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Abstract

We investigate the effective worldvolume theories of branes in a
background given by (the bosonic sector of) 10-dimensional massive
IIA supergravity (“massive branes”) and their M-theoretic origin. In
the case of the solitonic 5-brane of type IIA superstring theory the
construction of the Wess-Zumino term in the worldvolume action re-
quires a dualization of the massive Neveu-Schwarz/Neveu-Schwarz tar-
get space 2-form field. We find that, in general, the effective worldvol-
ume theory of massive branes contains new worldvolume fields that are
absent in the massless case, i.e. when the mass parameter m of massive
IIA supergravity is set to zero. We show how these new worldvolume
fields can be introduced in a systematic way.

In particular, we find new couplings between the massive soli-
tonic 5-brane and the target space background, involving an additional
worldvolume 1-form and 6-form. These new couplings have implica-
tions for the anomalous creation of branes. In particular, when a mas-
sive solitonic 5-brane passes through a D8-brane a stretched D6-brane
is created. Similarly, in M-theory we find that when an M5-brane
passes through an M9-brane a stretched Kaluza-Klein monopole is
created.

We show that pairs of massive branes of type IIA string theory
can be viewed as the direct and double dimensional reduction of a
single “massive M-brane” whose worldvolume theory is described by
a gauged sigma model. For D-branes, the worldvolume gauge vec-
tor field becomes the Born-Infeld field of the 10-dimensional brane.
The construction of the gauged sigma model requires that the 11-
dimensional background has a Killing isometry. This background can
be viewed as an 11-dimensional rewriting of the 10-dimensional mas-
sive IIA supergravity theory. We present the explicit form and discuss
the interpretation of (the bosonic sector of) this so-called “massive
11-dimensional supergravity theory”.
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Introduction

In order to get a better understanding of the dynamics of branes in string
theory, it is important to know precisely what the effective worldvolume
theory is that describes the dynamics of these objects. This worldvolume
theory contains a great deal of information. For instance, fields propagating
on a brane’s worldvolume describe the dynamics of the intersections with
other branes ending on it [1, 2]. In particular, the Born-Infeld (BI) vector
field present in the worldvolume of all D-p-branes describes the U(1) field
whose sources are open string endpoints. The anti-selfdual 2-form potential
living on the M-5-brane worldvolume describes the dynamics of an M-5-
brane intersecting with an M-2-brane over a 1-brane. The dynamics of these
worldvolume fields has recently received some attention [3, 4, 5].

At present the structure of the worldvolume theory is quite well under-
stood for the case in which the brane propagates in a supergravity background
without a cosmological constant, the so-called “massless supergravity theo-
ries”. As is well known, in the case of IIA supergravity, an extension is
possible with a non-zero cosmological constant proportional to m2 with m
a mass parameter [6]. Such backgrounds are essential for the existence of
D-8-branes whose charge is proportional to m [7, 8]. It is the purpose of
this paper to investigate the worldvolume theory of branes that propagate in
such a massive background. We will call such branes “massive branes”4. We
will in turn use the worldvolume theories to investigate the 11-dimensional
origin of these massive branes.

The basic branes of string theory are the fundamental string (p-1-brane),
the solitonic 5-brane (p-5-brane), the Brinkmann wave, the Kaluza-Klein
(KK) monopole and the D-p-branes (0 ≤ p ≤ 9). The charge of the first
two objects is carried by a Neveu-Schwarz/Neveu-Schwarz (NS/NS) field
whereas the D-p-branes carry a Ramond-Ramond (R-R) charge. For objects
that carry a NS/NS charge there are three possibilities: the brane may move
in a Heterotic, IIA or IIB supergravity background. Each of these three
possibilities is described by a different worldvolume theory. We distinguish
between these cases using an obvious notation, e.g. for the different p-5-
branes

4In this paper we reserve the name “massive branes” for branes that propagate in a
massive IIA supergravity background as opposed to branes that propagate in a background
with zero mass parameter. Of course, all branes are massive in the sense that their physical
mass is nonzero.
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p-5-brane→



p-5H-brane

p-5A-brane

p-5B-brane

On the other hand the D-p-branes carry a R-R charge and therefore always
propagate in a IIA (p even) or IIB (p odd) background.

It is instructive to first remind the worldvolume theories that describe
the dynamics of massless branes, i.e. branes that move in a background with
zero cosmological constant.

The (0 + 1)-dimensional worldvolume theory corresponding to the Brink-
mann wave is given by a kinetic term corresponding to a massless particle.
The difference between the worldvolume theories of the Heterotic wave (WH),
IIA-wave (WA) and IIB-wave (WB) is in the fermionic terms and in the
coupling to the dilaton.

In the case of the p-1-brane (NS/NS string) there is no difference between
the worldvolume theories of the p-1H-, p-1A- and p-1B-branes at the bosonic
level. These actions are given by a Nambu-Goto kinetic term and a WZ term
that describes the coupling of the brane to the NS/NS 2-form B. The dilaton
does not appear in any of these two terms, since the tension of fundamental
objects is independent of the string coupling constant g.

In the case of the p-5-brane the kinetic term is again of the Nambu-Goto
form but now there is an extra dilaton factor e−2φ in front of it showing
that the p-5-brane is a solitonic object whose mass is proportional to 1/g2.
Concerning the WZ term there is a distinction between the three different
cases already at the bosonic level. The reason for this is that the p-5-brane
couples to the 6-form dual of the NS/NS 2-form B. The definition of this
dual 6-form depends on the background involved because either the field
strengths or the couplings of B in the action are different. There are then
three different dual 6-forms denoted by B̃H, B̃IIA and B̃IIB.

The kinetic term of the (5+1)-dimensional worldvolume theory corre-
sponding to the KK-monopole has only been recently constructed [9]. It is
given by a gauged sigma model involving an auxiliary worldvolume 1-form.
The kinetic term carries a factor e−2φk2 indicating that the effective ten-
sion of this object is proportional to 1/g2 (and so it is solitonic) and to R2,
R being the radius of the dimension to be compactified. This behavior is
characteristic of KK monopoles. There is also a difference in the bosonic
worldvolume content of the KK-H, KK-10A and KK-10B monopoles [10].
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The WZ terms for these monopoles have not been constructed explicitly so
far (see, however, [11]).

Finally, the worldvolume theory of the D-p-branes is given by a Dirac-
Born-Infeld (DBI) kinetic term with a e−φ dilaton coupling in front of it and
a WZ term whose leading term is the R-R (p+1)-form field. The dilaton
coupling shows that the mass of these objects is proportional to 1/g.

In this work we will consider the massive extension of the worldvolume
theory corresponding to the p-1A-brane, p-5A-brane and the D-p-branes (p
even). In the latter case, the result has already been given in the literature
[12, 13]. We find that the (bosonic part of the) worldvolume theory of the
massive p-1A-brane is identical to that of the massless p-1A-brane. In the
case of the p-5A-brane, however, there are striking differences. It turns out
that there are extra couplings, involving an additional 1-form and 6-form
worldvolume field, that are proportional to the mass parameter m of massive
IIA supergravity. Both fields are auxiliary and do not contribute to the
worldvolume degrees of freedom.

The reason for the presence of the worldvolume 6-form is that in order to
build the WZ term one has to dualize the massive NS/NS target space 2-form
field along the lines recently discussed in [14]. An interesting feature is that,
whereas in the usual formulation of IIA supergravity the R-R 1-form C(1)

is a Stueckelberg field that gets “eaten up” by the Neveu-Schwarz/Neveu-
Schwarz (NS/NS) 2-form B which becomes massive:

C(1) → Stueckelberg field ,

B → massive field ,

in the dual formulation the situation is reversed: the dual NS/NS 6-form
B̃IIA becomes a Stueckelberg field giving mass to the dual R-R 7-form C(7):

C(7) → massive field ,

B̃IIA → Stueckelberg field .

An immediate consequence of the above observation is that, since B̃IIA

occurs as the leading term of the WZ term of the p-5A-brane, we must intro-
duce an independent auxiliary 6-form worldvolume field in order to cancel the
Stueckelberg transformations of B̃IIA. This is on top of an auxiliary world-
volume 1-form which must be introduced in order to construct a WZ term
that is invariant under the “massive gauge transformations” of massive IIA
supergravity. The massive p-5A-brane therefore contains extra couplings to
a worldvolume 1-form and 6-form that are absent in the massless case. The
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situation is similar to that of a D-0-brane in a massive background. In that
case the Stueckelberg variation of the leading term C(1) in the WZ term is
canceled by an auxiliary BI 1-form field that couples to the D-0-brane with
a strength proportional to the mass parameter m.

As mentioned at the beginning, the second goal of this work is to investi-
gate a possible “M-theoretic origin” of the massive branes considered above,
thereby generalizing the massless case considered in [15]. This is a nontrivial
problem in view of the fact that the massive IIA supergravity background
fields have no known 11-dimensional interpretation.

We will deal with the above problem as follows: first, we will show that
the massive brane worldvolume actions with 10-dimensional target space can
be quite naturally rewritten as worldvolume actions of objects (“massive M-
branes”) moving in an 11-dimensional target space. These massive M-brane
actions give the known massive brane actions of string theory upon direct
or double dimensional reduction exactly as it happens in the massless case5.
Therefore, a single massive M-brane unifies two different massive branes of
string theory. The situation is depicted in Figure 1 (Section 3).

We find that the worldvolume theory of a general massive M-brane is
given by a gauged sigma model6. To preserve the (p+1)-form potential gauge
invariance in the gauging some modifications of the standard 11-dimensional
supergravity background transformations have to be introduced. These mod-
ifications are the same for all massive M-branes and, thus, we are led to the
construction of a “massive 11-dimensional supergravity theory”, the natural
background in which massive M-branes move.

The construction of this theory requires the existence of a Killing isometry
(the one which is gauged in the sigma models), i.e. in adapted coordinates the
fields of 11-dimensional supergravity do not depend on one of the coordinates,
say y. In the limit in which the mass parameter is set to zero, the depen-
dence on y can be restored and the action is given by ordinary (massless)
11-dimensional supergravity. Furthermore, the theory has the sought-after
property that it gives type IIA supergravity upon dimensional reduction in
the direction y.

Of course this so-called “massive 11-dimensional supergravity theory” is
not a proper 11-dimensional theory in the sense that the fields do not de-
pend on the special coordinate y7. Nevertheless, we believe that the massive
11-dimensional supergravity theory we propose should lead to a better un-
derstanding of a possible M-theoretic origin of the mass parameter m. An

5As we shall see, the situation for the M-5-brane is more subtle.
6The massive M-2-brane has already been considered in [16, 17] and the present work

should be viewed as an extension of these works to the other M-branes.
7It is due to this feature that the no-go theorem of [18] can be circumvented.
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interesting feature is that the massive 11-dimensional supergravity theory
we consider in this work is on a rather similar footing with a recent pro-
posal [19] for an 11-dimensional supergravity theory that, upon reduction,
leads to a new 10-dimensional massive supergravity theory. A more detailed
comparison between the two theories can be found in the Conclusion Section.

Finally, as a by-product of our work in which we were obliged to intro-
duce additional worldvolume fields, we have found a systematic description
for worldvolume p-forms, their gauge transformations and field strengths.
These worldvolume p-forms can be defined as the dual of the BI field in the
worldvolume action of the D-(p+2)-brane. The integrals of their (p+1)-form
field strengths can be identified with the WZ terms of D-p-branes. Our de-
scription is valid both for type IIA and type IIB object worldvolumes and
we believe that the structure of these fields has a deep significance.

The organization of the paper is as follows. The construction of the
worldvolume theories describing the massive branes of string theory requires
certain results both on the structure of the supergravity background fields, in
particular their dual formulations, as well as on the structure of the different
p-form worldvolume fields that will be needed. Therefore, as a preliminary,
we first discuss in Section 1 the target space supergravity fields and in Sec-
tion 2 the p-form worldvolume fields. Next, these results are applied in
Section 3 to construct the sigma models describing the massive branes.

More specifically, in Section 1 we discuss massive supergravities in 10 and
11 dimensions together with their dual formulations. The massless super-
gravity theories are included as a special case by taking the mass parameter
equal to zero. The different cases we consider are: (i) massive 11-dimensional
supergravity (Section 1.1); (ii) the dual formulation of massless d=11 super-
gravity (Section 1.2); (iii) the dual formulation of massive 10-dimensional
IIA supergravity (Section 1.3) and finally (iv) the dual formulation of mas-
sive d=11 supergravity (Section 1.4). Next, in Section 2 we introduce the
different p-form worldvolume fields. Some of them will play the role of de-
scribing dynamical degrees of freedom, others will be auxiliary fields. All
these different supergravity backgrounds and worldvolume fields are needed
when we construct in Section 3 the worldvolume effective actions of the mas-
sive branes. The strategy we follow in this section will be to first construct
the sigma models corresponding to the massive M-branes. In a second stage
we perform the direct and double dimensional reduction of the different mas-
sive M-branes and show that they give rise to pairs of massive branes of
string theory. This is represented in Figure 1. Our conclusions are given in
Section 4. Finally, there are three appendices. Appendix A gives a general
self-contained discussion on the duality of massive k-form fields; Appendix B
(Appendix C) gives our notation for all the different target space (world-
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volume) fields occurring in this paper and summarizes some useful formulae
needed in the text.

1 Target Space Fields

1.1 Massive 11-Dimensional Supergravity

In this Section we present, using an 11-dimensional notation, an action that
upon dimensional reduction gives massive 10-dimensional IIA supergravity.
This theory provides the 11-dimensional background for the worldvolume
actions of the massive M-branes (see Section 3). As discussed in the intro-
duction the construction of the action requires that the 11-dimensional fields
exhibit a Killing isometry. The action we will give below has the property
that when the mass parameter m is set to zero the dependence of the fields on
the Killing isometry direction (say y) in adapted coordinates, can be restored
and the usual massless 11-dimensional supergravity theory is recovered. The
purpose of this Section is to present the massive 11-dimensional supergravity
theory, as a preliminary to the construction of the worldvolume sigma models
in Section 3. In the Conclusion we will compare with the work of [19] and
discuss a possible connection with M-theory.

The massive 11-dimensional theory has the same field content as the
massless one8: {

ĝµ̂ν̂ , Ĉµ̂ν̂ρ̂
}
. (1.1)

The action for these fields is manifestly 11-dimensional Lorentz covariant
but it does not correspond to a proper 11-dimensional theory because, in or-
der to write down the action, we need to introduce an auxiliary non-dynamic
vector field k̂µ̂ such that the Lie derivatives of the metric and 3-form potential
with respect to it are zero9:

$k̂ĝµ̂ν̂ = $k̂Ĉµ̂ν̂ρ̂ = 0. (1.3)

8Hats on spacetime fields and indices indicate they are 11-dimensional. Absence of hats
indicates they are 10-dimensional.

9We will heavily rely on this property. In combination with the identity

ik̂∂Ŝ
(r) = (−1)r

r+1 $k̂Ŝ
(r) + r

r+1∂
(
ik̂Ŝ

(r)
)

(1.2)

for r-forms, it will allow us to pull k̂ through partial derivatives. ik̂T̂ indicates the con-

traction of k̂ with the last (by convention) index of the tensor T̂ .
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To construct the action we start by defining the infinitesimal massive
gauge transformations on any rank r 11-dimensional tensor with lower indices
L̂µ̂1...µ̂r (not necessarily an r-form) with vanishing Lie derivative with respect

to k̂ (except for Ĉµ̂ν̂ρ̂, whose transformation law we will define later) as
follows10:

δχ̂L̂µ̂1...µ̂r = mλ̂µ̂1 k̂
ν̂L̂ν̂µ̂2...µ̂r + . . .+mλ̂µ̂r k̂

ν̂L̂µ̂1...µ̂r−1ν̂ . (1.4)

Here the 1-form parameter λ̂µ̂ is related to the infinitesimal 2-form parameter

χ̂µ̂ν̂ , which generates the gauge transformations of the 3-form Ĉ and must
also have vanishing Lie derivative $k̂χ̂µ̂ν̂ = 0, by

λ̂µ̂ ≡ −
1
2

(ik̂χ̂)
µ̂

= −1
2
k̂ν̂χ̂µ̂ν̂ . (1.5)

In particular, for the metric ĝµ̂ν̂ and for any r-form Ŝµ̂1...µ̂r = Ŝ[µ̂1...µ̂r ]

(different from the 3-form Ĉ) we have, according to the rule (1.4)
δχ̂ĝµ̂ν̂ = 2mλ̂(µ̂ (ik̂ĝ)

ν̂) ,

δχ̂Ŝµ̂1...µ̂r = (−1)r−1rmλ̂[µ̂1

(
ik̂Ŝ

)
µ̂2...µ̂r ]

.

(1.6)

Observe that the above transformation laws imply
δχ̂
√
|ĝ| = 0 ,

δχ̂Ŝ
2 = 0 .

