A simple method for multi-leg loop calculations 2: a general algorithm

R. Pittau
Theoretical Physics Division, CERN
CH-1211 Geneva 23, Switzerland

Abstract

The method introduced in a previous paper to simplify the tensorial reduction in multi-leg loop calculations is extended to generic one-loop integrals, with arbitrary internal masses and external momenta.

1 Introduction

In a previous paper [1], a technique was presented to simplify the tensorial reduction of m-point one-loop diagrams of the type

$$
\begin{equation*}
\mathcal{M}\left(p_{1}, \cdots, p_{r} ; k_{1}, \cdots, k_{m-1}\right)=\sum_{a} \int d^{n} q \frac{\operatorname{Tr}^{(a)}[\notin \cdots \not q \cdots]}{D_{1} \cdots D_{m}} \tag{1}
\end{equation*}
$$

where $p_{1 \cdots r}$ are the external momenta of the diagram, $k_{1 \cdots m-1}$ the momenta in the loop denominators, defined as

$$
\begin{equation*}
D_{i}=\left(q+s_{i-1}\right)^{2}-m_{i}^{2}, \quad s_{i}=\sum_{j=0}^{i} k_{j} \quad\left(k_{0}=0\right) \tag{2}
\end{equation*}
$$

and $\operatorname{Tr}^{(a)}$ traces over γ matrices, which may contain an arbitrary number of q 's.

It was shown that, by assuming at least two massless momenta in the set $k_{1 \cdots m-1}$, the traces in eq. (1) can be rewritten in terms of the denominators appearing in the diagram, therefore simplifying the calculation.

Starting from m-point rank- l tensor integrals, the algorithm gave at most rank-1 m-point functions, plus n-point rank- p tensor integrals with $n<m$ and $p<l$.

In this paper, I show how to extend this technique when the momenta $k_{1 \cdots m-1}$ are generic. On the one hand, this allows to apply the method to more general problems. On the other hand, the reduction procedure can therefore be iterated in such a way that, usually, only rank- 1 integrals and scalar functions remain at the end.

In the next section, I introduce the algorithm and in section 3, I apply it to a specific example.

2 The general algorithm

The basic idea is simple. Given two vectors ℓ_{1} and ℓ_{2}, one can 'extract' the q dependence from the traces with the help of the identity

$$
\begin{equation*}
\not q=\frac{1}{2\left(\ell_{1} \cdot \ell_{2}\right)}\left[2\left(q \cdot \ell_{2}\right) \ell_{1}+2\left(q \cdot \ell_{1}\right) \ell_{2}-\not \ell_{1} q \ell_{2}-\not \ell_{2} q \ell_{1}\right] . \tag{3}
\end{equation*}
$$

By further assuming $\ell_{1}^{2}=\ell_{2}^{2}=0$, and making use of the completeness relations for massless spinors, the following result is obtained

$$
\begin{align*}
\operatorname{Tr}[\phi \Gamma] & =\frac{1}{2\left(\ell_{1} \cdot \ell_{2}\right)}\left[2\left(q \cdot \ell_{2}\right) \operatorname{Tr}\left[\ell_{1} \Gamma\right]\right. \\
& \left.-\{q\}_{12}^{+-}\{\Gamma\}_{21}^{+-}-\{q\}_{12}^{-+}\{\Gamma\}_{21}^{-+}+\left(\ell_{1} \leftrightarrow \ell_{2}\right)\right] \tag{4}
\end{align*}
$$

where Γ represents a generic string of γ matrices and

$$
\begin{equation*}
\left\{\ell_{1} \ell_{2} \cdots \ell_{n}\right\}_{i j}^{+-} \equiv\{12 \cdots n\}_{i j}^{+-} \equiv \bar{v}_{+}\left(\ell_{i}\right) \ell_{1} \ell_{2} \cdots \ell_{n} u_{-}\left(\ell_{j}\right) \tag{5}
\end{equation*}
$$

