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We consider configurations of six-branes, five-branes and eight-branes in

various superstring backgrounds. These configurations give rise to (0, 1)

supersymmetric theories in six dimensions. The condition for RR charge

conservation of a brane configuration translates to the condition that the

corresponding field theory is anomaly-free. Sets of infinitely many models

with non-trivial RG fixed points at strong coupling are demonstrated. Some

of them reproduce and generalise the world-volume theories of SO(32) and

E8 × E8 small instantons. All the models are shown to be connected by

smooth transitions. In particular, the small instanton transition for which

a tensor multiplet is traded for 29 hypermultiplets is explicitly demon-

strated. The particular limit in which these theories can be considered

as six-dimensional string theories without gravity are discussed. New fixed
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1. Introduction

By now it is clear that six-dimensional theories may have a much richer behaviour

than expected. The interplay between quantum field theory considerations and the branes

construction of gauge theories led to a variety of new and surprising information. In the

infrared, six-dimensional gauge theories flow to free theories. One of the crucial inputs

from string theory is that we can find theories which are at an interacting fixed point at

strong coupling [1].

(0, 1) theories in 6d arise naturally on the world-volume of a D5-brane in the Type

I theory, which represents a small SO(32) instanton. The SU(2) gauge theory with 16

fundamentals living in the world-volume is IR-free, as any gauge theory in six dimensions.

More exotic theories, which contain tensionless strings, arise in the case of an E8 small

instanton of the heterotic strings. [2],[3]. These theories are believed to be interacting local

quantum field theories at a non-trivial fixed point. General conditions for the existence

of non-trivial strong coupling fixed points were discussed in [1,4,5]. Tensor multiplets are

usually needed to cancel gauge anomalies[6].

The theory of small instantons both of SO(32) and E8 × E8 is a good laboratory for

finding non-trivial examples of six-dimensional gauge theories. In Type I (or heterotic)

theory k SO(32) instantons of zero size are described by k D5-branes which have a USp(2k)

gauge theory with 16 fundamentals and an antisymmetric living in their world-volume. On

the other hand, the theory of small E8 × E8 instantons in the heterotic string is a more

exotic theory, with tensor multiplets and tensionless strings. There is a Coulomb branch

parametrized by the scalar partner of the tensor, and a transition to a Higgs branch by

higgsing the tensor multiplet to 29 hypermultiplets can take place. Because of the self-

duality of the tensor field, this transition is far outside the perturbative region, but the

theory is believed to be an interacting theory at a non-trivial RG fixed point. In [7], it

was discovered that even SO(32) instantons can have such an exotic behaviour when they

live on top of an orbifold singularity, and a large class of gauge theories describing these

instantons was determined. These theories are other good candidates for non-trivial fixed

points. Other theories were found in [10] by considering small E8 × E8 instantons living

on top of orbifold singularities.

All these theories, being unrenormalizable, need more data in the ultraviolet to be

defined. String theory is supposed to provide the necessary ultraviolet data. It was recently

pointed out [11] that a new class of theories in six dimensions, without gravity but with
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stringy excitations, can be realized on the world-volume of five-branes in the limit gs → 0

with Ms fixed. After compactification, these theories inherit the T-duality of the ten-

dimensional string theory. For generalisations, see [12]. All the theories we discussed

before appear as the limit of some of these six-dimensional string theories [13], which

can be used to provide their ultraviolet definition. Having a kind of T-duality, the full

six-dimensional theory is not a local quantum field theory.

In this paper we provide a realization of six-dimensional gauge theories using branes

(in the spirit of [14]), which contains and generalizes the examples in [7] and [10]. We

provide new examples of six-dimensional theories with non-trivial fixed points and a general

framework for studying their properties. The existence of these theories could have been

guessed by the fact that they are anomaly-free. Their explicit construction as a system

of branes in string theory guarantees that they indeed exist. Using string duality for

representing them as heterotic SO(32) or E8 × E8 instantons, it can moreover be shown

[11,13], for most of them, that gravity decouples, giving consistent six-dimensional string

theories.

Surprisingly enough, the low energy theory describing SO(32) and E8×E8 instantons

appears on the same footing, as particular cases of the same brane construction. The inter-

pretation as instantons becomes manifest only when we consider the system as embedded

in a particular Type I′ string theory background. The interpretation of the system as de-

scribing small SO(32) instantons is appropriate for a generic configuration of background

branes in the Type I′ theory at weak coupling. The global symmetry of such theories is in

general a subgroup of SO(32). Following [15,16], we can find theories in which the global

symmetry is enhanced (at the fixed point) to exceptional groups. This involves choosing a

Type I′ background in which the coupling constant diverges at the orientifold points. We

find that, in the strong coupling limit, the theories with enhanced global symmetry have

a natural interpretation as E8 × E8 small instantons.

The anomaly cancellation is derived as a tree-level charge conservation condition for

the spacetime fields, which can be read off directly from the equations of motion. This must

be contrasted with the more complicated tadpole computation in [7] and the geometrical

analysis in [10]. As a product of the study of the six-dimensional theories, we give a T-dual

representation of the SO(32) instantons studied in [7,8,9], in which most of the subtleties

involved in the subject have a natural and simple interpretation. We also provide a large

class of theories with exceptional global symmetry, which we propose as low energy theories

describing small instantons that partially break E8 ×E8.
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The realization of six-dimensional gauge theories using branes was provided in [17] in

the spirit of [14], and further studied in [18]. We start in section 2 and 3 by reviewing this

construction, we give the ingredients to construct general gauge theories and we show how

the charge conservation argument of [18] gives the right anomaly cancellation conditions.

We derive the explicit connection with the models in [7] and [10], which are both contained

as particular cases in the brane construction. The interpretation of the theories in [7]

and [10] as small instantons in the SO(32) and E8 × E8 heterotic string, respectively,

is not manifest in this general set-up, but can be recovered by exploring T- and strong

coupling dualities of the model. In section 4, we perform a T-duality that maps the

brane configuration to the system of D5-branes at orbifold singularities studied in [7]. In

section 5, by exploring the strong coupling limit of the Type I′ theory in which the brane

system is embedded, we recover the theory of E8 × E8 instantons. A brane configuration

realizing the theory in [10] was already proposed in the context of the three-dimensional

mirror symmetry [14]. We show that the same configuration, when interpreted as a six-

dimensional gauge theory, is actually the low energy theory of E8×E8 instantons. We are

also able to generalize the theory in [10] to the case in which the E8×E8 spacetime group

is broken to a subgroup by the small instantons. In section 6, we discuss the decoupling of

gravity in the models discussed in this paper. At the final stages of this project, we were

informed of a paper by Brunner and Karch, which has some overlap with the material in

the present work.

2. Six-dimensional gauge theories

Here we give the general set-up for constructing six-dimensional gauge theories.

2.1. Brane configuration

Consider, as in figure 1, a system with NS-branes with world-volume (012345), D6-

branes with world-volume (0123456), D8-branes with world-volume (012345789). In some

of the examples considered here, O8 orientifold planes parallel to the D8 and O6 orientifold

planes parallel to the D6-branes will be introduced.

This configuration (in the case without orientifolds) can be considered as the T-dual

of the system originally proposed in [14] and has been studied in [17,18].

The presence of all these branes breaks spacetime Lorentz symmetry SO(1, 9) to

SO(1, 5) × SO(3). In the directions (x0, x1, x2, x3, x4, x5), which are common to all the
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Figure 1: A configuration which describes a six-dimensional gauge theory.
There are D6-branes which are represented by horizontal lines. There are n
NS-branes represented by points. The number of D6-branes in between two
adjacent NS-branes is denoted by Vi. D8-branes are represented by vertical
lines. Their number is denoted by Wi.

branes, a (0, 1) six-dimensional gauge theory is realized. The SO(3) symmetry acts on the

789 directions and is identified with the Sp(1) R-symmetry of the (0, 1) supersymmetry.

The D6-branes are stretched in the direction x6 and the NS-branes are, in this direction,

points on which the D6-branes are assumed to end. The D8-branes are points in x6 and

the 68-open strings give rise to hypermultiplets on the world-volume of the D6-branes.

