra h and a form T satisfying criteria i), ii); and consider

only one of the sub-spaces upon which F decomposes. To compute the corresponding eigenvalue

λi, one can apply T on (1.2) once more to get:

(λi)2Fµ1···µp+1 = Tµ1···µp+1
ν1···νp+1Tν1···νp+1

σ1···σp+1Fσ1···σp+1. (2.3)

One obtains an equation for λi if one knows how (T 2)µ1···µp+1

σ1···σp+1 expands upon h-invariant

tensors, and how these act on F . Unlike T , T 2 lies in a reducible representation dT 2 of soD: it

transforms like the product of two pF -forms, dT 2≡ dF ⊗ dF , that one first expands as a sum

of irreducible representations of soD. Second, T 2 is a tensor of soD, necessarily h-invariant

because T is, so it can only expand as a linear combination of h-invariant tensors. One is sure

to find, in T 2, at least the trace part δ[µ1

[σ1 · · · δµp+1]
σp+1], as well as a Tµ1···µp+1

σ1···σp+1 term,

but there might be others. Generically, let us write the decomposition of dT 2 upon h-invariant

irreducible representations of soD as

dT 2 ≡ dF⊗dF = 1⊕ dT ⊕

(⊕
m

dTm

)
. (2.4)

representation has multiplicity m higher than one, then T ’s action on these m identical representations is one

single block (instead of m), that is not necessarily diagonal.
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Whenever T and the trace term are the only tensors to appear in (2.4), one has

(T 2)µ1···µp+1

ν1···νp+1 = Aδ[µ1

[ν1 · · · δµp+1]
νp+1] +BTµ1···µp+1

ν1···νp+1 (2.5)

and the λi’s are solutions of

(λi)2 = A(p+ 1)! +Bλi, (2.6)

where the trace part appears with a non-vanishing coefficient A.3 The statement that A 6= 0

ensures that λi 6= 0. Equation (2.6) tells us a lot more: as long as the hypothesis of the

unicity of T in (2.4) holds, the λi’s can only take two possible values, whatever number of

h-irreducible representations is involved in the decomposition of F . One can thus expect some

quite restrictive degeneracy of the λ’s.

The only possibility for the λ’s to be allowed more than two values is when other invariant

tensors than T appear in (2.5). To each of those invariant tensors Tm is associated a set of

eigenvalues. Reproducing the same string of arguments we have used for T 2, one gets the

decomposition of each (Tm)2 upon the set of invariant tensors. These lead to a set of equations

for the eigenvalues of T together with the eigenvalues of the Tm’s.

In general, we expect a high level of degeneracy for the λ’s. Unfortunately, to be sure

that (1.2) eventually counts for Neq constraints on F , one would need to know, case by case,

the detailed spectrum of the λi’s. Since the explicit construction of the T tensor is not our goal

here, we shall not take this any further, but rather turn to requirement iv).

2.3 On the relevance of the self-duality equation towards a TQFT

As to the relevance of the self-duality equation, there are two things to be kept in mind: in

all the cases we expose in the coming section, the check ii) ensures that one can always write

Neq H-invariant equations. However, it is not at all systematic that these equations can be

imposed with the sole constraint (1.2). Even if it is the case, it is not guaranted that the

form T is suitable to recover a Yang-Mills like action, plus topological terms, when the gauge

function is squared. Notice that one can always find an h-diagonal matrix with the spectrum

3Indeed, if one contracts the remaining indices to get (T 2)µ1···µp+1

µ1···µp+1 , the only term that survives is the

trace term. Furthermore, and since we are considering Euclidean spaces, its coefficient A cannot be zero unless

T itself is zero.
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of eigenvalues suitable to project the curvature on the relevant sub-spaces. However, the later

does not necessarily correspond to an antisymmetric tensor of SOD and thus is not relevant in

view of iv).