(1.7)

The 3-form is going to play the role of a connection-field with respect
to the massive gauge transformations and therefore it does not transform
covariantly:

δχ̂Ĉµ̂ν̂ρ̂ = 3∂[µ̂χ̂ν̂ρ̂] + 3mλ̂[µ̂

(
ik̂Ĉ

)
ν̂ρ̂]

. (1.8)

For further use we also quote the transformation laws
δχ̂
(
ik̂Ĉ

)
µ̂ν̂

= −4∂[µ̂λ̂ν̂] ,

δχ̂ (ik̂ĝ)
µ̂

= mλ̂µ̂k̂
2 .

(1.9)

10All tensors in this theory transform according to this rule, except for Ĉ and ˆ̃
C. How-

ever, tensors of higher rank also transform under dual massive transformations. These

have as infinitesimal parameter the 6-form
ˆ̃
λµ̂1...µ̂6 (for more details, see Section 1.3).
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The next step in our construction is to build a connection for the massive
gauge transformations. The new total connection is

Ω̂â
b̂ĉ = ω̂â

b̂ĉ(ê) + K̂â
b̂ĉ , (1.10)

where the piece that we have added is defined by

K̂âb̂ĉ = m
4

[
k̂â
(
ik̂Ĉ

)
b̂ĉ

+ k̂b̂

(
ik̂Ĉ

)
âĉ
− k̂ĉ

(
ik̂Ĉ

)
âb̂

]
. (1.11)

The tensor K̂ coincides with the contorsion tensor while the torsion tensor
is

T̂µ̂ν̂
ρ̂ = −2K̂[µ̂ν̂]

ρ̂ = m
2

(
ik̂Ĉ

)
µ̂ν̂
k̂ρ̂ . (1.12)

Observe that in the limit m→ 0 one recovers the standard 11-dimensional
supergravity connections and gauge transformation laws (assuming that the
dependence of the fields on the isometry direction has also been restored).

The exterior covariant derivative on the 3-form Ĉ is defined by

D[µ̂Ĉν̂ρ̂σ̂] = ∂[µ̂Ĉν̂ρ̂σ̂]−
3
2
Γ̂[µ̂ν̂

α̂Ĉρ̂σ̂]α̂ = ∂[µ̂Ĉν̂ρ̂σ̂]+
3
8
m
(
ik̂Ĉ

)
[µ̂ν̂

(
ik̂Ĉ

)
ρ̂σ̂]

. (1.13)

Using the vanishing of the Lie derivative with respect to k̂ of Ĉ it is easy to
prove that the covariant derivative does indeed transform covariantly under
massive gauge transformations. The 4-form field strength Ĝ is defined in
terms of this covariant derivative

Ĝ = 4DĈ ,⇒ δχ̂Ĝ = −4mλ̂
(
ik̂Ĝ

)
, (1.14)

and thus the obvious kinetic term for Ĉ in the action, Ĝ2, is invariant.
We are now ready to write the 11-dimensional action:

Ŝ = 1

16πG
(11)
N

∫
d11x

√
|ĝ|

{
R̂(Ω̂)− 1

2·4!
Ĝ2 − 1

8
m2|k̂2|2

+ 1
(144)2

1√
|ĝ|
ε̂

[
24∂Ĉ∂ĈĈ + 32m∂ĈĈ

(
ik̂Ĉ

)2
+ 33

20
m2Ĉ

(
ik̂Ĉ

)4
]}

.

(1.15)

When m = 0 and upon restoring the dependence on y this action becomes
that of the usual 11-dimensional supergravity theory.

Now we are going to perform the dimensional reduction of this action in
the direction associated to the Killing vector k̂, parametrized by the coordi-
nate y. From now on we will use coordinates adapted to it, so k̂µ̂ = δµ̂y. First
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we define the 10-dimensional fields. We use the notation and conventions for
the gauge transformations explained in Appendix B. The bosonic fields of
the 10-dimensional type IIA theory are{

gµν , Bµν , φ, C
(1), C(3)

}
. (1.16)

The R-R 1-form C(1) plays the role of a Stueckelberg field in the massive the-
ory and could in principle be eliminated by an appropriate gauge choice, but
it is important for us to keep it. Later we will also introduce the fields dual
to B,C(1), C(3), namely B̃IIA, C

(7), C(5). These fields occur in the effective
worldvolume actions we will deal with in Section 3 and it will be important
to introduce them properly.

The relation between the 11- and the above 10-dimensional fields is the
same as in the massless case (see, e.g. [20]). In particular, we can use the
same elfbein basis:

(
êµ̂
â
)

=

 e−
1
3
φeµ

a e
2
3
φC(1)

µ

0 e
2
3
φ

 ,

(
êâ
µ̂
)

=

 e
1
3
φea

µ −e
1
3
φC(1)

a

0 e−
2
3
φ

 .

(1.17)

The 11-dimensional fields are expressed in terms of the 10-dimensional
ones by



ĝyy = −e
4
3
φ ,

ĝµy = (ik̂ĝ)
µ

= −e
4
3
φC(1)

µ ,

ĝµν = e−
2
3
φgµν − e

4
3
φC(1)

µC
(1)

ν ,


Ĉµνρ = C(3)

µνρ ,

Ĉµνy =
(
ik̂Ĉ

)
µν

= Bµν .

(1.18)
Now we are going to perform the reduction of the action. We first consider

the Ricci scalar term. To reduce this term we use a slight generalization of
Palatini’s identity which in d dimensions takes the form

∫
ddx

√
|g| e−2ϕ [R] =

∫
ddx

√
|g|

{
−e−2ϕ

[
ωb

baωc
c
a + ωa

bcωbc
a + 4ωb

ba(∂aϕ)
]}
. (1.19)
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With the above ansatz for the elfbeins the non-vanishing components of
the 11-dimensional connection are

Ω̂yay = −2
3
e

1
3
φ∂aφ , Ω̂yab = −1

2
e

4
3
φG(2)

ab ,

Ω̂aby = 1
2
e

4
3
φG(2)

ab , Ω̂abc = e
1
3
φ
(
ωabc(e) + 2

3
δa[b∂c]φ

)
,

(1.20)

where11

G(2) = 2∂C(1) + m
2
B , (1.22)

is the field strength of the 10-dimensional vector field C(1)
µ and the term

linear in m is a Chern-Simons term12. Using√
|ĝ| =

√
|g| e−

8
3
φ , (1.23)

plus Palatini’s identity Eq. (1.19) for d = 11 and ϕ = 0, and the fact that
the coordinate y conventionally lives in a circle of radius equal to the string
length `s =

√
α′ we find

∫
d11x

√
|ĝ| [R̂(Ω̂)] =

2π`s

∫
d10x

√
|g|
{
−e−2φ

[(
ωb

ba + 2∂aφ
)2

+ ωa
bcωbc

a
]

−1
4

(
G(2)

)2
}
. (1.24)

Finally, using Palatini’s identity Eq. (1.19) again, but now for d = 10 and
ϕ = φ, we get for the Ricci scalar term:

∫
d11x

√
|ĝ|

[
R̂(Ω̂)

]
=

2π`s

∫
d10x

√
|g|

{
e−2φ

[
R− 4 (∂φ)2

]
− 1

4

(
G(2)

)2
}
. (1.25)

11When indices are not shown explicitly and partial derivatives are used, we assume
that all indices are completely antisymmetrized in the obvious order. For instance the
equation below means

G(2)
µν = 2∂[µC

(1)
ν] + m

2 Bµν . (1.21)

12All the definitions for the field strengths and gauge transformations can be found in
Appendix B in differential form language.
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Now we have to reduce the Ĝ2-term in the action. We identify field
strengths in eleven and ten dimensions with flat indices (this automati-
cally ensures gauge invariance) taking into account the scaling of the 10-
dimensional metric

G(4)
abcd = e−

4
3
φ Ĝabcd , (1.26)

which leads to

G(4) = 4
(
∂C(3) − 3∂BC(1) + 3

8
mB2

)
. (1.27)

The remaining components of Ĝ are given by

Ĝabcy = e
1
3
φHabc , (1.28)

where H is the field strength of the two-form B

H = 3∂B , (1.29)

and the contribution of the Ĝ-term to the 10-dimensional action becomes

∫
d11x

√
|ĝ|

[
− 1

2·4!

(
Ĝ
)2
]

=

(1.30)

2π`s

∫
d10x

√
|g|

[
1

2·3!
e−2φH2 − 1

2·4!

(
G(4)

)2
]
.

Applying the identity k̂2 = −e
4
3
φ the cosmological constant term contribution

is

∫
d11x

√
|ĝ|

[
−1

8
m2|k̂2|2

]
= 2π`s

∫
d10x

√
|g|

[
−1

8
m2
]
. (1.31)

Next we consider the first term in the WZ term. Taking into account
that

ε̂ µ0...µ9y = ε µ0...µ9 , (1.32)

and using curved indices we find that:

24ε̂∂Ĉ∂ĈĈ = 24 · 3ε∂C(3)∂C(3)B − 25 · 3ε∂C(3)∂BC(3) . (1.33)

Integrating by parts we get
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∫
d11x

[
1

(144)2 ε̂ 24∂Ĉ∂ĈĈ
]

= 2π`s

∫
d10x

[
1

144
ε∂C(3)∂C(3)B

]
. (1.34)

Next we have

32mε̂∂ĈĈ
(
ik̂Ĉ

)2
= 33mε

[
∂C(3)B3 − ∂BC(3)B2

]
, (1.35)

and integrating by parts the second term we find

∫
d11x

[
1

(144)2 ε̂ 32m∂ĈĈ
(
ik̂Ĉ

)2
]

= 2π`s

∫
d10x

[
1

144
ε 1

4
m∂C(3)B3

]
.

(1.36)
Finally,

33

20
m2ε̂Ĉ

(
ik̂Ĉ

)4
= 34

20
m2εB5 , (1.37)

and

∫
d11x

[
1

(144)2 ε̂
33

20
m2Ĉ

(
ik̂Ĉ

)4
]

= 2π`s

∫
d10x

[
1

144
ε 32

320
m2B5

]
. (1.38)

Putting all these results together we find the bosonic part of the massive
N = 2A, d = 10 supergravity action [6] in the string frame, as given in [8]

S = 1

16πG
(10)
N

∫
d10x

√
|g|
{
e−2φ

[
R(ω)− 4 (∂φ)2 + 1

2·3!
H2
]

−
[

1
4

(
G(2)

)2
+ 1

2·4!

(
G(4)

)2
+ 1

8
m2

]

+ 1
144

1√
|g|
ε
[
∂C(3)∂C(3)B + 1

4
m∂C(3)B3 + 9

320
m2B5

]}
,

(1.39)

where

G
(10)
N = (2π`s)

−1G
(11)
N . (1.40)

This action is invariant under the gauge transformations of the R-R fields

δΛ(0)C(1) = ∂Λ(0) ,

δΛ(0)C(3) = 3∂Λ(0)B ,

δΛ(2)C(3) = 3∂Λ(2) .

(1.41)
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The δΛ(0) transformations are associated to reparametrizations of the com-
pact coordinate of the form

δΛ(0)X̂ µ̂ = −Λ(0)(x)δµ̂y , (1.42)

while the gauge transformation of the 3-form potential is inherited from the
massless gauge transformation of the 11-dimensional 3-form potential.

The above action is also invariant under the massive gauge transforma-
tions 

δλC
(1) = mλ ,

δλC
(3) = 3mλB ,

δλB = −4∂λ ,

(1.43)

which are directly inherited from the 11-dimensional massive gauge trans-
formations. Observe that C(1) transforms by shifts of the parameter of the
gauge transformations of B. Thus, C(1) can be completely eliminated by
a massive gauge transformation, leaving in the action a mass term for B:
m2B2. It is usually said that C(1) is the Stueckelberg field which is “eaten
up” by B, which then gets a mass.

This concludes our description of the massive 11-dimensional supergravity
theory.

1.2 Dual Massless 11-Dimensional Supergravity

It is known that in the worldvolume effective actions of supersymmetric soli-
tons all the potentials of the theory may appear: not only those that occur
in the usual formulation but also their (electro-magnetic) duals. For this
reason we explore here the dualization of 11-dimensional supergravity. Since
additional subtleties occur in the massive case we will first discuss in this
Subsection the massless case. Next we will discuss in the next Subsection
dual massive IIA supergravity and, finally, discuss in Section 1.4 dual massive
11-dimensional supergravity.

The usual procedure for formulating a theory in terms of the dual of some
potential consists in finding an intermediate first-order action with an extra
field. Integration of the extra field yields the Bianchi identity for the original
potential field strength and integration of the field strength leads to the dual
action with the auxiliary field playing now the role of dual potential.

There is a systematic way of constructing the first-order intermediate
action: consider the action as a function of the field strength and add a
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Lagrange multiplier term to enforce its Bianchi identity. This recipe fails
when the action cannot be written in terms of the field strength only and the
potential itself (i.e. not its derivative) appears explicitly in it. This is what
happens in the action of massless d=11 supergravity and this is the reason
why a formulation of 11-dimensional supergravity in terms of the dual 6-form
ˆ̃
C only has not been found.

Strictly speaking, for the sake of constructing worldvolume actions, it is
enough to introduce dual potentials only on-shell [21] and one can also allow
for the introduction of potentials and dual potentials at the same time. How-
ever, inspired by the work of [16], we would like to point out that there is a
way of finding the dual theory, even if in the original action the potential does
not only occur as a derivative. The idea consists in finding an intermediate
action with an auxiliary field such that the 3-form potential Ĉ only appears
through its derivatives. Elimination of the auxiliary field leads to the usual
11-dimensional supergravity action. To this intermediate action one can now
apply the usual procedure for dualization, eliminating the auxiliary field in
the last stage.

An intermediate action with the required properties is

S[ĝ, Ĉ, L̂] = 1

16πG
(11)
N

∫
d11x

√
|ĝ|

{
R − 1

2·4!
Ĝ2

− 1
(144)2

ε̂√
|ĝ|

[
ĜĜL̂+ 4

3
Ĝ∂L̂L̂+ 16

27
∂L̂∂L̂L̂

]}
.

(1.44)

The equation of motion for the auxiliary field L̂µ̂1µ̂2µ̂3 is

ε̂α̂1α̂2α̂3µ̂1...µ̂4ν̂1...ν̂4

(
∂Ĉ + 1

3
∂L̂
)
µ̂1...µ̂4

(
∂Ĉ + 1

3
∂L̂
)
ν̂1...ν̂4

= 0 . (1.45)

Substituting the solution

L̂ = −3Ĉ (1.46)

into the above auxiliary action one recovers the usual action of 11-dimensional
supergravity.

We can now consider this action as an action for Ĝ and add to it the
Lagrange multiplier term

1

16πG
(11)
N

∫
d11x 1

4!·6!
ε̂∂

ˆ̃
CĜ , (1.47)
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where we have already integrated it by parts, and try to eliminate Ĝ by using
its equation of motion. However, in this equation of motion both Ĝ and ?Ĝ

appear:

Ĝ = ?
{

7
[
∂

ˆ̃
C − 5

3

(
Ĝ+ 2

3
∂L̂
)
L̂
]}

. (1.48)

After some tensor gymnastics we find the following equation for Ĝ as a

function of ˆ̃
C and L̂:

Ĝα̂1...α̂4 =
(
f−1

)α̂1...α̂4

β̂1...β̂4

(
B̂β̂1...β̂4 − ?B̂β̂1...β̂7Âβ̂5β̂6β̂7

)
, (1.49)

where

fα̂1...α̂4
β̂1...β̂4 = δα̂1...α̂4

β̂1...β̂4 − 7!
4!
δα̂1...α̂7

β̂1...β̂7Âβ̂5β̂6β̂7
Âα̂5α̂6α̂7 .

Âα̂1α̂2α̂3 = 1
33·24 L̂α̂1α̂2α̂3 ,

B̂α̂1...α̂4 = 1

6!
√
|g|
ε̂α̂1...α̂10

(
∂ ˆ̃C − 10

9
∂L̂L̂

)
α̂5...α̂10

.

(1.50)

The next step in the dualization procedure, namely the elimination of
the auxiliary field, can now be done. The result (too complicated to be
meaningful) would be L̂ as a complicated non-linear and perhaps non-local

function of ˆ̃C and ∂ ˆ̃C. This relation, together with the relation between L̂

and Ĉ would give us the relation between Ĉ and its dual field ˆ̃
C. The lesson

to be learned here is that an 11-dimensional supergravity theory formulated

in terms of only the 6-form ˆ̃C does exist although it is highly non-linear.