A crucial difference with [14] is that the NS-branes are not backgrounds for the gauge

theory, but, filling exactly the directions in which the six-dimensional theory is realized,

provide tensor multiplets to the theory. The D8 world-volume theory, having some infinite

directions, is still a frozen background for the six-dimensional theory and appears as a

global symmetry. In [17,18], x6 was taken to be non-compact to allow an arbitrary number

of D8-branes. If x6 is compact, there are various cases to consider, which are restricted by

charge conservation. The familiar condition implies that we have exactly 16 dynamical D8-

branes and two orientifold planes, each carrying a charge −8 in units where the D8-brane

carries charge +1. In other words, we are dealing with a Type I′ background (on S1). A

less familiar case is discussed in section 3.3. In this section we consider a non-compact x6

direction in order to give the building blocks for realizing different gauge theories. The

compact case will be discussed in the next sections.

Let us consider, as in figure 1, the case in which we have N NS-branes at the positions

x6
i , Vi D6-branes stretched between the i-th and the (i+1)-th NS-brane and Wi D8-branes

in the i− (i+ 1) segment. We also put WL semi-infinite D6-branes on the left of the first

NS-brane and WR semi-infinite D6 on the right of the last NS. The KK reduction of the
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D6 world-volume theory along x6 gives rise to the gauge theory

N−1∏
i=1

U(Vi), (2.1)

with bifundamentals charged under each two adjacent gauge group factors, Wi fundamen-

tals for the i-th factor coming from the D8-branes and WL,R fundamentals for the first and

the last factor coming from the semi-infinite D6-branes. Each of the NS-branes provides

a (0, 2) tensor multiplet, but one of them (the one that parametrizes the centre-of-mass

motion of the system in the directions transverse to the NS-branes) is decoupled. There

are 5 scalars in a (0, 2) tensor multiplet. The N NS-branes give rise to 5N positions xαi ,

i = 1, . . . , N , α = 6, 7, 8, 9, 10. The scalars in the tensor multiplets φαi are proportional

to these positions in a relation that involves the string scale and the string coupling and

will be written later. Under (0, 1) supersymmetry each tensor multiplet decomposes into

a (0, 1) tensor multiplet, which contains a real scalar φ6
i , and a hypermultiplet, which con-

tains the rest of the 4 scalars φ7,8,9,10
i . The last scalar of each hypermultiplet, φ10

i , lives on

a circle of radius l−2
s .

The x6 distances between the NS-branes are associated with the couplings of the gauge

factors by KK reduction [14]. The gauge coupling gi for the i-th factor satisfies

1

g2
i

=
x6
i+1 − x

6
i

gsl3s
= φ6

i+1 − φ
6
i , (2.2)

where gs is the string coupling and ls is the string scale. As noticed before, the position

x6
i entering the gauge coupling is related to the scalar φ6

i in the (0, 1) tensor multiplet.

Relation (2.2) therefore provides the standard coupling between φ and the gauge fields,

1

g2
F 2
µν + (∂φ)2 +

√
cφF 2

µν , (2.3)

where c is a numerical constant constrained by anomaly matching. Here 1
g2 is a bare gauge

coupling. With only one tensor multiplet, it can be reabsorbed in φ.

The 789 distances between the NS-branes are associated with the triplets of FI terms

for the various U(1) factors in the gauge group [14]. The i-th FI term ~wi is given by

w1,2,3
i =

x7,8,9
i+1 − x

7,8,9
i

l3s
. (2.4)
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The last set of scalars gives rise to theta angles in six dimensions. For each factor in

the gauge group with a two-form field strength Fi, if the quantity given by tr(Fi ∧Fi ∧Fi)

is non-zero, there can be a term in the action with a coefficient

θi =
x10
i+1 − x

10
i

l3s
. (2.5)

As a difference with [14] and the similar constructions in four and five dimensions, the

FI terms (2.4) and the theta angles (2.5) are dynamical fields, being the four real scalar

components of the hypermultiplets provided by the NS-branes. They play a crucial role in

cancelling the anomaly of the U(1) factors [19,20]. The (0, 1) supersymmetric completion

of a FI term gives rise to a theta angle (eq. (2.5)), which is shifted by a constant under a

gauge transformation. Its coupling to tr(Fi ∧ Fi ∧ Fi) then compensates the U(1) gauge

anomalies. Moreover, the covariant kinetic term∫
d6y(∂µθi −Aµi)

2 (2.6)

makes the U(1) gauge fields massive. In all the examples considered in this paper there are

as many FI hypermultiplets as U(1) factors, and all the Abelian anomalies are cancelled.

As a consequence of this Green-Schwarz mechanism, all the U(1) factors are massive. All

the U(V ) gauge factors in the theories discussed in the following are therefore SU(V )

factors at low energy, even if we do not explicitly mention it.

In (0, 1) supersymmetric six-dimensional theories there are no BPS states correspond-

ing to particles. There are, however, BPS states corresponding to strings. Their central

charge formula is given by a linear combination of all scalar fields in the various tensor mul-

tiplets. In the brane configurations these BPS strings are realized by membranes stretched

along the x6 direction in between two adjacent NS-branes. These strings have a dual role.

They are coupled to the tensor multiplets living on the world-volume of the NS-branes

and are thus charged both electrically and magnetically to the tensor multiplet. In addi-

tion, they are instantons to the gauge fields living on the D6-branes as being realized by

D2-branes parallel to them.

We can obtain SO and USp gauge groups by introducing orientifold planes in the

picture. The simplest case is the introduction of an O6 plane. All the branes must have

an image under O6 or be stuck in 789. We will consider only the case in which all the

NS-branes are stuck. The generalization of (2.1) is [21] :

...× SO(Vi−1)× USp(Vi)× SO(Vi+1)× USp(Vi+2)× ... (2.7)
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with bifundamentals for each pair of neighbouring gauge group factors. There is a number

of tensor multiplets equal to the number of gauge factors. The alternating presence of SO

and USp is due to the fact that O6 changes its sign every time it crosses an NS-brane [21].

There are no FI terms we can add from the field theory point of view, and this indeed

corresponds to the fact that the NS-branes are stuck in 789.

More interesting for us will be the introduction of O8 planes. Let us put an O8 plane

at x6 = 0. If x6 is not compact there is a possibility to choose the sign of the charge of the

O8 plane [22]. The standard charge (−8) is associated with an SO gauge group for the

D8-brane, while the choice of charge +8 (which we will refer to as O8′ in the following)

corresponds to a USp gauge group for the D8-branes. In the compact case, there will be

two cases to consider, which correspond to the introduction of the two types of orientifold

planes restricted to the condition that the total RR charge must be zero. This will be

discussed in the next section.

Each of the NS, D6 and D8-branes now have images under the Z2 action x6 → −x6.

We now turn to identifying matter content corresponding to different configurations.

x6

Figure 2: Sp (SO) gauge group coming from D6-branes stretched between
NS and its mirror under O8 (O8′) orientifold plane.

1. The simplest configuration corresponds to taking a single NS-brane located at a po-

sition away from the x6 origin and V D6-branes stretched between it and its image.

The gauge group is USp(V ) (SO(V ) for O8′) and we can get W fundamentals by

putting 2W D8-branes (W physical D8 and W images). The theory also contains
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x6

Figure 3: SU gauge group with a (anti)symmetric matter coming from D6-
branes stretched between the NS-brane stuck to the orientifold O8 (O8′) plane
and another NS-brane.

the fields living on the NS world-volume, a (0, 1) tensor multiplet and a decoupled

hypermultiplet.

2. For infinite D6-branes this would be the end of the story, but, since our D6-branes are

finite, we can construct a different configuration. Let us stretch V D6-branes between

an NS-brane that is stuck at the orientifold point and a dynamical NS-brane at the

point x6
1. The Z2 projection maps the D6-branes to their images (which connects the

NS stuck at the fixed point with the image of the dynamical NS that lives at −x6
1).