Criteria iv) involves non trivial properties of T . The most favorable case is when T is

the only tensor to appear in the right hand side of (2.4), and when PµaF = 0 projects on

the relevant sub-space. The Neq equations coming from (1.2) can then be written as duality

relations between the “electric” and “magnetic” parts of the curvature:

FDi1···ip = ci1···ip
j1···jp+1Fj1···jp+1, (2.7)

ci1···ipj1···jp+1 ≡ TDi1···ipj1···jp+1,

with (i1, i2, · · · , j1, · · ·) being (D − 1)-dimensional indices. Therefore, when the gauge function

is squared, using (2.5), one gets the appropriate terms F ∧ ?F and (?T ) ∧ F ∧ F in the action

for the TQFT :

∣∣λFµ1···µp+1 + Tµ1···µp+1
ν1···νp+1Fν1···νp+1

∣∣2 (2.8)

= α
∣∣Fµ1···µp+1

∣∣2 + β
(
Tµ1···µp+1

ν1···νp+1Fµ1···µp+1Fν1···νp+1

)
(2.9)

7→ α (F ∧ ?F ) + β (?T ∧ F ∧ F )

with the [(D−2(p+1)) ≡ (D−pT )]-form (?T ) defined as εµ1···µDT
µ1···µpT = (?T )µpT+1···µD . The

way supersymmetric terms are added to (2.9), giving a BRST -invariant action, is a straight-

forward generalization of the work detailed in [4].

For less ideal cases, the degeneracy of the λ’s can have drastic consequences on the relevance

of (1.2) as a gauge function. Very often, the self-duality equations amount to a number of

independent conditions exceeding Neq. These are the most common cases, for which the Neq-

dimensional sub-space shares its eigenvalue λ with other eigenspaces. Another situation is when

the Neq-dimensional sub-space contains different eigenspaces which are associated with different

eigenvalues (λ1 · · ·λk). Here, one can tentatively use as gauge function(
k∏
i=1

Pλi

)
F ≡

(
k∏
i=1

(
Tµ1···µp+1

ν1···νp+1 − λiδ[µ1

[ν1 · · · δµp+1]
νp+1]

))
Fν1···νp+1. (2.10)

Whatever the degeneracy of the λ’s may be, i.e. with either (2.8) or (2.10) as gauge func-

tion, if the expansion for T 2 involves other H-invariant tensors Tm, the resulting TQFT shall
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have an unusual Lagrangian, that possibly depends on these other invariant tensors. Notice

that the additional Tm-terms are not topological, since the Tm’s do not correspond to totally

antisymmetric tensors of SOD; these terms can nevertheless be of interest.

For a given sub-group H satisfying our criteria, we often found only one singlet in the

decomposition of dT . To the later corresponds a given spectrum of the eigenvalues λi (i.e.

a given set of µa), often such that the number of equations obtained on the components of

F is greater than Neq. An example is the case of h ≡ soD−1, with 2(p + 1) = (D − 1), in

odd space-time dimension D. Here, (1.2) amounts to canceling FDi1···ip (Neq equations) and

the 1
2

(
D−1
p+1

)
anti-self-dual components of Fi1···ip+1 (i1, i2, · · · are (D − 1) dimensional indices).

Another example is the h ≡ sod × soD−d ⊂ soD case. Here, the only possible T again has

eigenvalues ±1 and leads to more than Neq constraints on the curvature.

However, there are cases where dT gives several singlets in its decomposition under h,

giving more flexibility as to the spectrum of the eigenvalues. The general solution for T is

then expressed as a linear combination of the corresponding tensors: T =
∑

k αkT
(k), with

λ =
∑

k αkλ
(k). Thus, one has the opportunity of adjusting the coefficients αk, such that the

eventual spectrum allows to project F precisely on the relevant sub-spaces. The situation of

having several T ’s occurs in few and privileged cases, but there are some examples.