What we know about ˆ̃
C is, however, enough to determine its gauge trans-

formation laws. We can use Eq. (1.48) plus the relation between L̂ and Ĉ
and the fact that it has to be gauge-invariant to find that [21]

δˆ̃χ
ˆ̃
C = 6∂ ˆ̃χ ,

δχ̂
ˆ̃C = 30∂χ̂Ĉ ,

(1.51)

with the understanding that Ĉ is a complicated function of ˆ̃
C. We can write

the field strength of the latter as

ˆ̃G = 7
(
∂ ˆ̃C + 10Ĉ∂Ĉ

)
, (1.52)
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so Eq. (1.48) is nothing but the usual duality relation

Ĝ = ? ˆ̃
G . (1.53)

1.3 Dual Massive IIA Supergravity

In this Section we are going to discuss several aspects concerning the duals
of the potentials appearing in massive IIA supergravity.

First we consider the massless theory as a special case. It is easy to see
that in dualizing the NS/NS 2-form B or the R-R 3-form C(3) one runs into
the non-linearity problem we found in eleven dimensions. The R-R 1-form
C(1) cannot be immediately dualized off-shell since it appears explicitly in
G(4). However, it can be reabsorbed into a redefinition of C(3) (after an
integration by parts in the action). In the end, though, the same problem
occurs. One can only define field strengths for the dual potentials if one uses
also the original potentials (understood as functions of the dual ones) and
the gauge transformation laws can then be determined. We will do so after
discussing the massive case.

In the massive theory on top of the above-mentioned problems we have
the problem of having to dualize the massive NS/NS 2-form B. In principle
it is not clear what the dual of a massive k-form potential is, since a (d −
k − 2)-form potential (which is the dual in absence of mass) always has a
different number of degrees of freedom. However, a massive (d− k− 1)-form
does describe the same number of degrees of freedom as a massive k-form.
Dualization of the corresponding action can be achieved through the use of an
intermediate action (see Ref. [14] and references therein). The construction
of this intermediate action with an auxiliary field is not systematic and has
to be made on a case by case basis, which obscures the meaning of the
dualization.

In order to set up a more systematic procedure, it is convenient to rewrite
the action for the massive k-form using an auxiliary (k−1)-form which plays
the role of a Stueckelberg field. The resulting action is invariant under mas-
sive gauge transformations. That permits the elimination of the Stueckelberg
field so that the usual action is recovered. One now dualizes first the Stueck-
elberg (k−1)-form field and then the k-form potential. The latter dualization
is possible because after the first dualization the action only depends on the
k-form potential via its field strength. This procedure is described in full de-
tail in Appendix A. Here we only need to know the qualitative result: after
the two dualizations we find that the (d− k− 2) dual (in the massless sense)
of the massive k-form field becomes the Stueckelberg field of the (d− k − 1)
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dual (in the massless sense) of the original Stueckelberg (k − 1)-form. The
mass parameter is the same after dualization.

In our case, the R-R 1-form C(1) dualizes into the R-R 7-form C(7) which
now is massive, while the NS/NS 2-form B, which is massive, dualizes into
the NS/NS 6-form B̃IIA which is nothing but the Stueckelberg field for C(7).
There is a dual massive transformation but the mass parameter is the same.
This result has to be taken into account when trying to find the field strength
of the dual fields, specially of B̃IIA. From now on, since confusion with the
Heterotic and IIB cases is not possible, we will denote B̃IIA simply as B̃.

In all other respects the dualization of the massive type IIA theory pro-
ceeds as in the massless case. To find the field strengths we have to allow for
the presence of the original potentials. Now we are going to construct those
field strengths starting with the massless case. For B̃ and C(5) we can use

the dimensional reduction of the field strength of ˆ̃
C. This 11-dimensional

field splits as follows in terms of 10-dimensional fields:

ˆ̃Cµ1...µ5y =
(
ik̂

ˆ̃C
)
µ1...µ5

= C(5)
µ1...µ5 − 5C(3)

[µ1µ2µ3Bµ4µ5] ,

ˆ̃Cµ1...µ6 = −B̃µ1...µ6 .

(1.54)

It is now immediate to find the massless field strengths13:
G

(6)
(0) = 6

[
∂C(5) − 10∂BC(3)

]
,

H̃(0) = 7
[
∂B̃ +G

(6)
(0)C

(1) − 10C(3)∂C(3)
]
.

(1.55)

To find the massless field strength of the R-R 7-form C(7) (dual to C(1))
we rewrite the equation of motion of C(1) as follows:

∂
{
?G

(2)
(0) − 28

[
?G

(4)
(0)B − 30∂C(3)B2

]}
= 0 . (1.56)

This equation should be equivalent to the Bianchi identity of the dual
C(7). We can identify the expression in curly brackets with 8∂C(7) up to a
total derivative. (The factor of 8 ensures canonical normalization of C(7).)
This total derivative is arbitrary and it amounts to a different definition of
C(7) with different gauge transformations. The choice that gives a C(7) in
the form proposed in Refs. [13, 22] is

13The subscript (0) indicates that they correspond to the massless case.
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8∂
[
C(7) + 3 · 5 · 7C(3)B2 − 3 · 7C(5)B

]
=

= ?G
(2)
(0) − 28

[
?G

(4)
(0)B − 30∂C(3)B2

]
,

(1.57)

and so, using that ?G
(2)
(0) = G

(8)
(0) we find

G
(8)
(0) = 8

[
∂C(7) − 3 · 7∂BC(5)

]
. (1.58)

The gauge transformation laws of C(5), B̃, C(7) can be found by using the
gauge invariance (by construction) of the above field strengths. We find:



δC(5) = 15∂Λ(0)B2 + 30∂Λ(2)B + 5∂Λ(4) ,

δB̃ = 6∂Λ(0)
(
C(5) − 5C(3)B

)
− 30∂Λ(2)C(3) + 6∂Λ̃ ,

δC(7) = 3 · 5 · 7∂Λ(0)B3 + 32 · 5 · 7∂Λ(2)B2

+3 · 5 · 7∂Λ(4)B + 7∂Λ(6) .

(1.59)

The massive field strengths are found by adding extra terms proportional
to m, which are uniquely determined by requiring invariance under massive
gauge transformations. The gauge transformations in the massive theory can
be found from those of the massless theory (above) by the replacements


Λ → −2λ ,

∂Λ(0) → ∂Λ(0) +mλ ,


Λ(6) → 2λ̃ ,

∂Λ̃ → ∂Λ̃ + m
6
λ̃ ,

(1.60)

where we have taken into account that now B̃ is the Stueckelberg field for
C(7) (for this reason we expect a term mC(7) in H̃). The result is14



G(6) = 6
[
∂C(5) − 10∂BC(3) + 5

4
mB3

]
,

H̃ = 7
[
∂B̃ +G(6)C(1) − 10C(3)∂C(3)

− 1
14
m
(
C(7) − 3 · 7C(5)B + 3 · 5 · 7C(3)B2

)]
,

G(8) = 8
[
∂C(7) − 3 · 7∂BC(5) + 3·5·7

16
mB4

]
.

(1.61)

14All these formulae are collected in Appendix B.
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It is also useful to have the relation between the infinitesimal gauge trans-
formation parameters of the 11- and 10-dimensional theories:



Λ(2)
µν = χ̂µν ,

λµ = λ̂µ =

= −1
2

(ik̂χ̂)
µ

= −1
2
χ̂µy ,



Λ(4)
µ1...µ4 =

(
ik̂

ˆ̃χ
)
µ1...µ4

= ˆ̃χµ1...µ4y ,

Λ̃µ1...µ5 = −ˆ̃χµ1...µ5
.

(1.62)
The gauge parameter Λ(0) is related to general coordinate transformations

of the compact eleventh coordinate y. The parameters Λ(6) and λ̃ will be
discussed in the next Subsection in which we will try to understand the
higher-dimensional origin of C(7).

1.4 Dual Massive 11-Dimensional Supergravity

Dual massive 11-dimensional supergravity is by definition the theory that
upon dimensional reduction leads to dual massive IIA supergravity. Using
the relations between 10- and 11-dimensional fields and gauge-transformation
parameters it is immediate to find the massive gauge-transformation rules for
ˆ̃C, which we write together with those of Ĉ for convenience:

δĈµ̂ν̂ρ̂ = 3∂[µ̂χ̂ν̂ρ̂] + 3mλ̂[µ̂

(
ik̂Ĉ

)
ν̂ρ̂]

,

δ
ˆ̃
Cµ̂1...µ̂6 = 6∂[µ̂1

ˆ̃χµ̂2...µ̂6] + 30∂[µ̂1χ̂µ̂2µ̂3Ĉµ4µ̂5µ̂6]

−6mλ̂[µ̂1

(
ik̂

ˆ̃C
)
µ̂2...µ̂6]

−mˆ̃
λµ̂1...µ̂6 .

(1.63)

The first and second terms are also present in the massless case. The
third term is just the massive gauge transformation of a 6-form according to
the general rule Eq. (1.4)15. The fourth term corresponds to a dual massive
gauge transformation. In order to understand its origin, we first observe that
the above transformation law only reduces to those of B̃, C(5) that we found
in the previous Subsection if

15Observe, though, that just as Ĉ, ˆ̃
C has additional terms and does not transform

covariantly under massive gauge transformations. Extra terms are needed to construct a
covariant gauge field strength.
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(
ik̂

ˆ̃
λ

)
µ1...µ5

= ˆ̃
λµ1...µ5y = 0 , (1.64)

because otherwise C(5) would have an extra symmetry under massive shifts
by a 5-form. The same property is also satisfied by λ̂ precisely because it is
equal to (ik̂χ̂). This analogy then leads us to identify

ˆ̃
λ ≡ a

(
ik̂Σ̂

)
, (1.65)

where Σ̂ is a 7-form and a a constant to be determined. A 7-form gauge
parameter is associated to an 8-form gauge potential. The only such potential
available is the dual of the Killing vector, that we can consider as a 1-form
potential k̂µ̂.

The same conclusion is reached if one writes the 11-dimensional massive
field strength of ˆ̃

C:

ˆ̃G = 7
{
D ˆ̃C + 10ĈDĈ − 5

4
m
(
ik̂Ĉ

) (
ik̂Ĉ

)
Ĉ + 1

14
m
(
ik̂

ˆ̃N
)}

, (1.66)

where ˆ̃
N is an 8-form potential such that(

ik̂
ˆ̃
N

)
µ1...µ7

= C(7)
µ1...µ7 − 5 · 7C(3)

[µ1µ2µ3Bµ4µ5Bµ6µ7] . (1.67)

A 7-form potential was needed to absorb the dual massive gauge trans-

formations of ˆ̃C but the contraction of the 7-form potential with the Killing
vector would again be zero. Thus, the 7-form potential has to be the con-
traction of the Killing vector with an 8-form potential that we have denoted

by ˆ̃N .

The field strength of ˆ̃
C does transform covariantly under massive gauge

transformations:

δχ̂
ˆ̃G = 7mλ̂

(
ik̂

ˆ̃G
)
. (1.68)

To complete the picture we have to determine the gauge transformation

laws and field strength of ˆ̃
N and then check that it leads to the field strength

of C(7).
In a first step we find that
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δ
ˆ̃
Nµ1...µ7y = 16a∂[µ1Σ̂µ2...µ7y] + 8!

3·4!
∂[µ1 χ̂µ2µ3Ĉµ4µ5µ6

(
ik̂Ĉ

)
µ7y]

+38!
6!
∂[µ1

ˆ̃χµ2...µ6

(
ik̂Ĉ

)
µ7y]

,

(1.69)

which looks somewhat strange because one would expect terms of the form(
ik̂Ĉ

)
to appear only at order m. However, since ˆ̃

N is the dual of the Killing
vector it only exists when there is an isometry and, thus, those terms are
allowed (since they do not appear in the massless case).

This suggests the following 11-dimensional transformation law

δ ˆ̃N = 16a∂Σ̂ + 8!
3·4!
∂χ̂Ĉ

(
ik̂Ĉ

)
+ 38!

6!
∂ ˆ̃χ

(
ik̂Ĉ

)
− 8mλ̂

(
ik̂

ˆ̃N
)
, (1.70)

where we have added a term corresponding to massive gauge transformations
of an 8-form. The contraction of this term with the Killing vector vanishes
and one recovers the previous formula.

If we accept the existence of an 8-form in 11 dimensions then this leads
naturally to a 7-form and an 8-form in 10 dimensions. The 7-form is C(7),
the dual of C(1). Similarly, it seems that the 8-form naturally corresponds
to the dual of the dilaton. If true, this suggests the existence of a related
NS/NS 7-brane to which this 8-form couples. We will not pursue these ideas
further here.

2 Worldvolume Fields

To construct the worldvolume effective actions of massive branes in the next
Section a knowledge of the background fields and worldvolume fields will
be necessary. In the previous Section we have studied the former and in
this Section we are going to study the gauge transformation laws and field
strengths of the different worldvolume fields. The results of this Section are
valid both for type IIA and type IIB worldvolume theories.

All D-p-brane worldvolume theories contain the BI vector field, that we
call here b because it transforms by shifts of Λ, the gauge transformation
parameter of B.

We are going to see that other worldvolume fields may occur in p- and
D-p-brane actions. In the case of D-p-branes, these are the duals of the BI
field b. They are forms of different rank depending on the dimension of the
worldvolume at hand. These worldvolume fields transform by shifts of the
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Target space Field Gauge World Volume Field
Field Strength Parameter Field Strength

B H Λ (λ) b F
C(1) G(2) Λ(0) c(0) G(1)

C(3) G(4) Λ(2) c(2) G(3)

C(5) G(6) Λ(4) c(4) G(5)

C(7) G(8) Λ(6) (λ̃) c(6) G(7)

Table 1: This table shows the correspondence between type IIA target-space
potentials and worldvolume potentials, together with their field strengths
and the gauge parameters. The worldvolume fields transform by shifts of the
gauge parameter of the associated target-space potential.

gauge parameter of a R-R form. We will denote them by c(n), since they are
associated to C(n+1) (see Table 1 for some type IIA examples).

For instance, the D-4-brane can be described using the BI 1-form b (in the
“1-form formalism”) but it may also be described by a 2-form c(2) together
with b (“1-2-form formalism”) [23] or by a 2-form field c(2) alone (“2-form
formalism”) [24]. The worldvolume 2-form c(2) transforms by shifts of Λ(2),
the gauge parameter associated to C(3).

Our goal in this Section is to find an homogeneous description (indepen-
dent of the worldvolume dimension) of the gauge transformation laws and
field strengths of all worldvolume p-form fields c(p) that will be needed in the
next Section.

Our work will be greatly simplified by the following observation: the WZ
terms of D-p-branes WZ(p+1) are (p + 1)-forms that are invariant up to a
total derivative16

δ(WZ)(p+1) ≡ dA(p) . (2.1)

In particular, A(p) contains Λ(p). Furthermore, A(p) contains only the pull-
backs of the Λ(p)’s and worldvolume fields but no background fields whatso-
ever. Thus, it is natural to identify A(p) with minus the variation of c(p) up
to a total derivative which we denote by dκ(p−1). Then, by construction we
have17

16In this Section and in Appendix B we will use, as opposed to the rest of the paper,
a differential form notation. The relation between both notations is explained in Ap-
pendix B. Some of the formulae in this Section can be found in Appendix C in component
notation.

17Note that, strictly speaking, we first introduce each c(p) for a fixed value (p+1) of the
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G(p+1) = dc(p) + 1

2πα′
WZ(p+1) ,

δc(p) = dκ(p−1) − 1
2πα′

A(p) .

(2.2)

In order to give explicit expressions in the simplest possible way we use
the formalism introduced in Refs. [25, 13] in which k-forms of different degrees
are formally combined into a single entity:

C = C(0) + C(1) + C(2) + . . . ,

G = G(0) +G(1) +G(2) + . . . ,

Λ(·) = Λ(0) + Λ(1) + . . . ,

(2.3)

and we extend it to the worldvolume fields18:

c = c(0) + c(1) + c(2) + . . . ,

G = G(0) + G(1) + G(2) + . . . ,

κ = κ(0) + κ(1) + . . . .

(2.4)

In this language the gauge transformations and field strengths of the R-R
fields and the B field can be written in the more compact form19



δC =
(
dΛ(·) +mλ

)
eB ,

δB = −2dλ ,

G = dC − dBC + m
2
eB .

H = dB .

(2.5)

The BI field gauge transformation rule and field strength are20


δb = 1

2πα′
2λ+ dρ(0) ,

F = db+ 1
2πα′

B .
(2.6)

worldvolume. Next, we may consider the same c(p) for other worldvolume dimensions.
18This formal sum has also been introduced in [26].
19Observe that our Λ(·) differs form that of Ref. [13] by a factor of eB. All products of

forms here are exterior products.
20It is worth remarking that κ(0) 6= ρ(0).
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We also define

ω(b) =
∑
r=0

(−1)r+1

(r+1)!
(2πα′)r+1b(db)r , (2.7)

which has the property

dω = e−(2πα′)db − 1 = e−(2πα′)FeB − 1 . (2.8)

With these elements we find that the gauge transformation law and field
strength of c are given by



δc = dκ− 1
2πα′

Λ(·)e−(2πα′)db − m
2
ρ(0) ∑

r=0
(−1)r+1

(r+1)!
(2πα′)r(db)r

−m
2

2λ
∑
r=1

(−1)r+1r

(r+1)!
(2πα′)r−1b(db)r−1 ,

G = dc+ 1
2πα′

{
Ce−(2πα′)F + m

2
ω
}
.