In this way, the orientifold projection identifies the fields on the finite D6-branes

with the fields on their images without further projecting the Chan-Paton factors

and we obtain a U(V ) gauge theory. The open strings, which connect the D6-branes

and their images, which carry Chan-Paton factors, become, after this identification,

a hypermultiplet in the antisymmetric representation of U(V ) (or in the symmetric

representation for O8′)[23]. The theory contains only one tensor multiplet. The (0, 1)

tensor multiplet associated with the stuck NS-brane in the U(V ) theory is projected

out since its scalar x6 is frozen. The 789 distance between the two NS-branes is an

FI term for the U(1) factor in the gauge group, as in formula (2.4). We can move

the stuck NS-brane in 789 without breaking supersymmetry if, at the same time,

we reconnect at the origin x6 = 0 the D6-branes with their images, recovering the

theory in item 1. From the field theory point of view, this corresponds to giving an

expectation value to the matter in the antisymmetric (symmetric) representation in

order to compensate for the FI terms in the D-term equations, and this indeed higgses

U(V ) to USp(V ) (SO(V )).
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We can generalize this construction by considering more NS-branes. Consider first the

case with N NS-branes at the points x6
i > 0, with Vi D6-branes and Wi D8-branes between

the i-th and (i+ 1)-th NS-brane. We also put WR semi-infinite D6-branes on the right of

the last NS-brane. There are moreover V0 D6 and 2W0 D8 (branes plus images) between

the first NS in x6
1 and its image in −x6

1. We have discussed before what happens to the

V0 D6-branes. For i ≥ 1 the Vi D6-branes are identified by the orientifold projection with

their images living in the negative x6 axis, and there is no projection on the Chan-Paton

factors. The field content is therefore

USp(V0)× U(V1)× U(V2)× ...× U(VN−1), (2.8)

with bifundamentals for each pair of neighbouring gauge group factors, Wi fundamentals

for the i-th factor and extra WR fundamentals for U(VN−1). For O8′ USp is exchanged

with SO. Consider next the case in which there is an extran NS-brane stuck at the

orientifold point, and call V0 and W0 the number of D6 and D8 between this stuck NS and

the first NS at x6
1. The field content now is,

U(V0)× U(V1)× U(V2)× ...× U(VN−1), (2.9)

with bifundamentals for each pair of neighbouring gauge group factors, Wi fundamentals

for the i-th factor, extra WR fundamentals for U(VN−1) and an antisymmetric (symmetric

if we use O8′) for the first factor U(V0).

We can generalize the previous theories by adding an O6 plane. In this case we cannot

have an NS-brane stuck at the O8 plane. In fact, the configuration with an NS-brane and

an O6 plane is not symmetric in x6 around the location of the NS-brane because the O6

sign is different on the left and on the right. In this way, we have only one building block:

1′. For the case of a single NS-brane located at a position away from the x6 origin and

2V D6-branes stretched between it and its image, the gauge group is U(V ) and we

can get W fundamentals by putting a total (physical plus images) of 2W D8-branes

[24]. Notice that the group of rank V is obtained by using a total of 2V D6-branes.

The theory contains also a (0, 1) tensor multiplet and a decoupled hypermultiplet.

The theories (2.8) are modified by the presence of the O6 plane in the following way:

U(V0)× USp(V1)× SO(V2)× USp(V3)× ... (2.10)

for the case of N physical NS-branes. The last gauge factor is USp(VN−1) for N even

and SO(VN−1) for N odd. There are bifundamentals for each pair of neighbouring factors

and N tensor multiplets. USp and SO can be exchanged by simultaneously changing the

overall sign for O6 and O8.
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2.2. Anomalies

The matter content of an N = 1 six-dimensional gauge theory is highly constrained

by the gauge anomaly [1,4] .1 To obtain a sensible six-dimensional theory, the F 4 part of

the anomaly must identically cancel. If the remaining part of the anomaly factorizes as

P∑
1=1

(∑
a

ciatrF
2
a

)2

(2.11)

with some real constants cia, it can be cancelled by P tensor multiplets coupled as in (2.3)

[6]
P∑
i=1

∑
a

ciaΦitrF
2
a . (2.12)

As a general rule, it is believed that the charge conservation for the bulk fields corre-

sponds to the anomaly cancellation on the world volume of the branes. We now derive the

charge conservation conditions for the bulk fields. As expected (and as can be explicitly

checked in all the examples presented in this paper), these conditions guarantee the cancel-

lation of the quartic anomaly and the factorization of the remaining part of the anomaly.

Moreover, the brane system automatically provides the right number of tensor multiplets,

coupled through (2.12), to be able to cancel the anomaly completely.

The general charge conservation conditions for the system presented in section 2.1 were

discussed in [18]. In general, the charge of the finite D6-branes cannot flow inside the NS-

brane on which it ends (as happens in the T-dual model in [14] and in all its generalizations

to other dimensions, from two to four) because the world-volume of the latter is too small.

However, as discussed in [18], the D8-branes induce a cosmological constantm that modifies

the equations of motion for the D6-branes with terms containing the NS-NS antisymmetric

tensor field. As a consequence, an NS-brane can absorb a D6 charge equal to the value of

the cosmological constant at its position. In our normalization, the cosmological constant is

an integer that jumps by one unit when a D8-brane is encountered. The general condition

is that at each NS-brane the difference between the number nL of D6-branes ending on the

1 All the non-decoupled U(1) factors, which are automatically anomalous in six dimensions,

are made massive by a Green-Schwarz mechanism, as discussed in the previous section. In all

the models we present in this paper, there are as many FI hypermultiplets (which can cancel the

anomaly) as U(1) factors.
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left and the number nR of D6-branes ending on the right must be equal to the cosmological

constant m:

nL − nR = m, (2.13)

m is determined by the number of D8-branes that are on the left of the NS-brane and the

value of the cosmological constant at x6 = −∞. We will put the asymptotic value of the

cosmological constant equal to zero in the following.

Let us consider the simplest example, a U(Nc) gauge theory with Nf flavours. From

the field theory point of view, the anomaly can be cancelled by adding a tensor multiplet if

Nf = 2Nc. This gauge theory can be realized as in (2.1) with N = 2 by distributing the Nf

flavours between semi-infinite D6-branes and D8-branes. The two conditions (2.13) read

WL−V1 = 0, V1−WR = W1 which indeed implies that Nf = WL+W1 +WR = 2V1 = 2Nc.

The tensor required to cancel the anomaly is automatically provided by the NS-branes.

In the same way, USp(Nc) and SO(Nc) with Nf flavours can be obtained by (2.8) with

N = 1 and Nf = W1 +WR. The value of the cosmological constant at the position of the

NS-brane is W1 − 8 for O8 and W1 + 8 for O8′. The condition (2.13) correctly gives the

anomaly relation Nf = Nc + 8 for USp(Nc) and Nf = Nc − 8 for SO(Nc).

A second way of realizing SO and USp gauge theories is to use an O6 plane. Consider,

for example, Nc D6-branes between two NS-branes with WL,R semi-infinite D6-branes in

the presence of an O6 plane. By choosing a negative sign for O6, the theory is SO(Nc)

with Nf = (WL + WR)/2 flavours. The cosmological constant is zero and therefore the

D6 charge before and after each of the NS-branes must be the same. The O6 carries −4

units of charge2. Since the O6 sign is flipped by the NS-branes, the charge of the O6 is +4

on the left of the first NS-brane and on the right of the second. The charge conservation

conditions are therefore +4 + WL = Nc − 4 = +4 + WR, which once again provides the

field theory relation Nf = Nc − 8.

In the general case (2.13) fixes the relation between number of colours and number

of flavours of the various gauge factors. The rules are simple. There is a relation for each

NS-brane which fixes the difference between the number of D6-branes on the left and on

the right. The value of m at that point is the total D8 charge existing on the left of

that NS-brane, computed with the rule that a D8 has charge +1, an O8 has charge −8

2 We are using notations in which both a D6 and its image carry a unit of charge, since

this convention simplifies the charge conservation conditions. This must be contrasted with our

notations for D8-branes, where a physical D8 carries one unit of charge.
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and an O8′ has charge +8. If there is an O6 plane, it contributes to the effective D6

number a factor ±4, where the sign is assigned in such a way that it is different for each

adjacent gauge factor. We will soon see the application of these rules to more complicated

examples.

2.3. Non-trivial fixed points

The theories discussed in the previous sections have a Coulomb branch parametrized

by the real scalars in the tensor multiplets, or, in other words, by the relative x6 positions of

the NS-branes. At the origin of the Coulomb branch, the NS-branes coincide in spacetime

and we expect tensionless strings. This is interpreted as the signal for an interacting

RG fixed point. The gauge factors associated with pairs of coinciding NS-branes are

automatically at strong coupling. For each non anomalous theory discussed in this paper

we can therefore expect the existence of a (in general) non-trivial fixed point at the origin

of the Coulomb branch. The explicit construction of these theories, in terms of branes in

a consistent string theory context, can be considered as a proof of the existence of such

fixed points.

Let us consider the fixed points in more detail. In all the previous models there are BPS

states associated to membranes stretched in x6 between the NS-branes. They appear in

the six-dimensional theory as strings with tension 1/g2
i , which can be naturally associated

with instantons of the various gauge factors. This interpretation is strengthened by the

fact that a D2-brane inside a D6-brane appears for the latter as a small instanton. At

the origin of the Coulomb branch, the positions of the NS-branes coincide and the strings

become tensionless. The exotic six-dimensional theory living on the NS-branes reduces

to a standard non-Abelian gauge theory after compactification on a circle. P coincident

NS-branes give rise to a five-dimensional U(P ) gauge theory. If P NS-branes and their

images coincide at the O8 orientifold point, they give rise to a USp(2P ) gauge theory after

compactification3.

