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Abstract

The standard method for the propagation of errors, based on a Taylor series
expansion, is approximate and frequently inadequate for realistic problems.
A simple and generic technique is described in which the likelihood is con-
structed numerically, thereby greatly facilitating the propagation of errors.
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1 Introduction

Traditionally, errors on derived quantities have been determined analytically by performing a Taylor
series expansion about the central values. This method is adequate for many simple problems but
often fails in more realistic situations for a number of di�erent reasons, as described in section 2.

In section 3 we describe a rigorous and generally applicable numerical technique for the propagation
of errors, based on the numerical construction of the likelihood for the derived quantity using pseudo-
random numbers. Sections 4 and 5 illustrate the use of this technique with practical examples from
High Energy Physics analyses.

While the method proposed has almost certainly been used by others, it has received little attention
in the literature. This is perhaps due to the fact that only in the last few years has it been practical to
generate large numbers of pseudo-random numbers in order to solve a problem which was traditionally
done by hand.

2 Analytic Method for the Propagation of Errors

In general, physical quantities are not known with in�nite precision but are described in terms of
likelihood distributions (also called probability or error distributions). To be speci�c, consider a
quantity f which depends on some quantities xi (i = 1; : : : ; n) in a known way. The uncertainty on f ,
which depends on the uncertainties �xi on the measured values x0i , is usually derived by the standard
method for the propagation of errors which relies on a Taylor series expansion of f :

f(x0i + �xi) = f(x0i ) +
nX
i=1
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where the ellipsis denotes higher order terms in �xi. These are neglected to yield the familiar expression
for the variance of f :
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where �ij denotes the error matrix. For the results of this method to be valid, a number of requirements
should be satis�ed.

Requirement 1: The likelihood distributions of xi are Gaussian.

The standard method for the propagation of errors implicitly assumes that the errors on the xi are
Gaussian. In general, however, a measured quantity is described by an arbitrarily shaped likelihood
distribution. Statistical and systematic errors on quantities xi may be according to other common
likelihood distributions (Poisson, binomial, etc.), or another function which may itself depend on
measured quantities with associated errors.

Requirement 2: The likelihood distribution of f is Gaussian.

The standard method for propagation of errors yields a single number �f which is interpreted as the
RMS of the Gaussian likelihood distribution of f . It is often the case that the likelihood distribution
of f is not Gaussian, nor even symmetric, even if all the errors on xi are Gaussian. In such cases
the interpretation of �f is unclear. A familiar example occurs in tracking detectors where the inverse
transverse momentum, 1=pT, has a Gaussian error whereas the derived quantity, f(1=pT) = pT, does
not and is manifestly asymmetric.
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Requirement 3: The required derivatives are calculable.

The evaluation of the derivatives, @f=@xi, may prove to be di�cult in practice if f is a complicated
function of many parameters. If the dependence of f on xi were determined numerically, for example
by running a physics Monte Carlo program, it may be di�cult or impossible to determine the required
derivatives. Moreover, the derivatives may themselves have signi�cant uncertainties due to limited
Monte Carlo statistics and systematic errors from uncertainties in the values of physical parameters
used by the Monte Carlo program.

Requirement 4: Higher terms of the Taylor expansion are negligible.

It is assumed that quadratic and even higher order terms in the Taylor expansion of Eq. 1 are negligible.
This approximation is not always valid, for example if the �rst derivatives of f at xi are zero or small
compared to higher derivatives or if the errors are not small relative to the xi.

3 Numerical Method for the Propagation of Errors

If one or more of the above conditions is not satis�ed, we advocate the use of a numerical method
for the propagation of errors, as described below. Even if all the conditions are satis�ed in a given
situation, the numerical method provides a valuable cross-check. Moreover, if the situation becomes
progressively more complicated as more sources of error are identi�ed, it is easy to extend the numerical
method, whereas the standard method may ultimately fail one of the above assumptions.

The numerical method is based on the familiar statistical concept of performing many hypothetical
measurements of the same quantity and determining the error on that quantity from the spread of the
values. It may be summarised as follows:

Consider a function f(xi) where the independent variables xi have uncertainties which are

described by likelihood functions L(xi). The corresponding likelihood distribution L(f) may

be described with arbitrary precision by a su�ciently large set of values, ff(x0i)g, where the
input set of values, fx0ig, are chosen randomly according to the L(xi).

While the standard method for the propagation of errors based on the Taylor expansion of Eq. 1
assumes a single �xi, which is equated to the standard deviation of a Gaussian, the numerical method
maps the full spectrum of errors �xi and therefore does not require it to be Gaussian. Moreover, no
higher order terms are neglected.

Practically one implements the numerical method as follows:

1. De�ne the likelihood functions, L(xi), for the independent variables, xi.
For example, in the case of uncorrelated Gaussian errors one would specify a set of central values
and standard deviations. For correlated Gaussian errors one would specify a set of central
values and a covariance matrix. In a more general case one might de�ne the likelihood as a
multi-dimensional function represented by a smooth parametrisation, a binned multi-dimensional
histogram, or as a set of discrete values derived, for example, from a Monte Carlo program.