(2.9)

Observe that the above definition of G has the following property

Ge−(2πα′)F = (2πα′)dG , (2.10)

where G is the pullback of the R-R field strengths.
Knowing the existence of the p-form worldvolume fields it is natural to

redefine the WZ terms of the D-p-brane effective actions as

WZ(p+1) ′ = (2πα′)G(p+1) . (2.11)

The new WZ term is exactly gauge-invariant, which permits the extension
of previous results to non-trivial worldvolume topologies. Observe that the
new worldvolume field is non-dynamical and no new degrees of freedom are
added. Furthermore, the equations of motion remain the old ones.

An alternative way to motivate the introduction of the worldvolume p-
form fields {c(p)} is to consider Poincaré-duality transformations of D-p-brane
actions.

To perform the Poincaré-duality transformation with respect to b one first
has to eliminate any explicit dependence on b so that it only appears through
its derivative db. It turns out that b occurs explicitly in the WZ term for
non zero mass. Now, it is straightforward to obtain a form of the WZ term
in which there is no explicit dependence on b by introducing an auxiliary
vector field, that we call e, such that its integration gives back the original
WZ term. The resulting WZ term is
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W̃Z
(p+1)

= (2πα′)
{
dc+ 1

2πα′

[
C + m

2
ω(e)e2πα′F(e)

]
e−2πα′F(b)

}
. (2.12)

Here we have specified the definitions of ω and F in terms of the BI field
(the auxiliary field e) as ω(b), F(b) (ω(e), F(e)). Integration over e implies
e = b and the usual WZ term (2.11) is obtained.

Although the full Poincaré-dualization of a general D-brane action is com-
plicated, given that this transformation is consistent with gauge-invariance
it can in principle be performed in the quadratic approximation, and the
field strength of the field dual to b (in a (p+ 1)-dimensional worldvolume, a
(p−2)-form) can be immediately read off and turns out to be precisely G(p−1).
Thus, the c(p−2) worldvolume fields are nothing but the duals of the BI field
in the quadratic approximation and one can also say that the field strength
G(p+1) is obtained via Poincaré duality from the BI field strength F in the
(p+ 3)-dimensional worldvolume effective action of the D-(p + 2)-brane.

The set of worldvolume fields {c(p)} that we have just introduced is, of
course, not unique. In order to build duals of D-brane actions keeping track
of all total derivatives it is more appropriate to use a basis of worldvolume
fields {a(p)} that do not transform under Hodge duality of the BI field21. The
gauge transformation rules and field strengths (H(p+1)) of the a(p)’s are given
by 

δa = dµ− 1
2πα′

Λ(·) − 2daλ

−m
2
e(2πα′)db

[
ρ(0) ∑

r=0
(−1)r+1

(r+1)!
(2πα′)r(db)r

+2λ
∑
r=1

(−1)r+1r

(r+1)!
(2πα′)r−1b(db)r−1

]
,

H = da eB + 1
2πα′

C + 1
2πα′

m
2
e2πα′F(b)ω(b) .

(2.13)

H satisfies

G = (2πα′)dH+ (2πα′)HH . (2.14)

The relation between the two sets of worldvolume fields is:

21The basis that we have introduced so far does not satisfy this requirement because
there is an explicit dependence on b in the gauge variations of the fields. Note that b
appears explicitly in the massive contribution to the gauge transformation law of the new
fields, however this dependence disappears when in the actual dualization one introduces
the auxiliary field e as indicated above.
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a(c, b) = c e(2πα′)db ,

H(a) = e(2πα′)FG [c(a, b)] ,

µ = κe(2πα′)db .

(2.15)

From the above relations the gauge-invariance of H is evident. Observe also
that a(0) = c(0).

The main difference between the {c(p)} and {a(p)} basis is that, while in
the field strengths of the c(n)’s many R-R potentials C(r) appear but only
one c(n), in the field strength of each a(n) many other worldvolume fields a(r)

appear but only one R-R potential C(n+1).
This second basis of worldvolume fields can be used as follows: if, in the

WZ term of the massless D-p-brane action one substitutes everywhere the
R-R field C(n) by the field strength H(n)

C → (2πα′)H , (2.16)

one gets a new WZ term which is invariant under all gauge transformations,
including the massive ones. Conversely, given a massive D-brane action we
can absorb all the mass dependence into modified RR fields as above, and
actually eliminate the explicit dependence on b by the introduction of the
auxiliary field e as:

H = da eB + 1
2πα′

C + 1
2πα′

m
2
e2πα′F(e)ω(e). (2.17)

With this trick we can now apply the usual duality procedure to build the
dual action, since the resulting action is a massless D-brane with modified
RR fields. In the end we just substitute in the dual action these RR fields and
read the final action in terms of the dual variable and the auxiliary fields.
One can then check that the resulting action is gauge invariant, including
total derivative terms.

We can extend our reasoning to the p-brane case. In the case of the
fundamental string, the WZ term can be corrected by the inclusion of a total
derivative db. The new WZ term is now

WZ ′string = (2πα′)F , (2.18)

and satisfies

H = (2πα′)dF . (2.19)
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The case of the (solitonic) p-5-brane is different for each string theory for
the reasons explained in the Introduction and here we will only consider the
p-5A-brane. One can introduce again a worldvolume 5-form field b̃ whose
role is in a sense dual to that of the BI vector field b. In the massless case,
its field strength and gauge transformation law are:

F̃(0) = db̃+ 1
2πα′

B̃ −
(
C(5) − 1

2
C(3)B

)
dc(0)

−1
2
da(2)

(
C(3) + (2πα′)Bdc(0)

)
,

δb̃ = − 1
2πα′

Λ̃ + Λ(4)dc(0)

+1
2
(2πα′)da(2)

(
δ(0)a

(2) − dµ(1)
)
,

(2.20)

and the gauge field strength satisfies

(2πα′)dF̃(0) = H̃(0) − (2πα′)G
(6)
(0)G

(1)
(0) + 3(2πα′)2H(3)

(0)dH
(3)
(0) . (2.21)

In the massive case, B̃ transforms under shifts of the 6-form λ̃. There is
only one way to make the field strength of b̃ invariant: to include c(6) in it.
This, in turn forces b̃ to transform under shifts of the 5-form ρ(5), the gauge
parameter for c(6). Thus, c(6) may become massive by “eating” b̃, which
would be completely eliminated by a gauge transformation. In more detail,
we find



F̃ = db̃+ 1
2πα′

B̃ −
(
C(5) − 1

2
C(3)B

) (
dc(0) − m

2
b
)

−1
2

[
da(2) − m

2
(2πα′)bdb

]
×

[
C(3) + (2πα′)B

(
dc(0) − m

2
b
)
− m

4
(2πα′)2bdb

]
−1

6
m
2

(2πα′)3dc(0)bdbdb+ m
2
c(6) ,

δb̃ = − 1
2πα′

Λ̃ + m
2
ρ(5) + Λ(4)dc(0)

+1
2
(2πα′)da(2)

(
δa(2) − dµ(1)

)
,

(2.22)

and the gauge field strength satisfies now
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H̃ = (2πα′)dF̃ − (2πα′)G(6)G(1) + 3(2πα′)2H(3)dH(3) + m
2
G(7) . (2.23)

This ends our description of the worldvolume fields of 10-dimensional
extended objects. Explicit formulae for the worldvolumes fields we will be
considering in the next Section can be found in Appendix C.

We will see in the next sections that additional world-volume fields need
also be introduced for eleven dimensional branes. Their corresponding gauge
transformations and field strengths will be introduced case by case.

3 Effective Actions of Massive Branes

The purpose of this Section is to construct effective worldvolume actions
describing the dynamics of branes whose target space is one of the mas-
sive supergravity theories described in Section 1. Our strategy will be to
first construct the action for a massive M-brane. These actions turn out to
have as a common characteristic that they are gauged sigma models. The
gauged isometry coincides with the isometry needed to define the massive
11-dimensional supergravity theory. The original (ungauged) sigma model
describes an object of the same dimension in the massless theory, i.e. the
corresponding massless brane. The worldvolume actions are invariant under
11-dimensional massive gauge transformations.

In a second stage we consider different kinds of dimensional reductions of
the massive M-brane actions. In particular, we will show that the so-called
direct and double dimensional reductions in the isometry direction lead to a
pair of massive branes of IIA superstring theory as represented in Figure 1.
This shows that a single massive M-brane unifies a pair of massive branes of
string theory.

Below, we will consider in successive order the massive M-0-brane, M-2-
brane and M-5-brane. The case of the d=11 KK monopole (or M-6-brane)
and a conjectured M-9-brane will be discussed in the Conclusions.

3.1 The Massive M-0-Brane

Consider the action of the massless 11-dimensional particle (M-0-brane):

Ŝ [X̂ µ̂, γ] = −p
2

∫
dξ
√
|γ| γ−1 ∂ξX̂

µ̂∂ξX̂
ν̂ ĝµ̂ν̂ , (3.1)

where p is a constant with dimensions of mass. This action is known to give
upon direct dimensional reduction the action of the D-0-brane of Type IIA
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M-5

P-5

M-2

 D-2

M-0

D-0W10 P-1 D-4

Figure 1: Each M-brane gives rise to a pair of type IIA branes both in the massive and massless cases.
Vertical arrows indicate direct dimensional reduction (i.e. target-space dimensional reduction), slanted
arrows indicate double dimensional reduction and horizontal arrows indicate worldvolume dimensional
reduction together with gauge-fixing of some symmetries. As the figure indicates, double dimensional
reduction is equivalent to direct dimensional reduction followed by worldvolume dimensional reduction
and gauge-fixing. Upon direct dimensional reduction, the M-0-brane gives the D-0-brane or the ten-
dimensional Brinkmann wave W10 depending on whether the M-0-brane has momentum along the 11th
dimension or not, respectively.

superstring theory (see e.g. [27]). Our goal is to obtain an effective action with
11-dimensional target space from which one can derive the effective action of
the massive D-0-brane. This object moves in 11-dimensional spacetime and
will henceforth be referred to as the massive M-0-brane22. We proceed by
analogy with the massive D-2-brane case, whose effective worldvolume action
[12, 13] can be obtained from the M-2-brane effective action by gauging an
isometry and introducing the massive gauge transformations in their 11-
dimensional form [16, 17].

It is reasonable to expect that the same procedure will give us the ac-
tion we are looking for. Thus, we assume that the metric has an isometry
generated by a Killing vector k̂µ̂, so the above action is invariant under the
infinitesimal transformations

δηX̂
µ̂ = η k̂µ̂(X̂) ,

δηĝµ̂ν̂ = η k̂λ̂∂λ̂ĝµ̂ν̂ ,

(3.2)

with constant η. To make the action invariant under the same transforma-
tions but now with η(ξ) being an arbitrary worldline function, we simply
substitute the derivative with respect to ξ by the covariant derivative

22We reserve the name massive M-branes for those branes that move in an 11-
dimensional spacetime and have the property that they give upon dimensional reduction
the massive branes of Type IIA superstring theory.
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DξX̂
µ̂ = ∂ξX̂

µ̂ +Aξ(ξ)k̂
µ̂ , (3.3)

where Aξ is an auxiliary worldline variable transforming as follows

δηAξ = −∂ξη ⇒ δηDξX̂
µ̂ = η DξX̂

ν̂∂ν̂ k̂
µ̂ . (3.4)

We obtain the following action:

Ŝgauged [X̂ µ̂, Aξ, γ] = −p
2

∫
dξ
√
|γ| γ−1 DξX̂

µ̂DξX̂
ν̂ ĝµ̂ν̂ . (3.5)

On top of being invariant under local transformations of the form (3.2), this
action turns out to be invariant under the massive gauge transformations of
the metric (1.6) and the auxiliary variable

δχ̂Aξ = −mλ̂ξ . (3.6)

In order to make more uniform our notation and write all actions in such
a way that the massless m→ 0 limit coincides with the ungauged limit, it is
convenient to make the following redefinitions:

Aξ = −m
2

(2πα′) bξ ,

η = m
2

(2πα′) ρ(0) .
(3.7)

After these redefinitions the action is

Ŝgauged [X̂ µ̂, bξ, γ] = −p
2

∫
dξ
√
|γ| γ−1 DξX̂

µ̂DξX̂
ν̂ ĝµ̂ν̂ , (3.8)

where

DξX̂
µ̂ = ∂ξX̂

µ̂ − m
2

(2πα′) bξ k̂
µ̂ , (3.9)

and the fields transform as follows:

δX̂ µ̂ = m
2

(2πα′) ρ(0) (ξ) k̂µ̂(X̂) ,

δĝµ̂ν̂ = m
2

(2πα′) ρ(0) k̂λ̂∂λ̂ĝµ̂ν̂ ,

δbξ = 1
2πα′

2λ̂ξ + ∂ξρ
(0) .

(3.10)
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Now we want to perform the dimensional reduction23 of the gauged action
in the direction associated to the isometry. As a first step, using a coordinate
system adapted to the isometry (k̂µ̂ = δµ̂y) and using Eqs. (1.18) we rewrite
the background fields in 10-dimensional form, obtaining

Ŝ [Xµ, c(0), bξ, γ] = −p
2

∫
dξ
√
|γ| γ−1

[
e−

2
3
φgξξ − (2πα′)2e

4
3
φ
(
G(1)

ξ

)2
]
,

(3.11)
with 

gξξ = ∂ξX
µ∂ξX

νgµν ,

C(1)
ξ = ∂ξX

µ C(1)
µ ,

G(1)
ξ = ∂ξc

(0) + 1
2πα′

C(1)
ξ −

m
2
bξ .

(3.12)

G(1)
ξ is the gauge-invariant “field” strength of c(0). The worldvolume 0-form

c(0) is related to the original 11-dimensional coordinate Y by

Y = (2πα′)c(0) , (3.13)

and transforms as given by (2.9):

δc(0) = − 1
2πα′

Λ(0) + m
2
ρ(0) . (3.14)

Now we want to eliminate c(0) (or, equivalently, Y ) by using its equation
of motion, which essentially says that the momentum of the particle in the
direction Y , Py, is constant. The right way of doing this [11] is to first perform
the Legendre transformation of the action with respect to Y (or c(0))

S̃ ′ [Xµ, Py, bξ, γ] =
∫
dξ [−Py∂ξY + L] , (3.15)

with

Py =
∂L

∂(∂ξY )
. (3.16)

We obtain

23Strictly speaking it is not “direct” dimensional reduction because we are going to
eliminate one coordinate. Since this is not a field theory, but a quantum-mechanical
theory, there is no counting of degrees of freedom and we cannot say how many of them
we are eliminating.
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S̃ ′ [Xµ, Py, bξ, γ] = −p
2

∫
dξ
√
|γ| γ−1

[
e−

2
3
φgξξ + γe−

4
3
φ
(
Py
p

)2
]

+
∫
dξPy

[
C(1)

ξ −
m
2

(2πα′) bξ
]
.

(3.17)

We can now set Py to a constant value and eliminate the auxiliary metric.
For Py 6= 0 (that is, the M-0-brane has some momentum in the compact
dimension) we get24:

S̃ ′ [Xµ, bξ] = −|Py|
∫
dξ e−φ

√
|gξξ|+ Py

∫
dξ
(
C(1)

ξ −
m
2

(2πα′) bξ
)
, (3.18)

which is the standard effective action of the massive D-0-brane [12], bξ being
the BI vector “field”. The mass of the D-0-brane is |Py| and its R-R charge
is −Py. Note that the constant p has disappeared from the action. As we
said in Section 2 this action is gauge-invariant only up to total derivatives.
The gauge-invariance of the Lagrangian has been lost in the Legendre trans-
formation. It is convenient to introduce an auxiliary scalar field c(0) to make
the above action exactly gauge invariant. Doing this, we have

S̃ ′ [Xµ, bξ] = −|Py|
∫
dξ e−φ

√
|gξξ|+ (2πα′)Py

∫
dξ G(1)

ξ . (3.19)

When Py = 0 (the M-0-brane only moves in directions orthogonal to Y )
we obtain the action for a null D-0-brane [28, 26]:

S̃ [Xµ, γ] = −p
2

∫
dξ
√
|γ| γ−1e−

2
3
φgξξ . (3.20)

Observe that the factor e−
2
3
φ cannot be reabsorbed into γ at least when

the above effective action is acting as a source for supergravity. The null
D-0-brane does not qualify as fundamental, solitonic or D-type.

3.2 The Massive M-2-Brane

Starting from the massless M-2-brane action we perform a similar gauging as
in the particle case. At the same time however we want the resulting gauged
action to remain invariant under the gauge transformations of the 3-form Ĉ.