3 The sign of the orientifold projection when acting on the NS-branes, which determines the

right symmetry between the two possibilities USp(2P ) and SO(2P ), is actually difficult to es-

tablish in the perturbative orientifold construction. We will see in section 5 that the system has

an interpretation as the world-volume theory of small E8 × E8 instantons. In particular, in the

strong coupling limit the system without D6-branes goes smoothly to the theory of P E8 × E8

instantons in flat space, which is known to be a theory of P tensor multiplets with a symmetry

USp(2P ). The presence of D6-branes cannot affect the way in which the orientifold projection

acts on the NS-branes. A different argument, based on the structure of the Coxeter box, is given

in section 3.3.
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The theories (2.1), (2.8), (2.9) (provided that, in all cases, the V ’s and W ’s are

chosen in such a way as to cancel the anomaly4) give rise to strong coupling fixed points

with the same gauge and matter content and with N tensor multiplets associated with a

symmetry U(N), USp(2N) and USp(2N − 2) 5, respectively. In the case of (2.1) one of

the tensor multiplets is decoupled and the symmetry is actually SU(N). In the same way,

the theories (2.7), (2.10) give rise to strong coupling fixed points with the same gauge and

matter content and with N tensor multiplets associated with a symmetry U(N), USp(2N),

respectively.

Some of these fixed points were found in [7]. The precise relation between the two

approaches is discussed in section 4. The brane construction makes manifest the tensionless

string symmetry, which was discussed in [13].

3. The compact case

3.1. The Type I′ background

Let us go back to the case with compact x6. The total D8 charge in the compact

direction must sum up to zero. There are two cases to consider. The more familiar case is

the introduction of orientifold planes of negative charge. We can consider this background

as Type IIA/ΩZ2, where Ω is the world-sheet parity and Z2 acts as x6 → −x6. This

background is known as Type I′ on S1, the T-dual of the Type I theory. We have two

orientifolds O8 at x6 = 0 and x6 = πR. We therefore need 16 physical D8-branes to

compensate the charge. In the picture in which x6 is a circle with opposite points identified

by Z2, for each physical D8-brane there is an image under Z2. When all D8-branes are on

top of one of the O8 planes, they give rise to the space-time gauge group SO(32). In the

second case we put an O8 at x6 = 0 and an O8′ at x6 = πR. No additional branes are

needed to cancel the O8 charge. This case is discussed in section 3.3.

Consider the theory obtained by putting N NS-branes on the circle and D6 branes

stretched between them. The NS-brane positions must respect the Z2 symmetry. If N =

2P we can put P physical NS-branes at arbitrary points and other P NS-branes at the

4 The precise relation is discussed in sections 3 and 4.
5 We are assuming that the presence of stuck NS-branes does not change the symmetry. This

assumption agrees with results in [13] and observations in section 3.3, but, at the moment, we

have no arguments for ruling out other possibilities.
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image points. The world-volume fields are correspondingly identified and the N NS-branes

provide only P tensor multiplets to the six-dimensional theory. If N = 2P + 1, one of the

NS-branes must be stuck to one of the orientifold points. Since the frozen position x6 is the

scalar partner of the tensor field on the world-volume of an NS-brane, the tensor multiplet

of the stuck NS-brane is projected out and the total number of tensor multiplets is still P .

The gauge content of these models can be easily determined with the rules in section 2.1

and reads

USp(V0)× U(V1)× U(V2)× · · ·U(VP−1)× USp(VP ), N = 2P,

USp(V0)× U(V1)× U(V2)× · · ·U(VP−1)× U(VP ), N = 2P + 1,
(3.1)

with bifundamentals for each pair of neighbouring gauge factors, an antisymmetric for

the last U(VP ) factor for N = 2P + 1 and Wi fundamentals for the i-th factor coming

from the 6-8 strings. The theories are coupled to P tensor multiplets. Each of the NS-

branes provides also a hypermultiplet, which is parametrized by the position of the brane

in (7, 8, 9) and in the 10th M-theory direction. The positions in (7, 8, 9) of the NS-branes

are, as in (2.4), FI terms for the gauge theory. The 10th positions are theta angles as

in (2.5). We see that we have exactly the same number of FI hypermultiplets surviving

the Z2 projection6 and of U(1) factors in the gauge theory (P − 1 for N = 2P and P for

N = 2P + 1). The FI hypermultiplets play the crucial role of rendering massive the U(1)

factors that in six dimensions are necessarily anomalous, as discussed in section 2.1.

The global symmetry coming from the D8-branes in these models is

SO(W0)× U(W1)× · · ·U(WP−1)× SO(WP ), N = 2P,

SO(W0)× U(W1)× · · · × U(WP ), N = 2P + 1.
(3.2)

There is a third non-Abelian symmetry for this set of models (the other two are the gauge

group and global symmetry coming from D6- and D8-branes, respectively.) This symmetry

is associated with coinciding NS-branes. In this configuration, the light states are strings,

which transform in the adjoint representation of the corresponding group. They appear at

the fixed points of these theories and will be discussed in section 3.3.

6 By translational invariance in the 789 and 10 directions, one of the hypermultiplets coming

from the NS-branes is always decoupled.
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In the case in which N is even, there is a second configuration that is invariant under

Z2. We can put one stuck NS-brane at each of the orientifold planes. This results in the

following theory

U(V0)× U(V1)× ...U(VP−2)× U(VP−1), N = 2P, (3.3)

with bifundamentals for each pair of neighbouring gauge factors, an antisymmetric for the

first and last U factor, and Wi fundamentals for the i-th factor. The theory is coupled to

P − 1 tensors, one for each of the dynamical NS-branes. The number of U(1) factors is P ,

which is the same as the number of FI hypermultiplets provided by the NS-branes.

In all these theories, the total number of fundamentals
∑
Wi is equal to 16, the

number of physical D8-branes. Wi and Vi must satisfy a particular relation in order to

cancel the gauge anomalies. The relation can easily be determined using the rules in

section 2.2. Let us determine, for example, the anomaly constraints for N = 3. The

theory is USp(V0) × U(V1) with W0 fundamentals for USp(V0), W1 fundamentals and

an antisymmetric for U(V1). It is realized by stretching V0 D6-branes between the first

orientifold and a dynamical NS-brane, and V1 D6 between the dynamical NS and a second

NS-brane stuck at the second orientifold plane. W0 D8-branes live before the first NS and

W1 after, with the constraint that W0 +W1 = 16. The anomaly constraints are derived by

imposing the relation (2.13) at the position of the dynamical NS-brane. The cosmological

constant at that point is easily computed to be −8 +W0 (the total D8 RR charge on the

left of the NS-brane: −8 is the contribution of the leftmost O8 and W0 is the contribution

of the D8-branes). The constraint is therefore

V0 − V1 = −8 +W0, (3.4)

and the final result for the gauge theory is USp(2k)×U(2k+W1− 8), where we redefined

V0 = 2k.

The general result for (3.1) and (3.3) can easily be derived and reads,

Vi = 2k +

j=P∑
j=1

min(i, j)Wj − 8i, i = 0, ..., P, (3.5)

for (3.1), and

Vi = 2k +

j=P−1∑
j=1

min(i, j)Wj − 8i, i = 0, ..., P − 1, (3.6)
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for (3.3).

That these relations ensure the complete anomaly cancellation for the theories (3.1)

and (3.3) was explicitly checked in [7], where these theories were first introduced as the

world-volume theories for small SO(32) instantons living on top of orbifold singularities.

We discuss in detail the relation of our system with small SO(32) instantons in section 4.

Note that for the even case of eq. (3.1), the last group factor requires that VP is an even

number. This is because the orientifold projection requires an even number of D6-branes

if they are the first or the last factor on the segment. Note that V0 is chosen in such a way.

This condition imposes a restriction on the possible distribution of the D8-branes on the

interval. Using eq. (3.5) we find

VP = 2k +
P∑
j=1

jWj − 8P. (3.7)

This implies that the condition for VP to be even is that∑
2j+1≤P

W2j+1 (3.8)

is even.