2. Repeat the following steps, (a) and (b), n times, where n is a large number:

(a) Choose a set of values fx0ig randomly according to the likelihood functions, L(xi).
For example, in the case of uncorrelated Gaussian errors one might use the CERNLIB [1]
Fortran subroutine RANNOR. For correlated Gaussian errors one could use the NAGLIB [2]
Fortran subroutine G05EAF or a suitably transformed set of uncorrelated random numbers [3].
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(b) Evaluate the function f(x0i) and store the result, for example in a histogram or an array.

3. Normalise the integral of L(f) to unity.

4. Ensure that n is su�ciently large, for example by verifying that L(f) does not change signi�cantly
for di�erent starting random number seeds.

Care should be taken to avoid numerical problems associated with the computing hardware and
software used [4, page 659]. For example, if n is large then the accumulation of f(x0i) values in a
histogram may be subject to numerical imprecisions, or a poorly designed random number generator
may start to show periodic behaviour. The optimisers of some compilers may even treat multiple
invocations of a random number function, for example in a Fortran DO loop, as a single invocation
and move it outside the loop thereby producing erroneous results. Caveats such as these, however,
apply to most software and can be avoided easily by minimal precautions such as the use of extended
precision variables and low levels of compiler optimisation.

4 Example: Measurement of the W Boson Mass

Wmass measurements from hadron colliders [5] are typically based on �ts to distributions of transverse

mass, mT =
q
2p`T p

�
T (1� cos�`�), where p`T and p�T denote the transverse momenta of the charged

lepton (e or �) and the neutrino respectively coming from the leptonic W decay, and �`� denotes
the angle between the charged lepton and the neutrino in the transverse plane. The charged lepton
is typically measured in a tracking chamber with an error which is approximately Gaussian in 1=p`T
while p�T , which is inferred from the missing energy, has an approximately Gaussian error. The opening
angle error is typically relatively small.

Consider a single typical event with p`T = 40GeV, p�T = 35GeV, �`� = 2 rad, which corresponds to
mT = 63:0GeV. Assuming that the errors on p`T and p�T are uncorrelated, then the standard method
for propagation of errors using Eq. 2 yields
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For example, given �1=p`
T
= 0:005GeV�1 and �p�

T
=p�T = 10% yields �mT

= 7:0GeV.

The likelihood distribution of mT is not in reality a Gaussian. Fig. 1 (solid line) shows the mT

likelihood distribution obtained by propagating the uncertainties on p`T and p�T numerically. A clear
asymmetry is seen, in contrast to the naive method for propagation of errors which, by construction,
yields a Gaussian likelihood distribution (dashed line). The shift in the peak is � 2GeV which is
signi�cant compared to typical errors on the W mass of O(0:1) GeV.

5 Example: � neutrino mass and mixing

Constraints on the tau neutrino mass and its mixing with a hypothetical fourth lepton generation
have been derived [6] by considering the dependence of tau branching fractions on the mass m��

and the Cabibbo-like mixing angle �L (or more naturally sin2 �L). The theoretical predictions are
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Figure 1: Example likelihood distribution of transverse mass showing the di�erence between the
numerical and analytic approaches described in the text. Both curves are normalised to unit area.

compared with the experimental measurements for the following decays1: �� ! e���e�� , �
� ! ������� ,

�� ! ���� , and �� ! K��� .
The experimental measurements of the branching ratios Bexpt

i (i = e; �; �;K) are uncorrelated and

have Gaussian errors. If the theoretical predictions, Btheory
i , were perfectly known, then the likelihood

for a particular choice of m�� and sin2 �L would be2
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2 �LjBexpt
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�
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where the �i are the errors on the B
expt
i . The predictions for Btheory

i , however, depend in turn on
experimentally measured quantities with errors.

The theoretical predictions for the branching fractions B` for the decays �
� ! `���`�� , with ` = e=�,

are given by [6]:
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1Henceforth we denote the branching ratios for these processes as Be; B�; B�; BK respectively; B` denotes either Be

or B� while Bh denotes either B� or BK.
2The CLEO measurement of the � mass was used to further constrain m�� . From an analysis of �+�� ! (�+n�0��� )

(��m�0�� ) events (with n � 2; m � 2; 1 � n +m � 3), CLEO determined the � mass to be m� = (1777:8 � 0:7 �

1:7) + [m�� (MeV )]2=1400MeV [7]. The likelihood for the CLEO and BES measurements to agree, as a function of m��

is included in the global likelihood. This does not a�ect the conclusions of this section but merely reinforces them.
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where GF is the Fermi constant, m� and �� are the � mass and lifetime, x = m2
`=m

2
� , m` is the charged

lepton mass, y = m2
��=m

2
� , mW is the W mass, �(m� ) is the renormalised �ne-structure constant at the

� mass scale, and each ellipsis denotes neglected higher order terms. The �rst term in brackets allows
for phase-space while the second term in brackets allows for radiative corrections [8{11]. Similarly,
the branching fractions for the decays �� ! h��� , with h = �=K, are given by
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where x = m2
h=m

2
� , mh is the hadron mass, y = m2

��=m
2
� , fh are the hadronic form factors, and V��

are the CKM matrix elements, Vud and Vus, for �
� and K� respectively. The ellipsis represents terms,

estimated to be O(�0:01) [12], which are neither explicitly treated nor implicitly absorbed into GF,
f�jVudj, or fKjVusj.