24Note that the field equation for bξ seems to lead to m = 0. However, one should keep
in mind that in the supersymmetric case bξ couples to further fermionic terms. We thank
M.B. Green for a discussion on this point.
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A straightforward Noether procedure leads to an action [17] that we rewrite
as follows25 26

Ŝgauged [X̂ µ̂, b̂ı̂] = −TM2

∫
d3ξ̂

√
|Dı̂X̂ µ̂D̂X̂ ν̂ ĝµ̂ν̂ |

−(2πα′)TM2

3!

∫
d3ξ̂ ε̂ı̂̂k̂K̂(3)

ı̂̂k̂ ,

(3.21)

where

Dı̂X̂
µ̂ = ∂ı̂X̂

µ̂ − m
2

(2πα′) b̂ı̂ k̂
µ̂ , (3.22)

k̂µ̂ is a fixed (i.e. non-dynamical) spacetime vector and

K̂(3) = 3
[
∂ω̂(2) + 1

3(2πα′)
DX̂ µ̂DX̂ ν̂DX̂ ρ̂Ĉµ̂ν̂ρ̂ −

m
2

(2πα′)b̂∂b̂
]
, (3.23)

is the gauge-invariant field-strength of the auxiliary worldvolume field ω̂(2)

that transforms as follows:

δω̂
(2)
ı̂̂ = − 1

2πα′
χ̂ı̂̂ −

m
2

(2πα′)
(

1
2πα′

2λ̂+ ∂ρ̂(0)
)

[̂ı
b̂̂] + 2∂[̂ıρ̂

(1)
̂] . (3.24)

Finally, |Mı̂̂| stands for the absolute value of the determinant of the matrix
Mı̂̂. Like in the case of the particle we use conventions such that the massless
and ungauged limits coincide.

Without the auxiliary worldvolume field ω̂(2), the above massive M-2-
brane action would be invariant up to total derivatives under the infinitesimal
massive gauge transformations with parameter χ̂ of ĝµ̂ν̂ and Ĉµ̂ν̂ρ̂ given in
Eqs. (1.6,1.8) together with the massive transformation of the auxiliary field
b̂ı̂

δχ̂b̂ı̂ = 1
2πα′

2λ̂ı̂ , (3.25)

and the δρ̂(0) transformations (for which b̂ı̂ plays the role of gauge field)

25In this Section we will consider a double dimensional reduction which involves not only
a target space reduction (from d=11 to d=10) but also a worldvolume reduction (from
3 dimensions to 2 dimensions). To distinguish fields before and after the worldvolume
reduction we use a notation where worldvolume hatted indices (Latin) and fields are 3-
dimensional, while unhatted worldvolume indices and fields are 2-dimensional. The split
is ı̂ = (i, 2), with i = 0, 1. In the next Section we will discuss the massive M-5-brane and
use a similar notation.

26The three-dimensional gauged sigma model given below also occurs in [29]. The
authors of [29] also note that the Killing isometry condition can be slightly weakened
so that only the curvatures are Lie-invariant.
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δρ̂(0)X̂ µ̂ = m
2

(2πα′) ρ̂(0)(ξ̂) k̂µ̂(X̂) ,

δρ̂(0) b̂ı̂ = ∂ρ̂(0) ,

δρ̂(0) ĝµ̂ν̂ = m
2

(2πα′) ρ̂(0)k̂λ̂∂λ̂ĝµ̂ν̂ ,

δρ̂(0)Ĉµ̂ν̂ρ̂ = m
2

(2πα′) ρ̂(0)k̂λ̂∂λ̂Ĉµ̂ν̂ρ̂ ,

(3.26)

assuming the conditions

$k̂ĝµ̂ν̂ = $k̂Ĉµ̂ν̂ρ̂ = $k̂χ̂µ̂ν̂ = 0 (3.27)

hold. We see that, in particular, k̂µ̂ must be a Killing vector. These condi-
tions coincide with those necessary to build the massive M-0-brane and are
exactly those satisfied by the massive 11-dimensional supergravity theory de-
scribed in Section 1.1. This was our main motivation for constructing the
massive 11-dimensional supergravity theory in Section 1.1.

Observe that the gauge transformation laws of the worldvolume field b̂ı̂
are identical to those of the auxiliary field bξ that we introduced in the M-0-
brane case (taking into account the different dimensionality of the respective
worldvolumes).

The auxiliary field ω̂(2) has been introduced to compensate for the total
derivatives so the action is exactly gauge-invariant (the WZ term is precisely
its field-strength). A field that transforms precisely in the same way and with
the same field strength occurs in the M-5-brane effective action. There it is
a dynamical field whose equation of motion is the anti-self-duality condition.
Following our philosophy, we denote both worldvolume 2-forms by ω̂(2).

3.2.1 Direct Dimensional Reduction: the Massive D-2-Brane

By assumption the eleven dimensional background has an isometry and we
can perform a direct dimensional reduction of the action (3.21) in the direc-
tion associated to the isometry that we have gauged. This amounts to a sim-
ple rewriting of the background fields from 11-dimensional to 10-dimensional
form. Using a coordinate system adapted to the isometry (k̂µ̂ = δµ̂y) and
the relations between 11- and 10-dimensional fields Eqs. (1.18) we obtain the
dual action for the D-2-brane of massive type IIA theory found in [16] (plus
the auxiliary field). Taking into account that ω̂(2) transforms as the ∂â(2)

defined in Section 2 and substituting accordingly, we can write that action
as follows:

36



S̃ [Xµ, ĉ(0), b̂ı̂, â
(2)
ı̂̂ ] = −TM2

∫
d3ξ̂ e−φ

√
|gı̂̂ − (2πα′)2e2φĜ(1)

ı̂G(1)
̂|

−(2πα′)TM2

3!

∫
d3ξ̂ ε̂ı̂̂k̂Ĥ(3)

ı̂̂k̂ ,

(3.28)
where

gı̂̂ = ∂ı̂X
µ∂̂X

νgµν , (3.29)

and Ĝ(1)
ı̂ and Ĥ(3)

ı̂̂k̂ are defined in Section 2 and given explicitly in Ap-
pendix C.

As for the D-particle the worldvolume 0-form ĉ(0), whose transforma-
tion properties are also defined in Section 2, is related to the original 11-
dimensional coordinate Y by

Y = (2πα′)ĉ(0) . (3.30)

The equivalence between this action and the usual effective action for the
massive D-2-brane which contains the BI vector field can be proven via the
intermediate action of Ref. [16] or by eliminating ĉ(0) in the above action.
This can be done in two alternative but equivalent ways. First, one can
try to use the equation of motion of b̂ı̂. To do this consistently one has to
Legendre-transform the above action with respect to ĉ(0)27:

S̃ ′ [Xµ, P̂(0)
ı̂, b̂ı̂, γ̂ı̂̂] =

∫
d3ξ̂

[
−P̂(0)

ı̂∂ı̂ĉ
(0) + L̂

]
, (3.31)

with

P̂(0)
ı̂ =

∂L̂

∂(∂ı̂ĉ(0))
. (3.32)

The result is

27This is more easily done using an auxiliary worldvolume metric γ̂ı̂̂. The corresponding
worldvolume action can be found in Ref. [17].

37



S̃ ′ [Xµ, P̂(0)
ı̂, b̂ı̂, γ̂ı̂̂] =

−TM2

2

∫
d3ξ̂

√
|γ̂| γ̂ ı̂̂

{
e−

2
3
φgı̂̂ + e−

4
3
φ
(
P̂(0) + ?B

)
ı̂

(
P̂(0) + ?B

)
̂

−2
(
P̂(0) + ?B

)
ı̂

(
C(1) − m

2
(2πα′) b̂

)
̂
− 1

}

−TM2

3!

∫
d3ξ̂ ε̂ı̂̂k̂

{
C(3)

ı̂̂k̂ − 3 m
2

(2πα′)2b̂ı̂F̂̂k̂ + 3
2
m
2

(2πα′) b̂ı̂B̂k̂

+3(2πα′)∂ı̂ĉ
(2)

̂k̂

}
,

(3.33)
where F̂ is defined in Section 2, and we are using for simplicity

P̂(0)
ı̂ = 1

2πα′TM2

√
|γ̂|
P̂(0)

ı̂ . (3.34)

We have also substituted the auxiliary field â(2) by the auxiliary field ĉ(2) to
compensate for the lack of exact gauge-invariance introduced by the Legendre
transformation.
Now, the equation of motion for b̂ı̂ is a purely algebraic constraint for P̂(0)

ı̂:(
P̂(0) + ?B

)ı̂
= (2πα′) ?F̂ ı̂ . (3.35)

Substituting this constraint into the action Eq. (3.33) and eliminating
again the auxiliary metric we readily obtain the action of the massive D-2-
brane [12, 13]:

S [Xµ, b̂ı̂] = −TM2

∫
d3ξ̂ e−φ

√
|gı̂̂ + (2πα′)F̂ı̂̂|

−(2πα′)TM2

3!

∫
d3ξ̂ εı̂̂k̂Ĝ(3)

ı̂̂k̂ ,

(3.36)

where Ĝ(3)
ı̂̂k̂ is defined in Section 2.

In this action the worldvolume 1-form b̂ı̂ plays the role of the Born-
Infeld vector field and the auxiliary field ĉ(2) makes the action exactly gauge-
invariant.

A more elegant way to proceed, keeping track as well of the total deriva-
tive induced in the dualization, is to perform the worldvolume canonical
transformation [30]:
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P̂(0) = −(2πα′)2TM2ε̂

0α̂β̂∂α̂V̂β̂ ,

Π̂α̂ = (2πα′)2TM2ε̂
0α̂β̂∂β̂ ĉ

(0) ,

(3.37)

from {ĉ(0), P̂(0)} to {V̂α̂, Π̂α̂}, where we have split the three dimensional index

ı̂ = (0, α̂) and P̂(0) (≡ P̂ 0
(0)), Π̂α̂ are the canonically conjugate momenta of

ĉ(0) and V̂α̂ respectively. This transformation is generated by the functional

Ψ = (2πα′)2TM2

∫
t fixed

ε̂0α̂β̂V̂α̂∂β̂ ĉ
(0) . (3.38)

The canonically transformed action is given by:

S[Xµ, b̂ı̂, V̂ı̂] = −TM2

∫
d3ξ̂e−φ

√
|gı̂̂ + (2πα′)F̂ı̂̂|

−
TM2

3!

∫
d3ξ̂εı̂̂k̂

[
C

(3)

ı̂̂k̂
− 3(2πα′)C

(1)
ı̂ F̂̂k̂

+6mπα′(2πα′)b̂ı̂∂̂V̂k̂ − 3m
2

(2πα′)2b̂ı̂∂̂b̂k̂

+3(2πα′)∂ı̂â
(2)

̂k̂ − 6(2πα′)2∂ı̂ĉ
(0)∂̂Vk̂

]
,

(3.39)

where F̂ı̂̂ = 2∂[̂ıV̂̂] + 1
2πα′

Bı̂̂ and we have included the total derivative gen-
erated in the dualization procedure, namely

−(2πα′)2TM2

∫
d3ξ̂ε∂ĉ(0)∂V̂ . (3.40)

Elimination of b̂ı̂ through its equation of motion gives b̂ı̂ = V̂ı̂ and the usual
action for the D-2-brane is recovered where now V̂ı̂ is the BI field and there
are additional world-volume fields compensating for all the total derivatives
coming from the gauge transformations. Note that ĉ(0) is now playing the
role of an auxiliary field needed to compensate for the total derivatives, and
not of the eleventh coordinate as in (3.28). In (3.39) b̂ is an auxiliary field
whose role is to eliminate the explicit dependence on the BI field (other than
through its derivatives), such that the standard duality transformation can
be applied even in the massive case. Once it is integrated out the usual action
is recovered.

3.2.2 Double Dimensional Reduction: the Type IIA String

In this Section we consider the double dimensional reduction of the massive
M-2-brane worldvolume effective action. We will see that this reduction leads
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to the usual (“massless”) type IIA string action.
It is convenient to perform the double dimensional reduction of Eq. (3.21)

in three steps. First, we perform a direct dimensional reduction, obtaining
Eq. (3.28). The second step consists in a partial gauge-fixing of the action
Eq. (3.28). We set

ĉ(0) = 1
2πα′

ξ̂2 , (3.41)

while all other worldvolume fields (and gauge parameters) are independent
of ξ̂2:

∂2X
µ = ∂2b̂ı̂ = ∂2â

(2)
ı̂̂ = 0 , (3.42)

etc. We want to keep track of all gauge transformations. Thus, we introduce
a compensating gauge transformation to keep our gauge choice Eq. (3.41).
This transformation is the g.c.t.

δξ̂ ı̂ = δ ı̂ 2
[
−Λ(0) + m

2
(2πα′)ρ̂(0)

]
. (3.43)

Including this compensating gauge transformation, we find the modified
gauge transformations



δM b̂2 = 0 ,

δM b̂i = 1
2πα′

2λi + ∂iρ̂
(0) +

[
∂iΛ

(0) − m
2

(2πα′)∂iρ̂
(0)
]
b̂2 ,

δM â
(2)

i2 = ∂iµ̂
(1)

2 + 1
2πα′

2λi + m
4

(2πα′)ρ̂(0)∂ib̂2 −
m
2
λib̂2 ,

δM â
(2)

ij = 2∂[iµ̂
(1)

j] −
1

2πα′
Λ(2)

ij + m
2

(2πα′)ρ̂(0)∂[ib̂j] −mλ[ib̂j]

−2
[
∂Λ(0) − m

2
(2πα′)∂ρ̂(0)

]
[i
â(2)

j]2 .

(3.44)

Now, we perform a field redefinition consisting of a Λ(0) gauge transfor-
mation where the gauge parameter Λ(0) is a new scalar field c(0). Since we
are dealing with a gauge-invariant action, the final result is guaranteed not
to depend on c(0), no matter how it transforms. It is convenient to asign
to c(0) the gauge transformation rules introduced in Section 2 since then the
redefined fields also happen to transform as combinations of the standard
worldvolume fields introduced in Section 2. More explicitly, we find the fol-
lowing decompositions:
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b̂2 = v(0) ,

b̂i = bi − (2πα′)∂ic
(0)v(0) ,

â(2)
i2 =

[
1− m

4
(2πα′)v(0)

]
bi + v(1)

i ,

â(2)
ij = a(2)

ij + 2(2πα′)∂[ic
(0)
{[

1− m
4

(2πα′)v(0)
]
b+ v(1)

}
j]
,

(3.45)

where v(1)
i is a vector field transforming according to

δv(1) = ∂∆(0) ,

∆(0) = µ̂(1)
2 −

[
1− m

4
(2πα′)v(0)

]
ρ̂(0) ,

(3.46)

and we have identified ρ̂(0) = ρ(0) and µ̂(1)
i = µ(1)

i.
Given the above identifications of the potentials, we find, for the field

strength

Ĥ(3)
ij2 =

[
1− m

2
(2πα′)v(0)

]
Fij + L(2)

ij , (3.47)

where F is the BI field strength defined in Section 2 and

L(2) = 2∂v(1) . (3.48)

Substituting these results and integrating over ξ̂2 the massive M-2-brane
action one arrives at the action

S̃ [Xµ, b, v(1)] = −TM2l
∫
d2ξ

[
1− m

2
(2πα′)v(0)

]√
|gij|

−TM2l
2

∫
d2ξ ε

{[
1− m

2
(2πα′)v(0)

]
Fij + L(2)

ij

}
.

(3.49)

Now, the equation of motion for b implies that the scalar v(0) is constant.
Substituting this result into the action and redefining

b+
[
1− m

2
(2πα′)v(0)

]−1
v(1) → b , (3.50)

(plus an analogous redefinition of the gauge parameters) we get the action
of the type IIA string in the Nambu-Goto form with an extra term which
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does not change the equations of motion but makes the WZ term exactly
gauge-invariant28:

S [Xµ, bi] = −T
∫
d2ξ

√
|gij| − (2πα′)T

2

∫
d2ξ εF , (3.51)

where the tension T is now given by:

T =
[
1− m

2
(2πα′)v(0)

]
TM2l . (3.52)

Observe that the new tension depends on the constant value of the gauge
vector field b̂ in the compact direction v(0) = b̂2 (a Wilson line). The Wilson
line has a critical value for which the tension vanishes. It would be interesting
to investigate the physical mechanism behind this phenomenon.