Let us study some dynamics for these gauge theories. We will start with the configu-

ration with no NS-branes and proceed by adding them. In field theory this corresponds to

including more and more matter and, as we will find, an inverse Higgs mechanism. This

is done by moving an NS-brane in the 789 directions. This transition is allowed only if

the resulting configuration is consistent with charge conservation. We should also note

that an NS-brane moving in a background with non-zero cosmological constant of value

m is bound on the left to m D6-branes. So when moving an NS-brane with m D6-branes

attached, we are changing the gauge group content.

The configuration of k D6-branes, stretched between the two O8 planes, with their

images gives rise to a USp(k) gauge group with matter in the antisymmetric representa-

tion of the gauge group and 16 flavours in the fundamental representation. There is one

background (non-dynamical in the six-dimensional sense) tensor multiplet corresponding

to the length of the interval that serves as a gauge coupling. The antisymmetric repre-

sentation corresponds to the motion of the D6-branes in the 789 directions. There are

few cases to consider when the NS-brane is moved from infinity in the 789 and 10 direc-

tions. 1) The NS-brane is stuck at one of the orientifolds. In this case the resulting gauge
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theory is U(2k) with matter in the antisymmetric and 16 fundamentals. For the U(2k)

theory the process of moving away the NS-brane corresponds to turning on an FI term,

which induces an expectation value for the antisymmetric breaking down to the USp(2k)

gauge group. 2) The NS-brane is away from the orientifold, moving along with its image.

Suppose that the NS-brane has W0 D8-branes to its left and W1 D8-branes to its right.

The cosmological constant felt by the NS-brane is −8 +W0. Correspondingly, there must

be −8 +W1 long D6-branes ending on the NS brane from the right. The resulting gauge

group is USp(2k) × USp(2k − 8 + W1). More generally, we could have moved the NS-

branes with 2r D6-branes on its left and 2r− 8 +W1 on its right, with a final gauge group

USp(2k + 2r)× USp(2k + 2r − 8 +W1). This time, the process of moving the NS-brane

cannot correspond to turning on an FI, since there are no U(1) factors in the gauge group,

but it is still an inverse Higgs mechanism. The theory USp(2k+2r)×USp(2k+2r−8+W1)

indeed has flat directions where the matter field in the bifundamental gets an expectation

value, breaking the group to USp(2r)× USp(2r − 8 +W1) with the usual matter content

and USp(2k) with an antisymmetric and 16 fundamentals, which was diagonally embedded

in the two original groups. This is exactly the process we just described in terms of branes.

Anticipating the results of the next section, we can interpret this transition as follows. The

theory USp(2k + 2r)× USp(2k + 2r − 8 +W1) describes k + r instantons sitting on a Z2

singularity. The Higgs transition corresponds to moving k small instantons away from the

singular point. USp(2k) with an antisymmetric and 16 fundamentals is just the theory of

k small instantons in flat space.

Moving in or away an NS-brane with the right number of attached D6-branes so as

to guarantee charge conservation, gives the result expected from the field theory point of

view. It is, in general, a Higgs mechanism. If the NS-brane position is coupled to the

theory as in (2.4), the Higgs mechanism is induced by the turning on of an FI term. In the

remaining cases, it is associated with flat directions. By moving NS-branes we can connect

all the theories in (3.1) and (3.3).

Consider, for example, the N = 5 case in (3.1). This corresponds to having one NS-

brane at one orientifold and other two NS in the middle of the interval. The group is

USp(2k)×U(2k+W1 +W2−8)×U(2k+W1 +2W2−16). Assume, for simplicity, W2 > 8.

The other case can be discussed in a similar way. If we move away the middle NS-brane

in the 789 directions (this corresponds to turning on an FI term), W2 − 8 D6-branes must

be attached to it on the right to compensate the cosmological constant at that point. The

resulting theory is factorized in USp(2k) × U(2k +W − 8) (where W = W1 + W2 is the
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total number of D8-branes between the two remaining NS branes) and USp(W2 − 8). We

have obtained the cases N = 3 and N = 2 in (3.1). The two theories are decoupled

for sufficiently large distances. In the language of the next section, we started with k

instantons with vector structure sitting on a Z5 singularity, and we turned on some blowing

up parameter. The singularity is deformed to a pair of (far enough) Z3 and Z2 singularities.

The k instantons are sitting on the Z3 singularity. Some other finite D6-branes are stuck

on the Z2 singularity, and cannot leave the singular point. More generally, we could have

moved the NS-brane with k2 D6-branes on its left and W2 + k2 − 8 on its right. This

corresponds to a different solution of the D terms equation of the gauge theory in the

presence of an FI term. The resulting theory is factorized in USp(2k1)×U(2k1 +W − 8)

and USp(2k2)×Usp(2k2 +W2 − 8) (k1 + k2 = k) and can be interpreted as a splitting of

the Z5 singularity in Z3 ×Z2 while keeping k1 instantons on the Z3 singularity and k2 on

the Z2.

There is a second possibility to consider in the same example. We can move the stuck

NS-brane (turning on an FI term for the last U(1) factor). We do not need to attach

D6-branes to the NS because no charge conservation condition is associated to the NS-

branes stuck at the orientifold points. As already discussed in section 2.1, the only effect

of moving the stuck NS-brane is to higgs the corresponding U(V ) factor to USp(V ). In

this way, the case N = 5 is higgsed to the case N = 4 in (3.1). We see that all the theories

in (3.1) can be connected by turning on or off some FI terms. More generally, even the

theories in (3.3) can be connected to those in (3.1) by turning on FI terms. Consider,

in fact, the theory with N = 4 in (3.3). There are three NS-branes, and two of them

are stuck. If we move the middle one, the theory is higgsed to the case N = 2 in (3.3).

If we move one of the stuck NS, however, the theory is first higgsed to the N = 3 case

in (3.1), which can be successively connected to the case N = 2 in (3.1). We see, in

conclusion, that all the theories in (3.1) and in (3.3) can be connected by turning on or

off some FI terms. The general picture should be clear from the previous examples. The

process of moving NS-branes corresponds to a Higgs mechanism for which some instantons

can move away from the singularity (finite D6-branes stretched between NS-branes can

reconnect to infinite ones, which can live without ending on the NS, and therefore far from

the singularity) or to the turning on of some FI term, which splits the singularity (the

instantons can be partitioned among the singularities or moved far from all of them).

19



3.2. Small Instanton Transition

A transition that describes a trade of a tensor multiplet for 29 hypermultiplets is

familiar in the physics of small E8 instantons. When the instanton becomes of zero size,

29 hypermultiplets are eaten by a tensor multiplet, in a sort of inverse Higgs mechanism.

As we already anticipated, the theories we are considering describe small SO(32) instantons

sitting at spacetime singularities, and the presence of tensor multiplets suggests that the

same phenomenon also happens in this case. We have no Lagrangian description for such

a transition. The conclusion that a tensor is traded for exactly 29 hypermultiplets usually

follows from the fact that both make the same contribution to the gravitational anomaly.

We now want to show that this transition can be explicitly demonstrated in the brane

system.

Consider the case N = 2 in eq. (3.1). Let us put all the 16 D8-branes to the left of the

NS-brane. The gauge group is USp(2k)×USp(2k−8) with 16 hypers in the fundamental of

the first group and a bifundamental. The NS-brane is not allowed to move in the 789 and

10 directions, as this would violate charge conservation. We can tune the position of the

NS-brane to move towards the right orientifold plane. For simplicity, let us choose k = 4.

For this case there are no D6-branes to the right of the NS-brane. At the fixed point, the 4

D6-branes can move freely along the 789 directions and thus provide more moduli. There

are 27 + 1 hypermultiplets corresponding to the antisymmetric representation of Sp(4).

In addition one NS-brane can move freely in the 789 and 10 directions, providing a further

hypermultiplet. At this point the other NS-brane is not allowed to move in the x6 direction

and the tensor multiplet is thus frozen. We have just described, as promised, a transition

in which a tensor multiplet is traded for 29 hypermultiplets. The case k > 4 gives rise to a

transition to the theory USp(2k) with an antisymmetric and 16 fundamentals. Once again

this theory has 29 extra hypermultiplets, one of which is provided by the relative motion

of the NS-branes in the 789 and 10 directions. It is now easy to generalize this transition

to general N . We can tune the rightmost NS-brane to move to the right orientifold plane.

At the point where the NS-brane is approaching its image with respect to the orientifold

plane, there are tensionless strings indicating a non-trivial fixed point. The NS-branes can

separate at the orientifold plane and are no longer allowed to move in the x6 direction.

A tensor multiplet is frozen. The number of gauge factors is reduced by one, and the

last gauge group gets additional matter corresponding to the new configuration. A small

instanton transition has been performed.