By iteratively applying the above procedure, together with the equations [1]

$$
\begin{align*}
\{q\}_{12}^{-+}\{q\}_{21}^{-+} & =4\left(q \cdot \ell_{1}\right)\left(q \cdot \ell_{2}\right)-2 q^{2}\left(\ell_{1} \cdot \ell_{2}\right) \\
\{q\}_{12}^{-+}\{q\}_{12}^{-+} & =\frac{2}{\{b\}_{12}^{+-}}\left[\left[q^{2}\left(\ell_{1} \cdot \ell_{2}\right)-2\left(q \cdot \ell_{1}\right)\left(q \cdot \ell_{2}\right)\right]\{b\}_{12}^{-+}\right. \\
+ & \left.2\left[\left(q \cdot \ell_{1}\right)\left(b \cdot \ell_{2}\right)-(q \cdot b)\left(\ell_{1} \cdot \ell_{2}\right)+\left(q \cdot \ell_{2}\right)\left(\ell_{1} \cdot b\right)\right]\{q\}_{12}^{-+}\right] \tag{6}
\end{align*}
$$

only one $\{q\}_{12}^{-+}$(or its complex conjugate $\{q\}_{2}^{-+}$) survives in each term, and powers of $q^{2},\left(q \cdot \ell_{1}\right),\left(q \cdot \ell_{2}\right)$ and $(q \cdot b)$ factorize out.

The next step is to reconstruct the denominators from the above scalar products. By choosing, for example, $b=k_{3}$ one trivially gets

$$
\begin{align*}
q^{2} & =D_{1}+m_{1}^{2} \\
2(q \cdot b) & =D_{4}-D_{3}+m_{4}^{2}-m_{3}^{2}-\left(k_{1}+k_{2}+k_{3}\right)^{2}+\left(k_{1}+k_{2}\right)^{2} \tag{7}
\end{align*}
$$

but $\left(q \cdot \ell_{1}\right)$ and $\left(q \cdot \ell_{2}\right)$ still remain.
In ref. [1] the simple case was studied in which the diagram in eq. (1) is such that at least two k 's (say k_{1} and k_{2}) are massless. A solution to the problem is then to take $\ell_{1}=k_{1}$ and $\ell_{2}=k_{2}$:

$$
\begin{align*}
& 2\left(q \cdot \ell_{1}\right)=D_{2}-D_{1}+m_{2}^{2}-m_{1}^{2} \\
& 2\left(q \cdot \ell_{2}\right)=D_{3}-D_{2}+m_{3}^{2}-m_{2}^{2}-\left(k_{1}+k_{2}\right)^{2} \tag{8}
\end{align*}
$$

If, in the set $k_{1 \cdots m-1}$, only one momentum (say $k_{1} \equiv \ell_{1}$) is massless, a solution can still be found by decomposing any other massive momentum (say k_{2}) in terms of massless vectors:

$$
\begin{equation*}
k_{2}=\ell_{2}+\alpha \ell_{1} . \tag{9}
\end{equation*}
$$

The requirement that also ℓ_{2} is massless, implies

$$
\begin{equation*}
\alpha=\frac{k_{2}^{2}}{2\left(k_{1} \cdot k_{2}\right)}, \tag{10}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& 2\left(q \cdot \ell_{1}\right)=D_{2}-D_{1}+m_{2}^{2}-m_{1}^{2} \tag{11}\\
& 2\left(q \cdot \ell_{2}\right)=D_{3}-(1+\alpha)\left(D_{2}+m_{2}^{2}\right)+\alpha\left(D_{1}+m_{1}^{2}\right)+m_{3}^{2}-\left(k_{1}+k_{2}\right)^{2}
\end{align*}
$$

When there are no massless k 's, a basis of massless vectors can yet be constructed:

$$
\begin{equation*}
k_{1}=\ell_{1}+\alpha_{1} \ell_{2}, \quad k_{2}=\ell_{2}+\alpha_{2} \ell_{1} . \tag{12}
\end{equation*}
$$

In fact, requiring $\ell_{1}^{2}=\ell_{2}^{2}=0$ gives

$$
\begin{align*}
& \alpha_{1}=\frac{\left(k_{1} \cdot k_{2}\right) \pm \sqrt{\Delta}}{k_{2}^{2}}, \quad \alpha_{2}=\frac{\left(k_{1} \cdot k_{2}\right) \pm \sqrt{\Delta}}{k_{1}^{2}} \\
& \ell_{1}=\beta\left(k_{1}-\alpha_{1} k_{2}\right), \ell_{2}=\beta\left(k_{2}-\alpha_{2} k_{1}\right) \\
& \Delta=\left(k_{1} \cdot k_{2}\right)^{2}-k_{1}^{2} k_{2}^{2}, \tag{13}
\end{align*} \quad \beta=\frac{1}{1-\alpha_{1} \alpha_{2}},
$$

from which one computes

$$
\begin{align*}
\frac{2\left(q \cdot \ell_{1}\right)}{\beta} & =\left(1+\alpha_{1}\right)\left(D_{2}-k_{1}^{2}+m_{2}^{2}\right)-\left(D_{1}+m_{1}^{2}\right) \\
& -\alpha_{1}\left[D_{3}+m_{3}^{2}-\left(k_{1}+k_{2}\right)^{2}\right] \\
\frac{2\left(q \cdot \ell_{2}\right)}{\beta} & =D_{3}+\alpha_{2}\left(D_{1}+m_{1}^{2}\right)-\left(1+\alpha_{2}\right)\left(D_{2}-k_{1}^{2}+m_{2}^{2}\right) \\
& +m_{3}^{2}-\left(k_{1}+k_{2}\right)^{2} \tag{14}
\end{align*}
$$