3.2.3 Reduction in a Non-Isotropic Direction

Let us now assume that there exists an additional isometry realized by trans-
lations of a coordinate other than the isotropic coordinate Y , and perform
the double dimensional reduction along this direction. In this subsection
we will ignore total derivatives and only analyze in detail the λ, ρ(0) gauge
transformations for the sake of simplicity. We split the eleven coordinates
into (Z,Xµ) and use the ansatz:

Z = ξ̂2 , ∂2X
µ = ∂2b̂ı̂ = 0 . (3.53)

We also split the vector field b̂

b̂i = bi , b̂2 = v(0) . (3.54)

Notice that now the isotropic coordinate Y is among the Xµ coordinates.
As before, the ansatz above is compatible with the equations of motion of
the action (3.28) and the resulting action. The latter is given by:

28Substituting the equation of motion of v(0) into the action one gets an action from
which one cannot derive any equation of motion. As we have stressed before, the elimina-
tion of a field through its equation of motion can not always be done directly in the action
and the equations of motion always have to be checked.
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S̃[Xµ, bi, v
(0)] = −TM2l

∫
d2ξ

√
|DiXµDjXνgµν |

−TM2l
2

∫
d2ξεij

[
DiX

µDjX
νBµν −mπα′v(0)

(
ikC

(3)
)
µν
∂iX

µ∂jX
ν

−m(2πα′)2v(0)∂ibj
]
.

(3.55)
Integrating out v(0) we obtain the constraint:

εij∂ibj = − 1
2(2πα′)

εij(ikC
(3))ij . (3.56)

Substituting this constraint back into (3.55) the action of a gauged super-
string in ten dimensions is obtained:

S̃[Xµ, bi] = −TM2l
∫
d2ξ

√
|DiXµDjXνgµν|

−TM2l
2

∫
d2ξεijDiX

µDjX
νBµν .

(3.57)

This action is invariant under the transformations:



δgµν = 2mλ(µ (ikg)ν) + m
2

(2πα′)ρ(0)kγ∂γgµν ,

δBµν = −2mλ[µ (ikB)ν] + 2∂[µλν] + m
2

(2πα′)ρ(0)kγ∂γBµν ,

δb = 1
2πα′

2λ+ ∂ρ(0) ,

(3.58)

assuming the conditions:

$kgµν = $kBµν = $kλµ = 0 (3.59)

hold.
The above transformations are to be interpreted within the nine dimen-

sional theory obtained by dimensional reduction along the isotropic coordi-
nate. The ansatz for the decomposition of the ten dimensional NS-NS fields
is29 [20]:

29We split the ten dimensional coordinates as Xµ = (X̃ µ̃, Y ). In this section tilded fields
are nine dimensional.
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gµ̃ν̃ = g̃µ̃ν̃ − k̃2Ã(1)
µ̃Ã

(1)
ν̃ ,

gyµ̃ = −k̃2Ã(1)
µ̃ ,

gyy = −k̃2 ,



Bµ̃ν̃ = B̃(2)
µ̃ν̃ + 2Ã(1)

[µ̃B̃
(1)

ν̃] ,

Byµ̃ = B̃(1)
µ̃ ,

φ = φ̃+ 1
2

log k̃ ,
(3.60)

and the dimensionally reduced action reads:

S = −TM2l
∫
d2ξ

√
|g̃ij − k̃2(2πα′)2G̃(1)

iG̃(1)
j|

−
TM2

l

2

∫
d2ξεij

[
B̃(2)

ij + 2(2πα′)G̃(1)
iB̃

(1)
j

]
,

(3.61)

where now the field strength G̃(1) is defined by (recall Y = (2πα′)c(0)):

G̃(1) = ∂c(0) + 1
2πα′

Ã(1) − m
2
b . (3.62)

It is easy to see that this action is invariant under the nine dimensional
massive transformations:

δλÃ
(1) = mλ ,

δλB̃
(1) = 0 ,


δλB̃

(2) = 2∂λ ,

δλb = 1
2πα′

2λ .
(3.63)

The existence of a string solution invariant under nine dimensional mas-
sive transformations seems to imply that a similar type of solution will exist
in the type IIB theory after performing a T-duality transformation. However
we will now show that after the T-duality transformation the auxiliary vec-
tor field b decouples from the other fields and its integration fixes the mass
parameter to zero, in such a way that the resulting action corresponds to the
dimensional reduction of the massless type IIB superstring.

In order to construct the T-dual of the action (3.61), which is nothing
but a Poincaré duality transformation of the redundant coordinate, we add
to it the following Lagrange multiplier term enforcing the Bianchi identity
for c(0) (after an integration by parts):

TM2l
∫
d2ξ(2πα′)εij∂i%

(
G̃(1)
j −

1
2πα′

Ã(1)
j + m

2
bj
)
. (3.64)

Integration over G̃(1) gives the following dual action:
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SIIB = −TM2l
∫
d2ξ

√
|g̃ij −

1
k̃2 (∂i%+ B̃

(1)
i )(∂j%+ B̃

(1)
j )|

−
TM2

l

2

∫
d2ξεij

[
B̃(2)

ij + 2∂i%
(
Ã(1)

i +mπα′bj
)]
.

(3.65)

Here the auxiliary field b can be integrated out, giving the constraint that m
must be equal to zero30. The resulting action is the dimensional reduction
of the ten dimensional type IIB superstring along the % coordinate (see [20]
for more details).

3.3 The Massive M-5-Brane

We start by reviewing the massless case. The worldvolume fields of the
massless M-5-brane are the eleven embedding scalars X̂ µ̂ (µ̂ = 0, 1, . . . , 10)
and an (anti-self-dual31) worldvolume two-form ω̂(2)

ı̂̂ (i = 0, . . . , 5). The

curvature K̂(3) of ω̂(2) is given by32

K̂(3) = 3
[
∂ω̂(2) + 1

3(2πα′)
Ĉ
]
, (3.66)

where Ĉ is the 3-form potential of 11-dimensional supergravity, with gauge
transformation

δĈ = 3∂χ̂ (3.67)

under a 2-form gauge parameter χ̂. The gauge invariance of K̂(3) implies the
following gauge transformation law of ω̂(2):

δω̂(2) = − 1
2πα′

χ̂+ 2∂ρ̂(1) . (3.68)

The anti-self-duality condition of the field strength can be written in the
linear approximation (which we will use throughout this section) as follows:

K̂(3) = −∗K̂(3) , (3.69)

30Or % = constant, which is a particular case in the final action.
31With our conventions the 3-form field strength has to be anti-self-dual, otherwise the

kinetic term would have the wrong sign. In the absence of the WZ term, imposing self- or
anti-self-duality is a matter of convention and either choice is possible. In the presence of
the WZ term, with our conventions, only anti-self-duality can be consistently imposed.

32In this Section, worldvolume hatted indices (Latin) and fields are 6-dimensional, while
unhatted worldvolume indices and fields are 5-dimensional. The split is ı̂ = (i, 5), with
i = 0, 1, . . . , 4. Note also that we have adapted our conventions from those in [23].
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and therefore it is not possible to write a covariant action for ω̂(2)33. We can
write however an action in which this constraint is only imposed at the level
of the equations of motion derived from it. This can be done consistently
if the action is Poincaré anti-self-dual. To second order in K̂(3) the unique
action with the required properties is [23]

Ŝ[X̂ µ̂, ω̂(2)
ı̂̂] = −TM5

∫
d6ξ̂

√
|ĝı̂̂|

{
1− 1

4·3!
(2πα′)2

(
K̂(3)

)2
+ · · ·

}

+(2πα′)TM5

6!

∫
d6ξ̂ ε̂ı̂1···̂ı6K̂(6)

ı̂1···̂ı6 ,
(3.70)

where K̂(6) is the gauge-invariant 6-form field strength of the worldvolume
5-form field ω̂(5):

K̂(6) = 6
[
∂ω̂(5) + 1

6(2πα′)
ˆ̃
C + 5

3
K̂(3)Ĉ

]
, (3.71)

whose mission is to make the above action exactly gauge invariant. Thus

δω̂(5) = − 1
2πα′

ˆ̃χ+ 15∂ω̂(2)χ̂+ 5∂ρ̂(4) . (3.72)

This worldvolume 5-form has also been recently considered in Ref. [34]. Ob-
serve that the M-5-brane couples naturally to the dual 6-form potential of
d=11 supergravity [21]. The action (3.70) is invariant (including total deriva-
tives) under the massless gauge transformations (3.67), (3.68) together with
the gauge transformations of the 6-form (1.51), and it gives the massless D-4-
brane action upon double dimensional reduction and the massless p-5A-brane
action upon direct dimensional reduction [23].

Our goal is to construct a massive M-5-brane action which is invariant
under the 11-dimensional massive gauge transformations. The double dimen-
sional reduction of this action should give the massive D-4-brane action and
the direct dimensional reduction the massive p-5A-brane action. These will
be derived as by-products of our construction in a second step.

To construct the massive M-5-brane action we proceed as we did with
the M-0- and M-2-brane actions: we assume that the background admits
an isometry and fulfills all the requirements to be considered a “massive
11-dimensional background”. Then we gauge the isometry in the usual M-
5-brane action, substituting all partial derivatives of the embedding scalars

33A covariant action can be constructed by introducing an auxiliary scalar field [31].
The nonlinear form of the equations of motion of the massless M-5-brane has been given
in [31, 32, 33]. We expect that the results given in this Section on the massive M-5-brane
automatically carry over to the nonlinear case simply by replacing the massless curvatures
in [31, 32, 33] by their massive extensions.
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∂ı̂X̂
µ̂ by covariant derivatives Dı̂X̂

µ̂ with gauge field b̂ı̂, trying to keep gauge
invariance as well as Poincaré anti-self-duality (which are both broken by
naive gauging). As we saw in the M-2-brane case this implies the introduction
of new terms (in the present case not only the auxiliary gauge fields b̂ı̂, ω̂

(5) but
also an additional worldvolume 6-form ω̂(6)), as well as a modification of the
gauge transformations of both the background fields and the worldvolume
fields. The new transformations of the background fields turn out to be
precisely those of massive (dual) 11-dimensional supergravity.

The action that we get to second order is:

Ŝ[X̂ µ̂, ω̂(2)
ı̂̂, b̂ı̂] =

−TM5

∫
d6ξ̂

√
|Dı̂X̂ µ̂D̂X̂ ν̂ ĝµ̂ν̂|

{
1− 1

4·3!
(2πα′)2

(
K̂(3)

)2
+ · · ·

}

+(2πα′)TM5

6!

∫
d6ξ̂ ε̂ı̂1...̂ı6K̂(6)

ı̂1...̂ı6 ,

(3.73)

where K̂(3) and K̂(6) are now the massive field strengths of ω̂(2) and ω̂(5):



K̂(3) = 3
[
∂ω̂(2) + 1

3(2πα′)
DX̂ µ̂DX̂ ν̂DX̂ ρ̂Ĉµ̂ν̂ρ̂ −

m
2

(2πα′)b̂∂b̂
]
,

K̂(6) = 6∂ω̂(5) + m
2
ω̂(6) + 1

2πα′
DX̂ µ̂1 · · ·DX̂ µ̂6 ˆ̃

C µ̂1···µ̂6

+10K̂(3)
[
DX̂ µ̂DX̂ ν̂DX̂ ρ̂Ĉµ̂ν̂ρ̂ − 3m

2
(2πα′)2b̂∂b̂

]
+30m

2
(2πα′)DX̂ µ̂DX̂ ν̂DX̂ ρ̂Ĉµ̂ν̂ρ̂b̂∂b̂ ,

(3.74)

and the indices of K̂(3) in the kinetic term are contracted using the metric

Dı̂X̂
µ̂D̂X̂

ν̂ ĝµ̂ν̂ . (3.75)

The covariant derivative is defined by

Dı̂X̂
µ̂ = ∂ı̂X̂

µ̂ − m
2

(2πα′)b̂ı̂k̂
µ̂ . (3.76)

Note that the metric above is also used to raise the indices of K̂(3) in the
anti-self-duality constraint, which now takes the form34

34In our conventions the antisymmetric tensor ε̂ is defined to be independent of the
metric with upper indices ε̂012345 = +1.
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K̂(3) ı̂1 ı̂3ı̂3 = −
ε̂ı̂1...̂ı6

3!
√
|Dı̂X̂ µ̂D̂X̂ ν̂ ĝµ̂ν̂|

K̂(3)
ı̂4ı̂5 ı̂6 . (3.77)

The massive field strengths K̂(3) and K̂(6), and therefore the full action,
are invariant under the following transformations of spacetime fields



δĝµ̂ν̂ = −
[
Λ(0) − m

2
(2πα′)ρ̂(0)

]
k̂ρ̂∂ρ̂ĝµ̂ν̂

+2
(
∂Λ(0) +mλ̂

)
(µ̂

(ik̂ĝ)
ν̂)
,

δĈµ̂ν̂ρ̂ = 3∂[µ̂χ̂ν̂ρ̂] −
[
Λ(0) − m

2
(2πα′)ρ̂(0)

]
k̂λ̂∂λ̂Ĉµ̂ν̂ρ̂

+3
(
∂Λ(0) +mλ̂

)
[µ̂

(
ik̂Ĉ

)
ν̂ρ̂]

,

δ ˆ̃Cµ̂1...µ̂6 = 6∂[µ̂1
ˆ̃χµ̂2...µ̂6] + 30∂[µ̂1χ̂µ̂2µ̂3Ĉµ̂4µ̂5µ̂6]

−
[
Λ(0) − m

2
(2πα′)ρ̂(0)

]
k̂λ̂∂λ̂

ˆ̃C µ̂1...µ̂6

−6
(
∂Λ(0) +mλ̂

)
[µ̂1

(
ik̂

ˆ̃C
)
µ̂2...µ̂6]

−mˆ̃
λµ̂1...µ̂6 ,

(3.78)

and worldvolume fields
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δX̂ µ̂ = −
[
Λ(0) − m

2
(2πα′)ρ̂(0)

]
k̂µ̂ ,

δb̂ı̂ = 1
2πα′

2λ̂ı̂ + ∂ı̂ρ̂
(0) ,

δω̂(2)
ı̂̂ = − 1

2πα′
χ̂ı̂̂ −

m
2

(2πα′)
(

1
2πα′

2λ̂+ ∂ρ̂(0)
)

[̂ı
b̂̂] + 2∂[̂ıρ̂

(1)
̂] ,

δω̂(5)
ı̂1...̂ı5 = − 1

2πα′
ˆ̃χı̂1...̂ı5 −

m
2
ρ̂(5) + 5∂[̂ı1 ρ̂

(4)
ı̂2...̂ı5]

+15∂ω̂(2)
[̂ı1ı̂2

[
χ̂+ m

2
(2πα′)

(
1

2πα′
2λ̂+ ∂ρ̂(0)

)
b̂
]
ı̂3ı̂4 ı̂5]

,

δω̂(6)
ı̂1...̂ı6 = 1

2πα′
2ˆ̃
λı̂1...̂ı6

+90m
2

(2πα′)3
(

1
2πα′

2λ̂+ ∂ρ̂(0)
)

[̂ı1
b̂ı̂2∂ı̂3 b̂ı̂4∂ı̂5 b̂ı̂6]

−30b̂[̂ı1∂ı̂2
(
ik̂

ˆ̃χ
)
ı̂3...̂ı6]

− 180(2πα′)∂[̂ı1χ̂ı̂2 ı̂3 b̂ı̂4∂ı̂5 b̂ı̂6]

+6∂[̂ı1 ρ̂
(5)

ı̂2...̂ı6] .
(3.79)

We have included in these transformations infinitesimal reparametrizations
with parameter Λ(0) in the direction of the Killing vector k̂µ̂ since they will
become gauge transformations after dimensional reduction. Observe that
ω̂(5) transforms as a Stueckelberg field for ω̂(6).

We want to comment on a subtlety in the construction of the above
action and transformation rules which will be relevant when discussing the
double dimensional reduction of the massive M-5-brane. The point is the
following. In the present construction we have used that the target-space

6-form ˆ̃
C transforms with a shift under a dual massive gauge transformation

with parameter ˆ̃
λµ̂1···µ̂6 . This shift was canceled, in the variation of the WZ

term, by the introduction of the 6-form worldvolume field ω̂(6). However, we

know that the parameter ˆ̃
λµ̂1···µ̂6 is a constrained parameter satisfying

k̂µ̂6 ˆ̃
λµ̂1···µ̂5µ̂6 = 0 . (3.80)

This means that, after a worldvolume reduction in the isometry direction,
there is no shift variation to cancel in the WZ term and, consequently, there
is no need to introduce a new worldvolume 5-form to cancel such a variation.
Nevertheless, as we will see, our reduction procedure leads to the appearance
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of another 5-form, essentially decoupled from the rest of the action. This is
consistent with the fact that the known standard massive D-4-brane action,
which is the double dimensional reduction of the massive M-5-brane action,
does not contain a worldvolume 5-form in its WZ term. Therefore, in order to
obtain the standard D-4-brane action one must perform by hand a truncation
of the theory. It is only with this understanding that the massive M-5-brane
action given above leads to the massive D-4-brane action. At present it is
not clear to us how to impose this truncation before the double dimensional
reduction, at the level of the massive M-5-brane action itself.