The specific example with Sp(4) was first discussed in [25] and further in [7].
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3.3. Generalizations

Let us turn to the second case, in which there is an O8 at x6 = 0 and an O8′ at

x6 = πR. There are no additional D8-branes since the charge sums to zero.

Consider, as before, N NS-branes on the circle and D6-branes stretched between them.

The gauge group is now

USp(V0)× U(V1)× U(V2)× · · ·U(VP−1)× SO(VP ), N = 2P,

USp(V0)× U(V1)× U(V2)× · · ·U(VP−1)× U(VP ), N = 2P + 1.
(3.9)

with bifundamentals for each pair of neighbouring gauge factors, and symmetric for the

last U(VP ) factor for N = 2P +1. The theories are coupled to P tensor multiplets and we

have exactly the same number of FI hypermultiplets surviving the Z2 projection as U(1)

factors in the gauge theory (P − 1 for N = 2P and P for N = 2P + 1).

In the case in which N is even, there is a second configuration that is invariant under

Z2. We can put one stuck NS-brane at each of the orientifold planes. This results in the

following theory

U(V0)× U(V2)× ...U(VP−2)× U(VP−1), N = 2P, (3.10)

with bifundamentals for each pair of neighbouring gauge factors, an antisymmetric for the

first and a symmetric for the last U factor. The theory is coupled to P − 1 tensors, one

for each of the dynamical NS-branes. The number of U(1) factors is P , which is the same

as the number of FI hypermultiplets provided by the NS-branes.

Formulas (3.5) and (3.6) apply for this case by setting all W ’s to zero:

Vi = 2k − 8i, i = 0, ..., P (P − 1). (3.11)

Arguments similar to those given in the previous section show that all the theories in (3.9)

and in (3.10) can be connected by turning on or off FI terms.

A different generalization involves introducing an extra O6 plane in the game. Since

we cannot have stuck NS-branes, as discussed in section 2.1 , we have only the caseN = 2P .

The theory is

U(V0)× USp(V1)× SO(V2)× USp(V3)× ...× U(VP ), (3.12)

where the gauge factor before U(VP ) is USp(VP−1) for P even and SO(VP−1) for P odd.

There are bifundamentals for each pair of neighbouring factors and P tensor multiplets.
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USp and SO can be exchanged by simultaneously changing the overall sign for O6 and

O8. The anomaly-free value for the V ’s can be determined in the usual way by the

charge conservation at each NS-brane, adding the only new ingredient that the O6 plane

contributes ±4 to the D6 charge and that the O6 sign flips every time one crosses an

NS-brane. It should also be remembered that a factor U(V ) coming at one O8 plane in

the presence of an O6, by construction, is obtained with 2V D6-branes.

3.4. Fixed points, Coxeter boxes and string theories

All the theories discussed here describe at the origin of the Coulomb branch a non-

trivial RG fixed point, associated with tensionless strings. The origin of the Coulomb

branch corresponds to putting all the dynamical NS-branes on one of the orientifold points,

for example the left one. All the gauge factors, except the last associated to the other

orientifold, are at strong coupling. The last gauge factor has instead a gauge coupling

proportional to the radius of the x6 direction and, being IR-free, becomes ungauged at the

fixed point. A similar argument applies if the NS-branes coincide at the other orientifold.

In this way, the first or the last factor must be dropped in the description of the gauge

and matter content at the fixed point. The possible non-trivial fixed points were therefore

already described in section 2.3.

We should note that, when x6 is compact, the scalars in the tensor multiplets are

also compact. In general, they must parametrize the Coxeter box of the simple group

associated with the tensors via the relations [13]

αµ × φ+ Lδµ0 ≥ 0, µ = 0, ..., r (3.13)

where αµ are the simple roots of the group, r its rank and the extended root α0 is defined

by
∑r

0 nµαµ = 0 (nµ are the Dynkin indices), while L is the size of the Coxeter box.

For the theories discussed in the previous sections, the size of the Coxeter box is

determined by the radius of the compact x6 direction. Equation (2.2) gives

L =
R6

l3sgs
. (3.14)

The natural disposition of r NS-branes on the segment (r = P for (3.1), (3.9) and

P − 1 for (3.3), (3.10), for example) gives the relations

0 ≤ φ1, φi ≤ φi+1, φr ≤ L, (3.15)
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which exactly corresponds to eq. (3.13) when the group USp(2r) is used. The use of

SO(2r) in (3.13) would give a set of relations that are not compatible with (3.15). We

can consider this as further evidence for the fact that the NS-branes living on the segment

parametrize the Coxeter box of USp(2r).

To provide a full definition for the theories discussed in this section, we need to find a

six-dimensional string theory, with gravity decoupled, which contains our theories at low

energy. We postpone the discussion of how to find such a string theory until section 6,

since we need first to understand the effects of a string duality on our system.

4. SO(32) instantons in Type I

The theories (3.1), (3.3) were first introduced in [7] studying small SO(32) instantons

living on top of orbifold singularities. Are there some small instantons in our construction

of six-dimensional theories? Small instantons are represented in Type I by D5-branes. If

we make a T-duality in x6, the Type I′ background becomes the Type I theory, our D6-

branes are turned into D5-branes, and the N NS-branes become a spacetime ZN orbifold

singularity [26]. Our model, in the T-dual picture, is equivalent to the theory of small

SO(32) instantons living on top of an orbifold singularity.

Let us see how the same theories are realized in Type I [7]. Consider k D5-branes living

on top of a ZN singularity. A small instanton is specified by the instanton number k and by

the value of a non-trivial flat connection at infinity, which is a representation of the orbifold

singularity ZN in the gauge group. Since the string theory gauge group is spin(32)/Z2,

the gauge group element ρ∞, which specifies the flat connection at infinity, can satisfy

both ρ2
∞ = −1 (which we will refer to as the case without vector structure) or ρ2

∞ = 1

(case with vector structure) [19]. The difference between the two cases is implemented in

the perturbative orientifold construction as a different action for the world-sheet parity

Ω on the Chan-Paton factors [8]7. The possible world-volume gauge theories living on

the D5-branes were classified in [20] for a ZN singularity and generalized to other kinds of

singularities in [7,8,9]. The final result is the theory (3.1) for the case with vector structure

and the theory (3.3) for the case without vector structure (for even N). We see that the

two cases were described in the Type I′ picture in a unified way.

7 This results in different commutation relations between Ω and the generators of the orbifold

singularities.
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The fields living on the NS-branes become, after T-duality, the twisted fields coming

from the ZN orbifold projection. Each of the twisted sectors usually provides, before

projecting with Ω, a (0, 1) tensor multiplet and a hypermultiplet, which is exactly the

world-volume content of an NS-brane. In Type I′, ΩZ2 projects out some of the tensors

and some of the hypermultiplets. In Type I, on the other hand, we expect that all the

tensors are projected out by Ω and that all the hypermultiplets survive and parametrize

the blowing up modes that can smooth the singularity. Such a naive Type I picture could

not provide the tensor multiplets existing in the theories (3.1) and (3.3). It turns out,

however, that with the standard perturbative definition of Ω, the orientifold is not the

same as the Type I theory compactified on the corresponding non-singular manifold. It

was realized in [27,28,29,30,31,8] that the perturbative definition of Ω projects different

twisted sectors in a different way and some tensor multiplets survive. These twisted fields

live in six dimensions and must be included in the six-dimensional theory, providing the

right number of tensor multiplets in (3.1) and (3.3). The surviving hypermultiplets appear

on the D5 world-volume theory as FI terms and take care of the anomalous U(1) factors

[19,20]. The final result agrees with what we found in the T-dual picture.

The total number of fundamentals
∑
Wi is equal to 16, the number of physical (with-

out images under Ω) D9-branes, and the way in which 16 is partitioned among the Wi

specifies the way in which the flat connection at infinity breaks SO(32).

The number of FI terms we can add in this theory is not the total number N − 1 of

blowing up modes of the singularity. This means that some blowing up modes are frozen

and the manifold cannot be made completely smooth. The missing modes are traded for

tensor multiplets. It is conjectured in [7] that these theories flow to non-trivial interacting

fixed points and that, at the origin of their Coulomb branch, there is a transition in which

each tensor is traded for 29 hypermultiplets. We gave an explicit brane description of such

a transition in section 3.2. After the transition, the total number of hypermultiplets in the

Higgs phase is equal to the dimension of the relevant moduli space of k SO(32) instantons

on a ZN singularity.