The uncertainties on the Btheory
i depend on the errors on the values of: GF, �� , me, m�, m�, mK,

mW, and mZ [13]; m� from the BES measurement at threshold [14]; f�jVudj and fKjVusj [12, and
references therein]; and the estimated theoretical uncertainty due to (neglected) higher order radiative
corrections.

If the standard method for the propagation of errors were to be applied, one would calculate the
theoretical errors according to Eq. 2, by di�erentiation of Eqs. 7 and 8, and add them in quadrature to
the experimental errors on the Bi to obtain �i. This approach is problematic for a number of reasons:

� the input errors are not necessarily Gaussian (for example the theoretical uncertainty on the
neglected higher order terms);

� the uncertainty on B
theory
i is non-Gaussian, as may be seen immediately from just the m5

� and

m3
� dependences of Btheory

` and B
theory
h respectively;

� many rather lengthy derivative calculations are required;

� there is no a priori guarantee that the neglect of higher order terms in the Taylor expansion is
a reasonable approximation;

� the four Btheory
i predictions depend on many common input parameters such that the four �i

cannot be treated as independent errors.

The numerical procedure described in section 3 avoids all of these problems. A large ensemble
of values of Btheory

i is created by choosing values for GF, �� , etc. according to their errors and

then evaluating Btheory
e , Btheory

� , Btheory
� , and B

theory
K according to Eqs. 7 and 8. The likelihood is

calculated according to Eq. 6 with �i taken to be the error on Bexpt:
i only. The full likelihood, allowing

for the errors on B
expt:
i , Btheory

i , and all correlations is then obtained from the normalised sum of the
likelihoods for the full ensemble. To be speci�c, the following steps are carried out:

1. de�ne the likelihood functions, L(xi), for the independent variables, xi;

2. create a 2D histogram of m�� vs. sin2 �L;

3. repeat the following steps, (a) and (b), n times:
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(a) choose a set of values fx0ig randomly according to the likelihood functions, L(xi).

(b) for each bin in the histogram choose m�� and sin2 �L at the centre of the bin and then
evaluate L(m�� ; sin

2 �LjBexpt
e ; Bexpt

� ; Bexpt
� ; B

expt
K ), according to Eqs. 6, 7, and 8, and add

the value of L to the contents of the bin;

4. normalise the histogram to unity to obtain L(m�� ; sin
2 �L).

Figure 2(a) shows the contours of the two dimensional likelihood distribution, L(m�� ; sin
2 �L) which

correspond to the 90% and 95% con�dence levels. No evidence is seen for a non-zero neutrino mass,
nor for mixing. By integration of the two dimensional likelihood over all values of sin2 �L we obtain
the one-dimensional likelihood for m�� , as shown by the solid line of �gure 2(b), which yields upper
limits of m�� < 42(48)MeV at the 90(95)% con�dence levels. The solid line of �gure 2(c) shows the
one-dimensional likelihood distribution for sin2 �L, integrated over all values of m�� , from which we
derive the upper limits: sin2 �L < 0:014(0:017) at the 90(95)% con�dence levels.

6 Conclusions

The standard method for the propagation of errors, based on a Taylor series expansion, is approximate
and frequently inadequate for realistic problems. In particular, it assumes that the errors on the
independent quantities are Gaussian, that the error on the derived quantity is Gaussian, that the
required derivatives are calculable, and that higher order terms in the Taylor expansion are negligible.

A numerical method for the propagation of errors is described which makes no such assumptions,
provides exact results with arbitrary precision, and is straightforward to implement even for compli-
cated problems.

Realistic examples illustrating this numerical technique are described. The interpretation of con-
straints on neutrino masses, with either a Classical or a Bayesian approach [15], has received much
attention in the literature [13,16]. In the example described herein, a 
at Bayesian prior distribution
has been implicitly assumed by sampling m�� and sin2 �L from a histogram with uniform bins. Simi-
larly, negative neutrino masses are excluded by the choice of the histogram range. While such choices
are a matter of discussion, it should be emphasised that they are in no way imposed by the use of the
numerical algorithm for the propagation of errors, which is in fact generally applicable.
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Figure 2: Likelihood distributions for all � decay channels combined, for (a) sin2 �L vs. m�� , (b) m�� ,
integrated over sin2 �L, and (c) sin2 �L, integrated over m�� .
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