We now take the massive M-5-brane action as our starting point and con-
struct in the following two subsections two massive brane actions of type IIA
superstring theory. First, we perform a direct dimensional reduction to ob-
tain the massive p-5A-brane effective action and next we perform a double
dimensional reduction to get the massive D-4-brane effective action. This
last action is obtained in the so-called “1-2-form formalism”, which uses a 1-
and a 2-form worldvolume fields that are related to each other by a duality
constraint (inherited from the anti-self-duality of K̂(3)). Using this constraint
we then obtain the usual formulation of the massive D-4-brane action which
only uses a 1-form BI field.

3.3.1 Direct Dimensional Reduction: The Massive p-5A-Brane

We assume that the background fields do not depend on the coordinate Y
and rewrite them in 10-dimensional form. At the same time the worldvolume
scalar Y can be treated differently to the other embedding coordinate scalars.
We rename it

Y ≡ (2πα′)ĉ(0) . (3.81)

This ĉ(0) transforms as the worldvolume scalar defined in Section 2.
Furthermore, it is convenient to redefine ω̂(2), ω̂(5) and ω̂(6) so that their

relation with the worldvolume fields defined in Section 2 is manifest. Using
10-dimensional notation, the transformation rules of these fields read35

35We use that λ̂µ = λµ and λ̂y = 0. Similarly,
ˆ̃
λµ1···µ6 = λ̃µ1···µ6 and

ˆ̃
λµ1···µ5y = 0. The

relations between the other gauge parameters of the 11- and 10-dimensional theories are
given in (1.62).
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δω̂(2) = − 1
2πα′

Λ(2) + 4λ∂ĉ(0)

−m
2

(2πα′)
[

1
2πα′

2λ+ ∂ρ̂(0)
]
b̂+ 2∂ρ̂(1) ,

δω̂(5) = 1
2πα′

Λ̃− m
2
ρ̂(5) − 5Λ(4)∂ĉ(0)

−15(2πα′)∂â(2)
(
δâ(2) − 2∂µ̂(1)

)
+ 5∂ρ̂(4) ,

δω̂(6) = 1
2πα′

2λ̃+ 90m
2

(2πα′)3
[

1
2πα′

2λ+ ∂ρ̂(0)
]
b̂∂b̂∂b̂

−180(2πα′)∂Λ(2)b̂∂b̂+ 720(2πα′)2∂λ∂ĉ(0) b̂∂b̂

−30b̂∂Λ(4) + 6∂ρ̂(5) .

(3.82)

It is easy to see that ω̂(2) transforms as â(2) (just as it happened in the

M-2-brane case), and ω̂(5) transforms as −ˆ̃
b. Similarly, one may verify that

the transformation rule of ω̂(6) is related to that of ĉ(6) via the relation

ω̂(6) ≡ −ĉ(6) + 120(2πα′)3∂ĉ(0)b̂∂b̂∂b̂ , (3.83)

if we make the identification

ρ̂(5) = −κ̂(5) − 5Λ(4)b̂+ 30(2πα′)Λ(2)b̂∂b̂− 20(2πα′)2Λ(0)b̂∂b̂∂b̂

−20(2πα′)3ρ̂(0)∂ĉ(0)∂b̂∂b̂ + 40(2πα′)2∂ĉ(0)λb̂∂b̂

+5m
2

(2πα′)3ρ̂(0)b̂∂b̂∂b̂ .

(3.84)

In doing the reduction, we have to take into account that there are back-
ground fields present in the 3-form field strength. The resulting action in the
quadratic approximation (linear in the equations of motion) is
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Ŝ[Xµ, ĉ(0), b̂, â(2)] =

−TM5

∫
d6ξ̂ e−2φ

√
|gı̂̂ − (2πα′)2 e2φ Ĝ(1)

ı̂Ĝ(1)
̂| ×

×
{

1− 1
4·3!

(2πα′)2 e2φ
(
Ĥ(3)

)2
+ · · ·

}

−(2πα′)TM5

6!

∫
d6ξ̂ ε̂ı̂1···̂ı6 ˆ̃F ı̂1···̂ı6 ,

(3.85)

where the field strengths Ĝ(1), Ĥ(3) and ˆ̃F are defined in Section 2.
After getting the equations of motion from the action above one still has

to impose the anti-self-duality constraint, which in the linear approximation
used here reads:

Ĥ(3) = −eφ ?Ĥ(3) . (3.86)

The factor e−2φ in front of the kinetic term indicates that the physical mass
is proportional to g−2

A , gA = e<φ> being the string coupling constant. This is
the right behavior for a solitonic object.

3.3.2 Double Dimensional Reduction: the Massive D-4-brane

We take as our starting point the massive p-5A-brane action and gauge-fix
the g.c.t. transformation in the ξ̂5-direction by imposing the condition

ĉ(0) = 1
2πα′

ξ̂5 . (3.87)

To preserve this gauge condition we have to perform a compensating world-
volume g.c.t. transformation in the ξ̂5 direction

δξ̂ ı̂ = δ ı̂5
[
−Λ(0) + m

2
(2πα′)ρ̂(0)

]
, (3.88)

leading to modifications in the Λ(0) and ρ̂(0) transformations of the reduced
worldvolume fields. Now, however, we cannot perform the field redefinitions
that we used in the M-2–brane case. In this case we have target space
fields transforming under Λ(0) and we do not want to modify their gauge
transformations with the introduction of c(0). This complicates somewhat
our work.

We do the following identification:
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ĉ(6)
ijklm5 = −5(2πα′)∂[iv

(0)c(4)
jklm] − 5m

2
(2πα′)3v(0)b[i∂jbk∂lbm]

+v(5)
ijklm ,

(3.89)

where v(5) is a vector field transforming according to



δv(5) = 5∂∆(4) ,

∆(4)
ijkl = κ̂(5)

ijkl5 + 4(2πα′)v(0)∂[iκ
(3)

jkl]

+1
2
m(2πα′)3v(0)ρ(0)∂[ibj∂kbl] + 2m(2πα′)2v(0)λ[ibj∂kbl] .

(3.90)
The equation of motion for c(4) would imply that v(0) is a constant

and with this simplification we would proceed as in the M-2-brane case.
This might be correct if we took into account fermionic terms, but without
fermions it is not clear to us whether we can use the equation of motion of
c(4) to set v(0) to a constant. For the time being we will simply truncate the
theory and we will set v(0) = 0 by hand and then we will extend the calcu-
lation to the non vanishing but constant value of v(0). We will also ignore
total derivatives. Thus, at this level we find the following result

5∂[i1
ˆ̃
bi2···i5] 5 + m

2
ĉ(6)

i1···i5 5 = −5∂[i1v
(4)

i2···i5] + m
2
v(5)

i1···i5 , (3.91)

where v(4) is an auxiliary 4-form transforming by shifts

δv(4) = m
2

∆(4) . (3.92)

This implies that the pair v(4), v(5) constitutes a Stueckelberg pair, in which
v(4) gets eaten by v(5) which becomes massive. This is why we keep this total
derivative. This part of the WZ term is completely decoupled from the rest.

The rest of the worldvolume fields can be indentified as follows:

b̂5 = v(0) = 0 , b̂i = bi ,

â(2)
i5 = bi + v(1)

i , â(2)
ij = a(2)′

ij ,

(3.93)

where a(2)′ 6= a(2) from the point of view of the gauge transformations.
Taking into account that the worldvolume metric is given by:
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gı̂̂ = e−2/3φ

 gij − (2πα′)2e2φG(1)
i G

(1)
j −(2πα′)e2φG(1)

i

[
1− m

2 (2πα′)v(0)
]

−(2πα′)e2φG(1)
i

[
1− m

2 (2πα′)v(0)
]

−e2φ
[
1− m

2 (2πα′)v(0)
]2

 ,

(3.94)

we find the action of the massive D-4-brane in the “1-2-form” formalism36:

S
[
Xµ, a(2)′, b, v(1), v(4), v(5)

]
=

−TM5l
∫
d5ξ e−φ

√
|gij|

{
1− 1

4·3!
(2πα′)2

(
R(3)

)2
+ 1

4·2!
(2πα′)2

(
F + L(2)

)2
}

+TM5l
5!

(2πα′)
∫
d5ξε

{
1

2πα′
C(5) − 5C(3)

(
F + L(2)

)
+ 15∂a(2)′B

−15m
2

(2πα′)b∂bB + 30m
2

(2πα′)b∂(b + v(1))B + 30m
2

(2πα′)b∂b∂(b + v(1))

−20m
2

(2πα′)2b∂b∂b − 5∂v(4) + m
2
v5
}
,

(3.95)
where the double-dimensionally reduced anti-self-duality condition

R(3) = −e−φ?
(
F + L(2)

)
, (3.96)

with

R(3) = 3∂a(2)′ + 1
2πα′

C(3) − 3m
2

(2πα′)b∂b − 3m
2

(2πα′)Bb

−
(
C(1) − m

2
b
) (
F + L(2)

)
,

(3.97)

still needs to be imposed in the reduced action.
Either b or a(2)′ can be considered an auxiliary field and eliminated in the

equations of motion after using the constraint above, that relates their field
strengths. This was the procedure followed in Ref. [23] to find the Born-
Infeld effective action from the massless M-5-brane. Here we will follow an
alternative, simpler, procedure which consists in introducing the constraint
into the action by means of a Lagrange multiplier term. Integrating out
a(2)′ yields the usual D-4-brane action and integrating out b we obtain the
dual action in terms of the 2-form. This action is the worldvolume dual of
the usual massive D-4-brane. We will not study this one here but we will
concentrate on recovering the standard D-4-brane action.

36Since it depends on the 1-form b plus the 2-form a(2)′.
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The Lagrange multiplier term, containing a Lagrange multiplier 1-form
%, that we add to the action is:

+
TM5

l

4!
(2πα′)2

∫
d5ξε(2∂%)(3∂a(2)′) (3.98)

Integration over % enforces the Bianchi identity for the two-form a(2)′. On
the other hand, integrating out the 3-form R(3) we can impose the anti-self-
duality constraint on-shell and obtain the action in the 1-form formalism. In
particular, the equation of motion for R(3) gives:

R(3) = −e−φF ′ , F ′ = 2∂% + 1
2πα′

B . (3.99)

We can now substitute the above equation of motion to eliminate a(2)′. Now
one can use the anti-self-duality constraint which takes the form

F ′ = F + L(2) , (3.100)

in the action. The result is

S
[
Xµ, b, v(1), v(4), v(5)

]
=

−TM5l
∫
d5ξ e−φ

√
|gij|

{
1 + 1

2·2!
(2πα′)2

(
F + L(2)

)2
}

+TM5l
5!

(2πα′)
∫
d5ξε

{
1

2πα′
C(5) − 10C(3)

(
F + L(2)

)
+15(2πα′)C(1)

(
F + L(2)

)2
− 60m

2
(2πα′)b∂v(1)∂(b + v(1))

−20m
2

(2πα′)2b∂b∂b − 5∂v(4) + m
2
v(5)

}
.

(3.101)

Now we make the field redefinition

b+ v(1) → b , (3.102)

and adding the total derivative 5∂c(4) to get a more compact expression we
find the usual action of the D-4–brane (“1-form formalism”) to quadratic
order in F containing three extra terms which are completely decoupled
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S
[
Xµ, b, v(1), v(4), v(5)

]
=

−TM5l
∫
d5ξ e−φ

√
|gij|

{
1 + 1

2·2!
(2πα′)2 (F)2

}
+TM5l

5!
(2πα′)

∫
d5ξε

{
G(5) − 20m

2
(2πα′)2v(1)∂v(1)∂v(1) − 5∂v(4) + m

2
v5
}
.

(3.103)
Observe that v(1) appears only through a topological term. The conse-

quences of the presence of a 5-form field in the WZ term of the massive
D-4-brane will be discussed in the next Section.

One can easily see that if we consider a constant but non-vanishing v(0)

the only change in the above result is that the tension has to be replaced by

T =
[
1− m

2
(2πα′)v(0)

]
TM5l , (3.104)

and the terms with v-forms get an extra factor
[
1− m

2
(2πα′)v(0)

]−1
for each

power of v.

4 Conclusions

In this paper we have investigated the worldvolume effective theory of mas-
sive branes, i.e. branes moving in a background with a nonzero cosmological
constant, both in string theory and M-theory. The construction of the world-
volume actions requires new results on the structure of both the target-space
background fields as well as the worldvolume fields.

As far as the target-space fields are concerned we encountered two issues.
First of all the coupling of massive IIA supergravity to the type IIA five-brane
requires a dualization of the massive NS-NS target-space 2-form B. Inspired
by the work of [14] we succeeded in doing this and encountered an interesting
mechanism where, after dualization, the roles of the NS-NS and R-R fields
get interchanged. Whereas in the usual formulation the R-R 1-form C(1) is a
Stueckelberg field and B is a massive 2-form, we find that, after dualization,
the dual R-R 7-form C(7) becomes massive while the dual NS-NS 6-form is
a Stueckelberg field.

The second issue concerns the question of whether or not the massive
IIA supergravity theory has an eleven-dimensional origin. Inspired by the
worldvolume sigma model approach we made a proposal for a massive eleven-
dimensional supergravity theory. A word of caution is needed here. We do
not claim that a cosmological constant (containing a mass parameter m) can
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be added to the usual (massless) eleven-dimensional supergravity theory.
Indeed, a no-go theorem for such a theory exists [18]. There is a simple
argument for this obstruction. One can easily verify that any cosmological
constant in eleven dimensions of the form

Ld=11 ∼
∫
d11x m2

√
|g| (4.1)

leads, upon dimensional reduction to ten dimensions, to a cosmological con-
stant with a dilaton coupling that differs from the one in massive IIA super-
gravity. What we find from the sigma model approach is that it can be done
only under the assumption that the d=11 target space background fields have
an isometry. This assumption follows naturally from the fact that the under-
lying sigma model turns out to be a gauged sigma model whose construction
requires an isometry direction. Only in the massless case, when m = 0, this
assumption can be deleted and we obtain the usual massless supergravity
theory with no isometry whatsoever. The obstruction mentioned above is
now avoided by considering a cosmological constant of the form

Lmassive d=11 supergravity ∼
∫
d11x m2|k̂2|2

√
|g| , (4.2)

involving the Killing vector k̂µ. This term gives the correct dilaton coupling.
It is of interest to compare our proposal of massive eleven-dimensional

supergravity with the work of [19] where a new d=11 supergravity theory is
introduced that, upon reduction to ten dimensions, leads to an alternative
massive IIA supergravity theory. In both cases the massive corrections to the
massless d=11 supergravity theory are triggered by modifying the definition
of the spin connection. The specific form of the modification, however, differs
in the two cases. In our case (see Eq. (1.10)) the extra term in the connection
involves the 3-form Ĉ whereas the extra term in the connection of [19] involves
only the Killing vector, leading to a different massive supergravity theory. In
the case of [19] the modified spin connection has a geometric interpretation
in terms of a Weyl superspace (see e.g. [35])37. It would be interesting to see
whether the modified connection we have introduced has a similar geometric
interpretation.

Another question is whether the massive eleven-dimensional supergravity
theory considered in this work has something to do with M-theory. We re-
mind that the relation between the usual massless d=11 supergravity theory

37This construction is based on the fact that the equations of motion of d=11 super-
gravity are invariant under scale transformations (see, e.g., [36]). It has recently been
shown that the new massive d=10 supergravity of [19] can alternatively be understood
as a generalized Scherk-Schwarz reduction (making use of the scaling symmetry) of the
ordinary massless d=11 supergravity theory [37].
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and M-theory goes via the observation that massless d=11 supergravity can
be viewed as the decompactification limit (R11 → ∞) of massless IIA su-
pergravity and that this decompactification limit is equivalent to the strong
coupling limit (gs → ∞) of type IIA superstring theory since R11 = g2/3

s

[38]. It is natural to consider the isometry direction as an eleventh direction,
since the massive M-brane configurations we introduce in this work can be
positioned in this direction. Indeed, this feature enables us to construct two
different massive branes of string theory out of a single massive M-brane.
The two possibilities arise due to the fact that the isometry direction can
be transverse to the brane (direct dimensional reduction) or along one of
the worldvolume directions of the brane (double dimensional reduction). It
would be interesting to consider the massive eleven-dimensional supergravity
theory of this work in the context of the Hořava-Witten approach [39] where
there are two M-9-branes positioned at the end of spacetime.