All the small instantons theories, with or without vector structure, can be connected

by turning on or off some FI terms, or, in geometrical words, by turning on or off some

blowing up parameters. This was perhaps clearer in the T-dual picture of section 3.1,

where the theories with and without vector structure appeared in a unified description.

Translating the results of section 3.1 in the language of the small instantons, we see that

there can be transitions between instantons without vector structure and instantons with
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vector structure when we turn on some blowing up parameters and smooths down the

singularity. As we saw in the previous section, for example, the case of instantons without

vector structure at a Z4 singularity reduces, according to which blowing up parameters we

turn on, both to the case of instantons without or with vector structure at a Z2 singularity8.

The relations (3.5) and (3.6) were explicitly checked, from the field theory point of

view, in [7], and derived using the space-time charge conservation in [8]. The D5-branes are

charged under the six-dimensional twisted fields and an explicit calculation of the twisted

tadpoles can reproduce (3.5) and (3.6). The calculation involves the evaluation of partition

functions and it is considerably longer than the charge conservation argument we used in

the T-dual picture.

5. E8 × E8 instantons

Useful information on the gauge theories defined as configurations of branes were often

obtained by exploring the strong coupling limit of the string theory in which they are

embedded [14,32]. The strong coupling limit of our Type I′ background is well described,

for a generic configuration of D8-branes, by a weakly coupled SO(32) heterotic theory.

In this limit, D-branes are no longer a tractable object and we cannot hope to gain new

information. However, in nine dimensions, the heteroticE8×E8, which admits a completely

different strong coupling limit as M-theory on a segment, lives in the same moduli space.

Type IIA on S1/ΩZ2 can indeed be considered as M-theory on S1/Z2 × S1, which is the

strong coupling limit of the heterotic E8 × E8 compactified on S1. In this identification,

x6 is exchanged with x10 in representing the eleventh dimension, which opens up in the

strong coupling limit. In this M-theory picture, NS-branes become M-theory five-branes

and K parallel infinite D6-branes become a KK monopole. The KK monopole determines

a non-trivial Taub-Nut metric in (7, 8, 9, 10), which reduces in the infinite string coupling

limit to an ALE singularity of type ZK . The five-branes live at a point in x6 (which is the

segment on which M-theory is defined) and at a point in the Taub-Nut space. They could

be naively interpreted as small E8 × E8 instantons that have left the boundary. The fate

of a configuration of D6-branes stretched between NS branes is a more delicate question.

8 For arriving at the Z2 case without vector structure, we must first go through the case of a

Z3 singularity.
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To see if the interpretation of the system as describing small E8×E8 instantons makes

any sense, let us analyse the case in which the transition from Type I′ to M-theory can be

completely understood [33].

The two heterotic theories are T-dual in nine dimensions. Consider a subgroup SO(14)

of SO(32). At a special point in moduli space, the SO(14) and a U(1) coming from the KK

reduction are enhanced to E8 by massless winding modes of the heterotic string. Under

heterotic/Type I′ duality, the same point in moduli space corresponds to having seven

D8-branes at each of the orientifold points and the remaining two in a symmetric way on

the segment. Upon duality, the heterotic winding modes are mapped to zero branes stuck

at the orientifold points. At the special point in which we expect enhanced symmetry, the

Type I′ coupling constant diverges at the orientifolds, and the zero-branes become massless

providing the missing gauge bosons for realizing E8 ×E8.

Consider therefore the configuration with seven D8-branes at each of the orientifold

points and put P physical NS-branes on the segment. Between the two D8-branes that are

not at the orientifold, the cosmological constant is zero. If we have several NS-branes in

this region, we can stretch the same number (K) of D6-branes between them. On the left

of the first D8-brane, the cosmological constant is −1; going towards the left, the number

of D6-branes should decrease by one unit from gauge factor to gauge factor. The same

happens on the right of the second D8, where the cosmological constant is +1. If P ≥ 2K

we eventually end with a U(1) theory on the extreme left and right, where the first and

last NS-branes live. The gauge content is therefore

U(1)× U(2)× ...× U(K − 1)× U(K)(P−2K+1) × U(K − 1)× ...× U(1), (5.1)

with bifundamentals for each pair of each neighbouring gauge factors and one fundamental

for the first and last SU(K) factor coming from the two D8 branes. There are P tensor

multiplets. Taking into account that the U(1) factors are massive for a Green-Schwarz

mechanism [19], we can rewrite the previous theory as

SU(2)× SU(3)× ...× SU(K − 1)× SU(K)(P−2K+1) × SU(K − 1)× ...× SU(2), (5.2)

with bifundamentals for each pair of neighbouring gauge factors and one fundamental for

the first and last U(K) factor coming from the two D8-branes and one fundamental for

the two SU(2) coming from the two frozen U(1) factors.
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This theory was indeed proposed in [10] as the theory of P E8 ×E8 small instantons

living at a singularity of type ZK . We can explicitly see how this configuration is lifted

to the standard M-theory picture of E8 × E8 small instantons. In the region between the

two D8-branes, the background theory is of Type IIA. An eleventh dimension is supposed

to decompactify in the strong string coupling limit, and the two D8-branes move toward

an end [33], creating the two M-theory boundaries described in [34]. Meanwhile, the D8-

branes have to cross a certain number of NS-branes. As described in [18], every time a

D8-brane crosses an NS-brane a new D6 is created between them. By the time the D8-

branes touch the orientifolds, an equal number of D6-branes is stretched between every

neighbouring pair of NS-branes. The D6-branes can now reconnect to K infinite D6-branes

wrapped around x6. The system now has a smooth embedding in M-theory as the theory

of P E8 ×E8 small instantons living at a singularity of type ZK .

The matter content of (5.2) was determined in [13] by combining arguments in [10]

with the anomaly cancellation. We see that here it is automatically provided by the brane

configuration. The case P < 2K is obtained by replacing K with the integer part of P/2.

For P < K there is no gauge group. This can be understood from the following discussion.

As was noted in [10], the matter content in eq. (5.1) is the same as is derived from

calculating the three-dimensional mirror of U(K) gauge theory coupled to P flavours [14].

By taking T-duality three times along the 456 directions, we get the configuration studied

in [14]. (To be precise an additional mirror symmetry as defined in [14] is needed.) Thus

the brane configuration demonstrates that the two effects are indeed related. The matter

content was calculated using the rule that an “S-configuration” is not supersymmetric.

See [14] for details. Here we see that this rule is translated into the charge-conservation

condition (2.13) coming from the value of the cosmological constant.

It is now clear why P < K contains no gauge group.

5.1. More about instantons and enhanced global symmetry

It is intriguing that the same theories (3.1), (3.3) describe both SO(32) and E8 ×E8

instantons. The theory (5.1) can indeed be obtained from the general formulae (3.5) by

putting k = 0 and W0 = WP = 7,WK = WP−K = 1. In general, the global symmetry of

the theories (3.1), (3.3) is a subgroup of SO(32). We just saw that the theory (5.1) has,

at the fixed point, a global symmetry E8×E8, which is not manifest in the brane picture.

It is obtained with a configuration of D8-branes for which the coupling constant diverges
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at the orientifold points. By the same mechanism we can obtain theories with different

enhanced symmetry.

The behaviour of the dilaton is determined by the distribution of D8-branes on the

segment. The dilaton is constant only if we put eight branes on each of the orientifold

points. The background that gives rise to the theory (5.1) has the following behaviour for

the dilaton:

e−φ(x6) =

e−φ0 + 2x6, 0 ≤ x6 ≤ x6
0

e−φ(x6
0), x

6
0 ≤ x

6 ≤ R6 − x
6
0

e−φ(x6
0)− 2x6 + 2(R6 − x

6
0), R6 − x

6
0 ≤ x

6 ≤ R6,

(5.3)

where x6
0 is the position of the first D8-brane, e−φ0 is the value of the Type I′ coupling

constant. When e−φ0 is zero, the dilaton diverges at both the orientifold points. In general,

the dilaton is a linear function of the position in x6 with discontinuous derivative at the

positions of the D8-branes. The slope of the dilaton for a particular x6 is given by minus

twice the value of the cosmological constant at that point.

We have an enhanced global symmetry every time the Type I′ coupling diverges at

the orientifold point. These configurations are discussed in [16]. The basic building block

is a set of N D8-branes on one of the orientifolds. In the Type I′ strong coupling limit,

SO(N) is enhanced to EN+1, where E5 =spin(10), E4 = SU(5), E3 = SU(3)×SU(2), E2 =

SU(2)×U(1) and E1 = SU(2). There are two additional symmetries, E0 and Ẽ1, coming

from a more careful inspection [35].