Notice that relaxing the condition that h be maximal would increase the probability to

have several independent invariant tensors T . Indeed, let h′ be a sub-algebra of h, itself being

maximally embedded in soD. In the chain of decompositions of dT , singlet pieces can come

from the various “upper level” components of T : under h ⊂ soD, dT decomposes into 1+dT ’,

and under h′ ⊂ h, dT ’ can give rise to additional singlet pieces. We shall point out such a

privileged situations in the next section, for instance in the eight-dimensional case.

Following the steps described above, we have obtained non trivial solutions, that we are

now going to expose.
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3 Results and Comments

We present our various results under the form of a table exploring the possibilities for pT =

2(p + 1) ≤ D up to D = 16. This table gathers the invariance sub-algebras h which fulfill our

conditions i), ii). Each possibly relevant case will be separately detailed afterwards (though,

again, T is not explicitly constructed here, so that we are not in a position to check iv).

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

D = 4 su2× su2

D = 5 su2× su2

D = 6 su4

D = 7 su2× su2× su2 su4

D = 8 g2 ⊂ so7
? so8

su4

D = 9 su2× su4 so8

D = 10 su2× su2× su4 su5 so10

D = 11 su2 su2 so10

D = 12 su4× sp4⊂ so11
? su6 so12

su2× sp6

D = 13 su2 so12

D = 14 su7 so14

D = 15 su2 su2 su4 su2 so14

su4 su4

su2× sp4

D = 16 sp4× sp4 su8 so16

su2⊂ so15
? sp4× sp4

su4⊂ so15
? su2× sp8

su2× sp4⊂ so15
?

so7× so8⊂ so15
?

The index (?) indicates the particular cases 4(p + 1) = D, where T can be decomposed into self- and anti-self

dual parts, so that dT is not irreducible under soD, but rather under so(D−1).

Let us remind the isomorphisms between simple Lie algebras: su2 ∼ so3 ∼ sp2, sp4 ∼ so5, su4 ∼ so6.
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In the above table, the generic self-duality (1.1) systematically appears on the diagonal for

even D = 2(p+ 1). Similarly, one has the odd dimensional (D− 1) = 2(p+ 1) briefly discussed

in sub-section 2.3.

In 5, 7 and 9 dimensions, the possibilities are of the aforementioned type h ≡ soD−1 or

sod × soD−d, for which λ = ±1 and T does not project F properly: one gets more than Neq

constraints on the gauge field. Details for the solutions p = 1 of D = 5, 7 can be found in [9].

The other cases with h ≡ sod × soD−d or soD−1 occurring in higher dimensions are analogous.

Therefore, we only comment on the cases (D = 8, p = 1) and D ≥ 10 where more peculiar

sub-algebras h occur. Furthermore, we display all the h-decompositions of dF representations

in the tables of the appendix.

3.1 8-dimensional cases

Apart from the standard solution (1.1) of a 3-form, one can have su4 or g2 invariance for the

4-form T of the Yang-Mills case (p = 1). These are the cases of interest in [4], [5], [6]. For

p = 1, D = 8, T is a D/2-form and can thus be naturally decomposed into self and anti-self-dual

parts. While dF = 28, one seeks Neq = 7 equations, where the 4-form T , being itself a solution

for (1.1), transforms as a 70 ∼ 35+ + 35− of so8.

We first consider the g2 ⊂so7 theory. Under so7, 35+ and 35− remain irreducible, whereas

dF obviously decomposes into

28 = 7 + 21. (3.1)

Checking the decomposition of so7’s 35 under its sub-algebras selects g2, under which

35 = 1 + 7 + 27

21 = 7 + 14

7 = 7 : irreducible. (3.2)

The spectrum for T ’s eigenvalues allows to impose exactly 7 equations (i.e. to project F onto

a 7 + 14). Indeed, one can check that T is the only invariant tensor upon which T 2 can

decompose, so that it admits two eigenvalues (see sub-section 2.2), namely λ1 = −1, λ2 = 3