When the loop integrals have to be evaluated in n dimensions, the substitution $q \rightarrow q \equiv q+\tilde{q}$ is needed $[1,2]$, where q lives in 4 dimensions and \tilde{q} is the $(n-4)$-dimensional part of the integration momentum, such that $(q \cdot \tilde{q})=0$. The only change in the previous formulas is that

$$
\begin{equation*}
q^{2}=D_{1}-\tilde{q}^{2}+m_{1}^{2} \tag{15}
\end{equation*}
$$

and the additional integrals, involving powers of \tilde{q}^{2}, can be easily handled as shown in ref. $[1,3]$.

Therefore, the described procedure completely solves the problem, for arbitrary k 's appearing in the denominators of n-dimensional one-loop diagrams.

If, in the original trace, the number n_{q} of ϕ 's is less than the number m of loop denominators, the algorithm can be iterated until rank-1 functions remain, at most. If $n_{q} \geq m$, owing to the lack of momenta k 's to perform the denominator reconstruction, residual rank- p two-point integrals remain instead, with $p \leq\left(2+n_{q}-m\right)$. However, two-point tensors are much easier to handle than generic m-point tensors, so that the diagram is anyhow simplified.

A last remark is in order. When some k 's become collinear, one is faced with the usual problem of singularities generated by the tensor reduction (for an exhaustive study of this topic, see ref. [4]). In fact, denominators appear in eqs. (4) and (6), which may vanish, and the quantity Δ in eq. (13) is nothing but a Gram determinant. Even if the occurrence of such singularities cannot be completely avoided, a better control on them is in general possible [1], with respect to traditional techniques [5]. In addition, the analytic expressions can be kept rather compact, avoiding, at the same time, the appearance of large-rank tensors.

3 An example

To illustrate the method, I compute the reduction for the following integral with $n_{q}=2$:

$$
\begin{equation*}
I=\int d^{n} q \frac{1}{D_{1} \cdots D_{m}} \operatorname{Tr}[\underline{q} \Gamma \underline{q} \Lambda], \tag{16}
\end{equation*}
$$

where, to fix the ideas, Γ and Λ are strings containing an odd number of four-dimensional γ matrices. For convenience of notation, I omit to write the slashes in the traces.

Since the integration is performed in n dimensions, the denominators are given by eq. (2) with the substitution $q \rightarrow \underline{q}=q+\tilde{q}$.

When $m \geq 3$, the algorithm reduces \bar{I} to a sum of scalar and rank-1
integrals. In fact, by splitting \underline{q} in the numerator, one gets

$$
\begin{equation*}
\operatorname{Tr}[\underline{q} \Gamma \underline{q} \Lambda]=\operatorname{Tr}[q \Gamma q \Lambda]-\tilde{q}^{2} \operatorname{Tr}[\Gamma \Lambda] \tag{17}
\end{equation*}
$$

and, by applying the formulas in the previous section,

$$
\begin{align*}
\operatorname{Tr}[q \Gamma q \Lambda] & =\frac{1}{2\left(\ell_{1} \cdot \ell_{2}\right)}\left[2\left(q \cdot \ell_{1}\right) E\left(\ell_{2}\right)+2\left(q \cdot \ell_{2}\right) E\left(\ell_{1}\right)-q^{2} A-2\left(q \cdot k_{3}\right) G\right] \\
A & =2 \operatorname{Re}\left[\{\Lambda\}_{11}^{+-}\{\Gamma\}_{2}^{+-}+\{\Lambda\}_{2}^{-+}\{\Gamma\}_{11}^{-+}-C\left\{k_{3}\right\}_{21}^{+-}\right] \\
G & =2 \operatorname{Re}\left[C\{q\}_{21}^{+-}\right] \\
C & =\frac{1}{\left\{k_{3}\right\}_{12}^{+-}}\left[\{\Lambda\}_{21}^{-+}\{\Gamma\}_{21}^{-+}+\{\Lambda\}_{12}^{+-}\{\Gamma\}_{12}^{+-}\right] \\
E(\ell) & =\operatorname{Tr}[\ell \Gamma q \Lambda]-\frac{1}{2\left(\ell_{1} \cdot \ell_{2}\right)}\left\{\operatorname{Tr}\left[\ell_{2} q \ell_{1} \Gamma \ell \Lambda\right]+\operatorname{Tr}\left[\ell_{1} q \ell_{2} \Gamma \ell \Lambda\right]\right. \\
& \left.-2\left(k_{3} \cdot \ell\right) G-(q \cdot \ell) A\right\} \tag{18}
\end{align*}
$$