By choosing the positions of the D8-branes we can make the dilaton divergent at

one or both of the orientifold points. For such configurations, we expect to find six-

dimensional theories with corresponding hidden global symmetry. The case in which there

is an enhancement of symmetry at both orientifolds with a global symmetry EN+1×EN ′+1

times U(1) factors is obtained by putting N D8-branes on the first orientifold and N ′ on

the second. The low-energy gauge theory is
∏P−1
i=1 SU(Vi) with

Vi =(8−N)i, 0 = k0 < i ≤ k1, ...

Vi =Vka + (8−N − a)(i− ka), ka < i ≤ ka+1, a = 1, ..., 15−N −N ′,

Vi =(8−N ′)(P − i), k16−N−N ′ < i < k17−N−N ′ = P.

(5.4)

with bifundamentals for each pair of neighbouring gauge factors and fundamentals for each

factor with i = ka for some a 6= 0, 17−N − N ′. The ka’s give the number of NS-branes
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living on the left of the a-th D8-brane (excluding the ones living at the orientifolds). In

general, charge conservation gives some constraints on the possible values of ka for given

N and N ′.

One of the properties of the small instantons described in (5.1) is that they leave

an unbroken E8 × E8 spacetime gauge group in the vanishing size limit. The breaking

of E8 can be obtained by moving some of the D8-branes away from the orientifold. We

therefore propose that the theories (5.4), which have global symmetry EN+1 × EN ′+1,

describe the world-volume theories of small instantons, which partially break E8 × E8 to

EN+1 × EN ′+1. By arranging the D8-branes on the segment we can obtain the different

patterns of breaking of the spacetime group by the small instantons. The maximum value

K of Vi in (5.4) gives the order of the spacetime singularity ZK on which the instantons

are sitting. The numbers ka specify the way in which the spacetime gauge group is broken

by a non-trivial flat connection (which is a representation of ZK) at infinity.

If some of the D8-branes coincide, there are extra unbroken non-Abelian factors.

For example, small instantons that break the group to (E7 × SU(2))2 are obtained by a

configuration with 6 D8-branes at each orientifold and two pairs of coinciding D8-branes

on the segment. This predicts, for P ≥ K and K even, a world-volume gauge theory

SU(2)× SU(4)× ...× SU(K − 2)× SU(K)(P−K+1) × SU(K − 2)× ...× SU(2), (5.5)

with bifundamentals for each pair of neighbouring gauge factors and two fundamentals for

each of the first and last U(K) factor coming from the two pairs of coinciding D8-branes.

The case P < K or K odd can be discussed in a similar way.

Let us look at the points with enhanced En+1 symmetry from a six-dimensional point

of view, and compare them with the points with enhanced SO(n) symmetry. In the string

theory setup, going from SO(n) symmetry to En+1 requires the limit in which the string

coupling is infinite at one of the orientifold planes. In this paragraph we will call the

models with an SO symmetry, SO-type theories, and models with an E global symmetry,

E-type models.

How does this limit act on the other groups in the models we discuss? We should

recall here that there are two types of non-Abelian groups other than the ones arising from

the D8-branes. These are the gauge theories on the world-volume of the D6-branes and

the groups associated with coinciding NS-branes, which act on strings at the coincident

points.
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For the gauge theories, by looking at eq. (2.2), we find that all the gauge couplings

diverge. In contrast, for the SO symmetry it is not necessary to flow to the point with

infinite gauge coupling in order to get an enhanced symmetry; it is just there by tuning

the x6 positions of the D8 branes to sit at the orientifold plane9. There are still many

non-zero ratios that remain in the process. By observing eq. (2.2), we see that the ratio

between any two different gauge couplings remains constant in the process of sending the

string coupling to infinity. For the six-dimensional theory these non-zero ratios correspond

to the ratios between various string tensions remaining in the limit. We thus see that the

E-type theories have a rich spectrum, which depends on these non-zero ratios. In contrast,

the SO theories do not have this rich spectrum. At the fixed point, when all the inverse

gauge couplngs are sent to zero, there are no non-trivial ratios kept in the limit.

Can we see further differences? The tensor multiplets sit in a box with finite length

given in eq. (3.14). When we take the string coupling to infinity, the length of the box

goes to zero. A crucial difference with the SO models is that the length of the box is kept

finite in the limit of infinite gauge couplings.

We can now summarize the observations from a six-dimensional point of view. When

the length of the box is finite, the theory admits a global SO symmetry. The theory flows

to a fixed point when the gauge couplings are taken to infinity. If in addition we send the

length of the box to zero, the global symmetry is enhanced from SO to E. The gauge

couplings are driven to infinity, but we still have the freedom to control their ratio. The

resulting theory will depend on these different ratios, which are between various tensions

of strings present at the resulting theory.

The matter content in (5.4) coincide with that of the three-dimensional mirror of the

theory

U(k1)× U(k2)× ...× U(K)× ...× U(P − k15−N−N ′)× U(P − k16−N−N ′) (5.6)

with P flavours for the central factor U(K). An explicit T-duality along the directions

456 transforms the configuration of branes, which gives rise to the theory (5.4) into the

three-dimensional mirror of (5.6).

The class of theories with k = 0 in (3.1), (3.3) cannot be used for representing SO(32)

instantons, having zero instanton number, but, as we saw, has a natural interpretation

9 The role of these positions is not clear from a field theory point of view; however, we will not

discuss them here, since it has been done elsewhere; see, for example, [36].
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as describing E8 × E8 instantons. It must be noted that the interpretation as SO(32) or

E8 × E8 instantons makes sense in a completely different regime for the Type I′ theory.

The interpretation of the system as describing small SO(32) instantons is appropriate for

a generic configuration of background branes in the Type I′ theory at weak coupling, while

the interpretation as E8×E8 instantons can be recovered only in the strong coupling limit,

when we tune the background brane configuration in order to get enhanced spacetime gauge

symmetry. As we saw, D6- and NS-branes interchange their role in representing spacetime

orbifold singularities in the exchange of the two heterotic string theories.

6. Six-dimensional string theories

We now turn to a missing point, the demonstration that the theories considered in the

previous sections can be embedded in a consistent six-dimensional string theory without

gravity [13]. We have to show that the brane system can be embedded in a well-defined

string theory where its parameters depend on the string length, but not on the string

coupling constant. In this way, we can send the coupling constant to zero, thus decoupling

gravity, while keeping ls fixed.

The only parameter in our theories is the size of the Coxeter box. We see from eq.

(3.14) that it explicitly depends on the string coupling constant. The limit in which the

Type I′ coupling goes to zero has a Coxeter box of length of order R6/l
3
sgs; it is therefore

not useful for decoupling gravity in our theories. We could keep the Coxeter box size fixed

by sending R6 to zero, but in this limit we should rather do a T-duality and represent the

string theory as a type I.

Consider the theories (3.1), (3.3). The fact that upon duality the brane system de-

scribes heterotic SO(32) or E8×E8 instantons can be of help. When converted in heterotic

variables, the Coxeter box size indeed becomes of order l−2
s . At this point we can send the

heterotic string coupling to zero, decouple gravity and obtain a consistent six-dimensional

theory with scale l−2
s .

The infrared limit of these theories, for energies much smaller than l−1
s , is a local

quantum field theory. In most cases, we get the non-trivial interacting fixed points that

we discussed in section 2.3. At higher energies, new ingredients are needed to give sense

to these non-renormalizable theories. The gravity is decoupled, but the six-dimensional

theories still have string excitations, which appear at a scale of order l−1
s . In our brane

construction, they appear as membranes stretched from the NS-branes to their images

31



under the orientifolds. These strings have a tension of order R6/l
3
sgs in Type I′ units, which

is exactly l−2
s in the relevant heterotic variables. Besides having string-like excitations,

these theories inherit a kind of T-duality from the ten-dimensional string theory in which

they are embedded. Therefore, they are not local quantum field theories. For the theories

considered in section 3.3, a dual heterotic model is more difficult to find. However, we

still think that there exists a dual model in which gravity can be decoupled, providing

a six-dimensional string theory, which reduces to them at low energies. The orientifold

background in which the theories (3.9), (3.10) are embedded is dual, at strong coupling,

to M-theory compactified on a Klein bottle [37,38] and can also be T-dualized to a Type

I model using the results in [39]. This can provide the way to prove the existence of the

associated six-dimensional string theory, but we did not exploited the subject in detail .
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