(see [9]). Moreover, T8ijk (i, j, k are 7-dimensional indices) is antisymmetric and thus traceless
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with respect to the SO7 metric. Therefore, the only possibility for the degeneracy of the λ’s is

the appropriate one: 21λ1 + 7λ2 = 0, and imposing (1.2) with λ = λ1 leads to the 7 equations

on F . This case was first studied by Corrigan et al. [9] and the corresponding TQFT was

constructed in [4]. The set of 7 self-duality equations obtained are

F8i = cijkFjk, (3.3)

cijk = T8ijk

where the cijk (i, j, k = 1 · · · 7) are the structure constants for octonions. More explicitly, in

terms of 8-dimensional components of the curvature, they read

F12 + F34 + F56 + F78 = 0,

F13 + F42 + F57 + F86 = 0,

F14 + F23 + F76 + F85 = 0,

F15 + F62 + F73 + F48 = 0,

F16 + F25 + F38 + F47 = 0,

F17 + F82 + F35 + F64 = 0,

F18 + F27 + F63 + F54 = 0. (3.4)

Let us now turn to the case h ≡su4 (it is not maximal and thus not recorded in the tables

from [10]). It enables to complexify the 8-dimensional indices (with za ≡ xa+ixa+4, a = 1 · · · 4):

Fµν → (Fzazb , Fzazb , Fzaza), (3.5)

28 = 6 + 6 + 15 + 1. (3.6)

To end up with 7 equations, the projection of F on a (1 + 6) has to be cancelled. This is

possible because there are three independant su4 invariant 4-forms (see appendix B in [9]), and

one considers T a linear combinaison of them. The coefficients can be adjusted at will to end

up with the self-duality equations:

(1 real eqs)
4∑
a=1

Fzaza = 0 (3.7)

(6 real eqs) Fzazb +
1

2
εabcdFzczd = 0. (3.8)
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Moreover, one can observe that equation (3.7) is the imaginary part of the complex equation

4∑
a=1

(
∂zaAza +

1

2
[Aza , Aza ]

)
= 0. (3.9)

The real part of (3.9) gives the Landau gauge condition ∂µAµ = 0. It is remarkable that the

former equations (3.7)–(3.8), when re-expressed in terms of SO8 components Fµν , give the set

of equations (3.4) obtained through g2.

Notice that if one considers the maximal su4 × u1 rather than su4, only one T is possible,

and one cannot adjust its eigenvalues. Equation (1.2) then leads to the sets of 13, 16 or 27

equations of [9] and criteria ii) cannot be satisfied. This illustrates the situation explained in

subsection 2.3, where more flexibility comes from relaxing the hypothesis that h be maximal.

3.2 10-dimensional cases

Here, apart from the case of a 2-form (of the aforementioned type sod× soD−d ≡ so4× so6),we

have as a non-standard solution a 3-form gauge field with T invariant under su5 (here again, the

maximal sub-group is rather su5 × u1 ⊂ so10). The 4-form curvature is a 210, the 8-form T is

a 45 and the self-duality equation should count for 84 conditions (so10 has two 210, only one of

which is the 4-form we are interested in). This case can be investigated through complexification

of the 10-dimensional indices (with za ≡ xa + ixa+5):

Fµνρσ → (Fzazbzczd , Fzazbzczd , Fzazbzczc , Fzazbzczd , Fzazbzczb , Fzazbzazb), (3.10)

210A = (5+ + 5−) + (40+ + 40−) + (10+ + 10−) + 75 + 24 + 1. (3.11)

An 84-dimensional sum of representations can be exhibited in various ways.