The above equations give the final answer:

$$
\begin{align*}
I & =\frac{1}{2\left(\ell_{1} \cdot \ell_{2}\right)} \int d^{n} q \frac{1}{D_{1} \cdots D_{m}}\left\{\left(D_{1}+m_{1}^{2}\right)\left[E\left(\beta \alpha_{2} \ell_{1}-\beta \ell_{2}\right)-A\right]\right. \\
& +\left(D_{2}+m_{2}^{2}-k_{1}^{2}\right) E\left(\beta \ell_{2}+\beta \alpha_{1} \ell_{2}-\beta \ell_{1}-\beta \alpha_{2} \ell_{1}\right) \\
& +\left(D_{3}+m_{3}^{2}-\left(k_{1}+k_{2}\right)^{2}\right)\left[E\left(\beta \ell_{1}-\beta \alpha_{1} \ell_{2}\right)+G\right] \\
& \left.-\left(D_{4}+m_{4}^{2}-\left(k_{1}+k_{2}+k_{3}\right)^{2}\right) G+\tilde{q}^{2}\left(A-2\left(\ell_{1} \cdot \ell_{2}\right) \operatorname{Tr}[\Gamma \Lambda]\right)\right\}, \\
\beta & =\frac{1}{1-\alpha_{1} \alpha_{2}} . \tag{19}
\end{align*}
$$

When $k_{1,2}^{2} \neq 0, \ell_{1,2}$ and $\alpha_{1,2}$ are as in eq. (13).
If $k_{1}^{2}=0$ and $k_{2}^{2} \neq 0$, eq. (19) still holds with $\alpha_{1}=0, \ell_{1}=k_{1}$ and $\ell_{2}=k_{2}-\alpha_{2} k_{1}$, where $\alpha_{2}=\alpha$ is given in eq. (10).

If $k_{1,2}^{2}=0$, then $\alpha_{1,2}=0$ and $\ell_{1,2}=k_{1,2}$.
When $m=3$, some terms vanish. This implies $C=G=0$ and

$$
\begin{equation*}
E(\ell)=\operatorname{Tr}[\ell \Gamma q \Lambda]+A \frac{(q \cdot \ell)}{2\left(\ell_{1} \cdot \ell_{2}\right)} \tag{20}
\end{equation*}
$$

4 Summary

In this paper, I extended the technique introduced in ref. [1] to reduce the tensorial complexity of the diagrams appearing in multi-leg loop calculations.

The method is now applicable to generic one-loop integrals, with arbitrary internal masses and external momenta.

The algorithm can usually be iterated in such a way that only scalar and rank-1 functions appear at the end of the reduction. At worst, higherrank two-point tensors survive, independently from the initial number of denominators.

References

[1] R. Pittau, Comput. Phys. Commun. 104 (1997) 23.
[2] T. Lee, Phys. Rev. D55 (1997) 2591;
Z. Bern and A. G. Morgan, Nucl. Phys. B467 (1996) 479;
Z. Bern, L. Dixon and D. A. Kosower, Annu. Rev. Nucl. Part. Sci. 46 (1996) 109, hep-ph/9602280;
M. Veltman, Nucl. Phys. B319 (1989) 253.
[3] G. D. Mahlon, Phys. Rev. D49 (1994) 2197 and D49 (1994) 4438.
[4] J. M. Campbell, E. W. N. Glover and D. J. Miller, Nucl. Phys. B 498 (1997) 397.
[5] G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151;
G. J. van Oldenborgh and J. A. M. Vermaseren, Z. Phys. C46 (1990) 425;
R. G. Stuart, Comput. Phys. Commun. 48 (1988) 367;
A. Signer, Helicity method for next-to-leading order corrections in $Q C D$, Ph.D. thesis, ETH Zurich (1995).