3.3 11-dimensional cases

Two interesting possibilities arise, for a Yang-Mills field as well as a 3-form, both involving the

so-called principal su2 of so11 as the invariance sub-algebra (there are many su2 sub-algebras

in soD, but the only one that is maximal is the principal su2 for odd D). Indeed, our first two

requirements are fulfilled: the 1-form’s curvature is a 55 and the 3-form’s curvature a 330, while

55 = 19 + 15 + 11 + (7 + 3)? for p = 1, (3.12)
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330 = 23 + 21 + 19 + 3×17 + 3×13 + 2×11 + 3×9 + 7 +1

+ (29 + 25 + 21 + 2×15 + 3×5)? for p = 3. (3.13)

For the 1-form and 3-form, one needs respectively Neq = 10 and 120 equations. There are

several posibilities for the corresponding sum of representations, one of which we point out

by (· · ·)? in (3.12)–(3.13).

Notice that one can expect more than two eigenvalues for T in both cases (other su2-

invariant tensors appear in the decomposition of T 2). However, as to the p = 3 case, in view of

the number of representations involved in the decomposition for dF , we do not know whether the

spectrum of the eigenvalues can allow to project exactly on the complementary representation

of Neq in (3.13).

3.4 12-dimensional cases

In addition to the generic case (1.1) of a 5-form, D = 12 allows p = 2 and 3. For p = 2,

the (D = 8, p = 1) pattern is reproduced: since it is a D/2-form, T can be decomposed into

self and anti-self-dual parts (462+ + 462−), which remain irreducible under so11. Moreover,

the 3-form curvature lies in the 220 of so12, which, under so11, automatically gives rise to the

crucial Neq = 55 dimensional representation:

220 = 55 + 165. (3.14)

Inspecting dT ’s decompositions under so11’s maximal sub-algebras selects su4×sp4 ∼ so6×so5.

The corresponding representations for the curvature F behave under su4×sp4 as:

55 = (15,1) + (6,5) + (1,10) (3.15)

165 = (10+,1) + (10−,1) + (15,5) + (6,10) + (1,10). (3.16)

Unlike the (p = 1, D = 8) case, T is not the only invariant tensors to appear in T 2 so there

can be more than two values for λ. We do not know whether their spectrum enables to get the

wanted 55 equations from (1.2).

The remaining case p = 3 admits two possible invariance sub-algebras, namely su6 (non-

maximal) and su2×sp6. The decomposition for dF = dT = 495 under su6 is obtained by

complexification of the indices and an Neq = 165-dimensional representation can be extracted.

As for the case of p = 2, other invariant tensors appear in the right hand side of (2.4).
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3.5 13- and 14- dimensional cases

As for the 11-dimensional 1- and 3-forms, for p = 3 in 13 dimensions, it is the principal su2 that

arises. The representation 1287 for the 8-form T has two singlet components under su2. This

suggests that one has some freedom to arrange the eigenvalues, but we do not know whether

F ’s projection onto the Neq = 220-dimensional reducible representation can be cancelled.

The (D = 14, p = 5) su7 possibility is another case of complexification of the indices

and is easily worked out: T has only one singlet component and an Neq = 1287-dimensional

representation can be found in the decomposition for dF = 3003.

3.6 15-dimensional cases

D = 15 offers quite a few possibilities, for all possible form degree except the 2-form gauge

field. The 6-form is of the aforementioned type h ≡ so(D−1).

For the case of a Yang-Mills field, F lies in the representation 105 of so15 and T in the 1365.

The later gives two singlets in its decomposition under the maximal su2 ⊂ so15.

In the case of a 3-form gauge field, three maximal sub-algebras are suitable, namely, su2,

su4 and su2× sp4. Here, dT = 6435 gives four singlets under su2 against only one under the

last two. The decompositions of dF = 1365 can be found in the appendix, where the Neq = 364-

dimensional representation is singled out. It involves an increasing number of low-dimensional

representations of h, thus the fulfilling of iv) seems more and more difficult to us. However, for

the case of su2, T being a linear combination of four invariant tensors, there is more freedom

for a relevant choice of the eigenvalues.

3.7 16-dimensional cases

In 16 dimensions, for p = 3, one has the case of 4(p + 1) = D. It gives several possible sub-

algebras h ⊂ so15 ⊂ so16. Unlike the eight and twelve dimensional analogues, here T also

contains a singlet in its decomposition under sp4×sp4, maximal within so16. Finally, one has

a 5-form with either su8 (complexification of the indices), sp4×sp4 or su2×sp8. For all these

cases, T has only one singlet component.
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4 Conclusion

Recent developments have indicated that TQFT ’s in various dimensions, i.e. theories with

twisted supersymmetries, may play an important role. The case of the eight dimensional Yang-

Mills TQFT has indicated the relevance of a theory defined on a manifold with special holonomy

group H ⊂ SOD. The key to such TQFT ’s is the existence of H-invariant “self-duality equa-

tions” (1.2) for the curvature of the gauge field: via BRST quantization, they can serve as

gauge fixing functions, provided they satisfy certain restrictions.

In this paper, we have pointed out restrictive conditions to be fulfilled by (1.2) to possibly

admit instanton-like solutions and determine D-dimensional TQFT ’s. We have not restricted

ourselves to Yang-Mills fields, but have considered p-form gauge fields, in view of their impor-

tance in the definition of field theories for branes. Following the first steps exhibited in our

analysis, we have established a table, listing for each p and D ≤ 16, the possible subgroups

H ⊂ SOD for which an SOD-covariant and H-invariant self-duality equation can exist. We

did not go any further in building the TQFT ’s, but we believe that for some high dimensional

cases, interesting and possibly unfamiliar theories could arise.
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Appendix

Here, we give the h-decomposition of dF for all the relevant cases for D ≥ 10; one possibility for the

Neq-dimensional reducible representation is singled out with (· · ·)?.

D = 10 p = 2, dF = 120, dT = 210, Neq = 36

su2×su2×su4 120=[(1,3,6)+(3,1,6)]?+ (2,2,15)+(1,1,10+)+ (1,1,10−)+(2,2,1)

p = 3, dF = 210, dT = 45, Neq = 84

su5 210=(40±+10++10−+24)?+75+40∓+5++5−+1

D = 11 p = 1, dF = 55, dT = 330, Neq = 10

su2 55=(7+ 3)?+19+15+11

p = 3, dF = 330, dT = 165, Neq = 120

su2 330=(29+25+21+ 2×15+3×5)?+23+21+ 19+3×17+3×13 + 2×11+ 3×9+7+1

D = 12 p = 2, dF = 220, dT = 462 + 462, Neq = 55

so15 220 = 55?+165

⊃su4×sp4 55= (15,1)+(6,5)+(1,10), 165=(10+,1)+ (10−,1)+(15,5)+ (6,10)+ (1,10)

p = 3, dF = 495, dT = 495, Neq = 165

su6 495=(105’± +2×15++2×15−)? +189+150’∓+35+1

su2×sp6 495=[(1,90)+ (5,14’)+(5,1)]? + (3,70)+(3,21)+ (3,14’)+(1,14’)+(1,1)

D = 13 p = 3, dF = 715, dT = 1287, Neq = 220

su2
715A=(37+33+31+2×29+27+25+9)?+2×25+2×23+4×21+3×19+4×17

+3×15+5×13+2×11+3×9+2×7+3×5+2×1

D = 14 p = 5, dF = 3003, dT = 91, Neq = 1287

su7 3003=(490+
(1)

+392+224++112++48+21+)? +784+490−
(1)

+224−+112−+(35++35−)+21−+7++7−+1

D = 15 p = 1, dF = 105, dT = 1365, Neq = 14

su2 105 = (11+3)? + 27+23+19+15+7

p = 3, dF = 1365, dT = 6435, Neq = 364

su2
1365 = (45+41+39+ 2×37+35+3×33+31 )? +31+4×29+3×27+5×25

+4×23+6×21+4×19+6×17+4×15+6×13+3×11+5×9+2×7+4×5+2×1

su4 1365=(105+175+ 84)?+(256++256−)+175+ 84+(35++35−)+(45++ 45−)+2×20+2×15

su2×sp4
1365 = [(5,35’)+ (3,35)+(5,14)+ (1,14)]?+(3,81)+ (7,35)+(5,35)+ (1,35’)

+(7,10)+(9,5)+(3,14)+ (5,10)+2×(3,10)+(5,5) + (1,5)+(5,1)+(1,1)
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p = 4, dF = 3003, dT = 3003, Neq = 1001

su4
3003=(300+280±+105+175+45++45−+20+2×15+1)?

+280∓+2×256++2×256−+2×175+2×84+2×45++2×45−

p = 5, dF = 5005, dT = 455, Neq = 2002

su2
5005=(55+51+49+2×47+2×45+4×43+3×41+6×39+5×37+8×35+8×33+12×31+23+7+3)?+37+10×29

+14×27+13×25+15×23+14×21+18×19+13×17+17×15+13×13+14×11+9×9+11×7+4×5+5×3

su4
5005 = (2×300+256++ 256−+5×175+15)?+ 729+2×(280++280−)

+(256++256−)+(35++35−) + 3×84+3×(45++45−)+ 20+2×15

D = 16 p = 3, dF = 1820, dT = 6435 + 6435, Neq = 455

sp4×sp4
1820 = [(35,10)+ (10,10)+(5,1)]?+(14,14)+ (10,35)+(35,5)+(5,35) +(14,5)

+(5,14)+(35’,1)+(1,35’) +(10,10)+(10,5)+(5,10)+ (14,1)+(5,5)+(1,14)+(1,5)+ (1,1)

so15 1820 = 1365+455

⊃su2
455=37+33+31+ 29+27+2×25+23+2×21 + 2×19+2×17+2×15+3×13+11+2×9+7+ 5+1

1365=45+41+39+ 2×37+35+3×33+2×31 + 4×29+3×27+5×25+ 4×23+6×21+4×19

+6×17 + 4×15+6×13+3×11+ 5×9+2×7+4×5+2×1

⊃su4
455=175+84 +35++35−+45++45−+20 +15+1

1365=256++256−+105+ 2×175+2×84+35++35−+ 45++45−+2×20+2×15

⊃su2×sp4
455= (5,35)+(1,30)+ (3,35)+(7,10)+(3,10) +(5,5)+(3,5)+(1,5)

1365=(3,81)+(5,35’) +(5,35)+(7,35)+(1,35’) +(3,35)+(5,14)+(7,10)

+(9,5)+(3,14)+(5,10) +(1,14)+2×(3,10)+(5,5) +(1,5)+(5,1)+(1,1)

⊃so7×so8
455=(7,28) +(21,8V )+(1,56C)+(35,1)

1365=(21,28)+(7,56C) +(35,8V )+(1,35S)+(1,35C) +(35,1)

p = 5, dF = 8008, dT = 1820, Neq = 3003

su8
8008=(2352+420±+70+70+63+28±)?+(1512++1512−)

+720+(378++378−)+420∓+28∓+(28++28−)+1

sp4×sp4
8008=[(35,35)+(81,5)+ (10,35’)+(5,81)+(14,14) +(81,1)+(1,81)+(14,10)+(10,10)+2×(10,1)]?

+(35’,10)+(30,10)+(10,30)+(35,14)+(14,35)+2×(35,10)+2×(10,35)+2×(35,5)+2×(5,35)

+(14,10)+2×(10,14)+(5,14)+(14,5)+(35,1)+(1,35)+3×(10,5)+3×(5,10)+ (5,5)+2×(1,10)

su2×sp8
8008=[(5,315)+ (3,315)+(5,42)+(7,27)+ (3,27)+(3,1)]?+(1,825) +(3,792(1))

(3,308)+(1,315)+(5,36) +(3,42)+(5,27)+(1,36)+ (3,27)+(7,1)
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