As far as the worldvolume fields are concerned the construction of the
worldvolume actions for the massive branes of string theory requires that we
do not only introduce the usual embedding coordinates Xµ and BI 1-form b
but also a whole set of worldvolume p-form fields c(p), which are in one to
one correspondence to the target space R-R fields C(p+1). Such p-form fields
have been encountered before in a scale-invariant formulation of branes [40]
and in a study of branes ending on branes [1] (see also [41]). They have also
been recently used in the construction of a manifestly SL(2,R) covariant
formulation of IIB brane worldvolume actions [42, 43, 44]. In the latter
case all c(p) (p odd) occur in definite SL(2,R) representations: for instance,
there are doublets (b(1), c(1)), (b(5), c(5)) and singlets c(3), etc., where b(1)(b(5))
describes the tension of a type IIB string (type IIB five-brane). Finally, p-
form worldvolume fields also play an important role in the construction of
null super D-branes [26]. We have shown in this paper that the worldvolume
p-form fields of IIA string theory can be obtained from corresponding p-
form worldvolume fields in M-theory via reduction. We plan to discuss these
M-theory worldvolume fields in a future publication [11].

With the required new knowledge on the structure of the target-space and
worldvolume fields described above, we proceeded to construct the worldvol-
ume actions for massive branes. Our strategy was to first construct the
action of a massive M-brane, i.e. an M-brane moving in a massive d=11 su-
pergravity background, and next obtain, via direct and double dimensional
reduction, a pair of massive branes of string theory. We first discussed the
massive M-0-brane which is a bit special and only allows a direct reduction to
the massive D-0-brane. Next, we treated the massive M-2-brane [16, 17] and
obtained the massive fundamental string and the massive D-2-brane. The
last case we considered was the massive M-5-brane whose reduction leads to
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the massive type IIA five-brane and the massive D-4-brane, although we must
impose a truncation in order to make contact with the massive D-4-brane
action given in the literature.

One interesting outcome of our work is that we find that the massive
type IIA 5-brane has an additional coupling to a worldvolume 6-form c(6),
describing the tension of a D-6-brane, with the strength of the coupling
proportional to m:

Smassive NS5−brane ∼
∫
d6ξ m εi1···i6c(6)

i1···i6 . (4.3)

A similar coupling occurs in the massive D-0-brane action:

Smassive D0−brane ∼
∫
dξ m bξ , (4.4)

where bξ describes the tension of a fundamental string. In [45, 46] it was
pointed out, for the massive D-0-brane, that this new coupling has implica-
tions for the anomalous creation of branes [47, 48] (for a more recent discus-
sion see [49]). To be precise, if a D-0-particle crosses a D-8-brane a stretched
fundamental string is created in the single direction transverse to the D-8-
brane. This process is, via duality, related to the creation of a stretched
D3-brane if a D-5-brane crosses a NS5-brane [47]. In the latter case the
intersecting configuration is given by

D5 : × ××−−−×××−
NS5 : × ×××××−−−−
D3 : × ××−−−−−−×

(4.5)

where we have used the notation of [50] 38. The intersecting configuration of
[45, 46] is obtained by first applying T-duality in the directions 1 and 2, next
applying an S-duality and, finally, applying a T-duality in the directions 6,7
and 8 [45, 46]:

D0 : × −−−−−−−−−
D8 : × ××××××××−
F1 : × −−−−−−−−×

(4.6)

One would expect that the new coupling we find for the massive 5-brane
has similar implications39. To be precise, one would expect that if a NS5-
brane crosses a D-8-brane a D-6-brane stretched between them is created.
This process would be the dual of the one considered in [45, 46]. Indeed, this

38Each horizontal line indicates the 10 directions 0, 1, · · · 9 in spacetime. A ×(−) means
that the corresponding direction is in the worldvolume of (transverse to) the brane.

39We thank C. Bachas for an illuminating discussion on this point.
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is exactly the process which has been considered in [51] where it was used
to construct N = 1 supersymmetric gauge theories in four dimensions with
chiral matter40.

The intersecting configuration corresponding to this process is obtained
by applying T-duality in the directions 3,4 and 5 on the configuration (4.5)
[51]:

D8 : × ××××××××−
NS5 : × ×××××−−−−
D6 : × ×××××−−−×

(4.7)

A special feature of this configuration is that when the NS5-brane passes
through the D-8-brane it is completely embedded within the D-8-brane. Af-
ter passing through the D-8-brane a D-6-brane is created that has 5 of its
directions on the worldvolume of the D-8-brane and in the remaining direc-
tions is stretched in the single direction transverse to the D-8-brane.

We may consider the above process from an M-theory perspective. The
intersecting M-brane configuration that, via reduction (over the 10 direction),
yields the intersecting configuration given in (4.7) is given by41:

M9 : × ××××××××−×
M5 : × ×××××−−−−−
KK11 : × ×××××−−−×z

(4.8)

where z refers to the U(1) isometry direction in the Taub-NUT space of the
monopole. This intersecting configuration suggests that when an M-5-brane
passes through a (hypothetical) M-9-brane a stretched 11-dimensional KK
monopole is created. The anomalous creation of this KK monopole is related
to the following term we found in the massive M5-brane action:

Smassive M5−brane ∼
∫
d6ξ̂ m εı̂1···̂ı6ω̂(6)

ı̂1···̂ı6 . (4.9)

This suggests that, in the same way as c(6) describes the tension of a D-
6-brane, the worldvolume 6-form ω̂(6) is related to the tension of an 11-
dimensional KK monopole. A gauged version of this 6-form can be used to
construct the WZ term in the KK11-monopole worldvolume action [11].

We have found in the action of the massive D-4-brane a term of the form

Smassive D4−brane ∼
∫
d5ξ m v(5) , (4.10)

40We thank P. Townsend for pointing reference [51] out to us.
41This configuration, alternatively denoted by (5|M9,KK), is known to preserve 1/4 of

the supersymmetry [52].
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where v(5) is related to the tension of a KK10-monopole. This coupling
suggests that whenever a D4-brane passes through a D8-brane a stretched
KK10-monopole is created with 4 of its worldvolume directions inside the
D8-brane. Indeed, performing first a T-duality in the 9 direction and next a
T-duality in the 3 and 4 directions on the configuration (4.5) we obtain the
intersecting brane configuration corresponding to this process:

D8 : × ××××−××××
KK10 : × ×××××−−− z
D4 : × ××××−−−−−

(4.11)

The same intersecting configuration is obtained if one reduces the intersecting
M-brane configuration (4.8) over the 5-direction.

There is one more argument in favor of the above process. It turns out
that, of all branes in string theory, only D0, NS5, D4 (and a wave) can be
embedded in a D8-brane and the intersections are given by

(0|D0, D8) ,

(5|NS5, D8) , (4.12)

(4|D4, D8) ,

respectively. The first 2 cases are required for the creation of a fundamental
string (D-6-brane) whenever a D-0-brane (NS5-brane) passes through a D-
8-brane. The third and only other possible embedding of a brane into a
D-8-brane is that of a D-4-brane and this would correspond to the process
(4.11) where an anomalous KK10-monopole is created.

There is one more potential role to be played by the worldvolume 6-form
field ω̂(6) we found in the massive M-5-brane action. It has been shown
that the selfdual 2-form ω̂(2) occurring in the same action can be used to
construct a 1-brane soliton on the M-5-brane worldvolume [4]. This 1-brane
soliton corresponds to the occurrence of a 1-form central charge in the 6-
dimensional (2,0) worldvolume supersymmetry algebra. The complete (2,0)
algebra also suggests a 3-brane and a 5-brane soliton. The 3-brane soliton has
been recently constructed by dualizing one of the embedding scalars into a
worldvolume 4-form [4]. The 5-brane soliton should describe the embedding
of the M-5-brane into something else and a natural possibility is an M-9-
brane. It would be interesting to see whether such a 5-brane soliton can
indeed be constructed and whether the 6-form ω̂(6) (which does not describe
a dynamical degree of freedom) could describe the charge of such a 5-brane
soliton.
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In this work we have shown that the massive branes of M-theory, i.e. the
M-0-brane, M-2-brane and M-5-brane, are described by a gauged sigma
model. It would be interesting to see whether the gauged sigma model ap-
proach can also be applied to describe a massive KK11 monopole and/or the
conjectured M9-brane. Concerning the KK11-monopole, a new feature in
this case is that the gauged sigma model is already needed to describe the
dynamics of the KK11-monopole in a massless background [9]42.

It would be interesting to see whether our results shed new light on the
evasive 11-dimensional M-9-brane43. A standard argument against a freely
moving M-9-brane is that the corresponding 10-dimensional worldvolume
field theory does not allow multiplets containing a single scalar to indicate
the position of the M9-brane44. A way out of this is to assume that the M-9-
brane is really an 8-brane with an extra isometry in one of the 2 transverse
directions, leading to a gauged sigma-model, like it happened in the case
of the KK11-monopole. Now, we are dealing with a nine-dimensional field
theory which naturally contains a vector multiplet with a single scalar. We
will not pursue this line of thought further here.

We would like to end with the following remark. Although this paper is
dealing with massive branes, our results also have implications, via massive
T-duality, for the worldvolume theories of massless branes. To be specific, it
is known that the term (4.4), via the T-duality rule [12]

C(0) = mx (4.13)

in the direction x, leads to the following gauge-invariant term in the D-1-
brane action:

SD1−brane ∼
∫
d2ξ C(0)εijFij . (4.14)

This term is needed for an SL(2,R)-covariant formulation of (p,q)-strings
[42]. Similarly, the new term (4.3) we have found in the worldvolume action
of the p-5A-brane leads, via massive T-duality, to a gauge-invariant term in
the worldvolume action of the type IIB KK-monopole and the NS5B-brane
containing the RR-scalar C(0). The latter case suggests the following gauge-
invariant term in the NS5B-brane action:

42Note that the gauge transformation rule of the 6-form ω̂(6) contains m-dependent
terms. This shows that the WZ term of a massive KK11-monopole differs from the WZ
term of a massless KK11-monopole.

43For other discussions of the M-9-brane, see e.g. [39, 8, 53, 54, 55, 56, 10, 33].
44Such a scalar would not be needed if the M9-brane was positioned at the end of

spacetime, like in [39].
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SNS5B−brane ∼
∫
d6ξ C(0)G(6) , (4.15)

with G(6) the curvature of the D-5-brane tension. Via S-duality this implies
that the D-5-brane action contains the term

SD5−brane ∼
∫
d6ξ C(0)FIIB , (4.16)

with FIIB the curvature of the NS5B-brane tension. It would be interesting
to see whether the above modifications are indeed present, in which case
they are likely to play a role in the construction of an SL(2,R)-covariant
formulation of (p, q)-5-branes. In order to verify this one needs to explore
the T-duality properties of the different worldvolume p-forms introduced in
this work.

Acknowledgments

E.B. would like to thank C. Bachas, M.B. Green, J.P. van der Schaar,
J. Schwarz, P.K. Townsend and, especially E. Eyras, for useful discussions.
Y.L. would also like to thank J. Gauntlett and C.M. Hull for useful discus-
sions, and the Theory Division at CERN for its hospitality while part of
this work was done. T.O. would like to thank E. Álvarez for many useful
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A Duality of Massive k-Form Fields

In this Appendix we focus on the study of duality for massive d-dimensional
k-form fields in general to then try to apply the ideas to massive type IIA
supergravity. Following Ref. [14] we start by briefly discussing duality of
massless k-form fields in the presence of magnetic sources.

Let us consider a (p+ 1)-form potential A(p+1) with field strength

F(p+2) = (p+ 2)∂A(p+1) , (A.1)
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and action

S[A(p+1)] =
∫
ddx

√
|g|

[
(−1)(p+1)

2·(p+2)!
1
e2
(p)

F 2
(p+2)

]
. (A.2)

If A(p+1) is defined everywhere, then the field strength satisfies the Bianchi
identity45

∇ν

(
?F(p+2)

)νµ1...µp̂+1
= 0 . (A.3)

If we consider the presence of (non-dynamical) magnetic sources then the
Bianchi identity becomes

∇ν

(
?F(p+2)

)νµ1...µp̃+1
= J̃µ1...µp̃+1 , (A.4)

which means that F(p+2) cannot be (p + 2)∂A(p+1) everywhere (i.e. it is not
an exact form anymore) but is singular at the Dirac singularity. In general
we can write

F(p+2) = (p+ 2)∂A(p+1) +B(p+2) , (A.5)

where A(p+1) is defined everywhere and

∇ν

(
?B(p+2)

)νµ1...µp̃+1
= J̃µ1...µp̃+1 . (A.6)

With this modification the action is still the same (A.2). This modifi-
cation makes sense as long as we deal with a number of (non-dynamical)
magnetic objects. If we allow the magnetic objects to condense then we have
to promote the field that describes them (B(p+2)) to a dynamical one by the
simple addition of a kinetic term for it:

S[A(p+1), B(p+2)] =
∫
ddx

√
|g|

[
(−1)(p+1)

2·(p+2)!
1
e2
(p)

F 2
(p+2) + (−1)(p+2)

2·(p+3)!
1

e2
(p+1)

H2
(p+3)

]
,

(A.7)
where

H(p+3) = (p+ 3)∂B(p+2) . (A.8)

The action above is invariant under the usual gauge transformations of
the A(p+1) potential

δA(p+1) = (p+ 1)∂χ(p) , (A.9)

45Here p̃ = d− p− 4 so the Hodge dual of a (p+ 2)-form is a (p̃+ 2)-form.
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and under the massive gauge transformations
δB(p+2) = −(p + 2)∂λ(p+1) ,

δA(p+1) = λ(p+1) ,
(A.10)

which allow us to eliminate A(p+1) by setting it to zero. Doing this, we get
the following action for a massive (p+ 2)-form potential46:

S[B(p+2)] =
∫
ddx

√
|g|

[
(−1)(p+2)

2·(p+3)!
1

e2
(p+1)

H2
(p+3) + (−1)(p+1)

2·(p+2)!
1
e2
(p)

B2
(p+2)

]
, (A.11)

which is the one studied in Ref. [14]. This action is also a truncation of
the massive type IIA supergravity action for p = 047 with e(1) = 1 and
e(0) = 1/m.

In Ref. [14] it is mentioned that the above action enjoys no evident global
symmetry, but that in spite of this it can be dualized. What we have just
seen is that the action for the massive (p+ 2)-form potential is equivalent to
the action with A(p+1) (which plays the role of Stueckelberg field here) with
a massive gauge symmetry, and that in this formulation the dualization can
be done systematically, which may mean that a global symmetry (which we
have not identified) is present.

In any case, in Ref. [14] the dual action is found via an intermediate first-
order action with an auxiliary (p̃+ 1)-form field. Integration of the auxiliary
field gives (A.11) and integration of the field strength H(p+3) gives the dual
action. Instead of using this intermediate action, which in principle one
has to construct in a case by case basis, we are going to follow a different,
more systematic, procedure using the usual recipe for Poincaré duality in
the action with the Stueckelberg field48. This recipe cannot be applied to
the dualization of B(p+2) because it occurs explicitly in the action instead of
appearing only through H(p+3) (hence the need of an intermediate action)
but it can be applied to the dualization of the Stueckelberg field A(p+1) as a
first step. Thus, we consider now F(p+2) as a fundamental field and we add to

46It is often said that the (p+2)-form has “eaten” the (p+1)-form, thus getting a mass.
47This does not necessarily mean that the mechanism through which B gets mass in

the type IIA theory must be the condensation of 6-branes. The origin of the mass in the
type IIA theory is the presence of 8-branes [7, 8]. Still, the reason why it is precisely B
the field that becomes massive is not clear to us, and other mechanisms for giving mass
to different fields of the type IIA theory should not be excluded. We thank J.L.F. Barbón
for discussions on this point.

48The usual recipe also involves the construction of an intermediate action, but our
construction is systematic.
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the action (A.7) a Lagrange multiplier term to enforce its Bianchi identity.
The resulting action is, after integration by parts

S[F(p+2), B(p+2), Ã(p̃+1)] =

∫
ddx

√
|g|

{
(−1)(p+1)

2·(p+2)!
1
e2
(p)

F 2
(p+2) + (−1)(p+2)

2·(p+3)!
1

e2
(p+1)

H2
(p+3)

+ (−1)p

(p+2)!(p̃+1)!
ε√
|g|

[
F(p+2) − B(p+2)

]
∂Ã(p̃+1)

}
.

(A.12)
Substituting into this action the equation of motion for F(p+2)

F(p+2) = e2
(p)

?F̃(p̃+2) , F̃(p̃+2) = (p̃+ 2)∂Ã(p̃+1) , (A.13)

we find (after integration by parts) the dual action

S[B(p+2), Ã(p̃+1)] =

∫
ddx

√
|g|

{
(−1)(p+2)

2·(p+3)!
1

e2
(p+1)

H2
(p+3) + (−1)(p̃+1)

2·(p̃+2)!
e2

(p)F̃
2
(p̃+2)

+ 1
(p+3)!(p̃+1)!

ε√
|g|
H(p+3)Ã(p̃+1)

}
.

(A.14)
We have substituted a massive (p+2)-form potential by a massless (p+2)-

form potential and a massless (p̃+ 1)-form potential. None of these fields is
auxiliary nor it can be eliminated by a gauge transformation of some kind.
Using that the number of degrees of freedom of a massive d-dimensional
k-form potential is

N(d, k)massive =
(d− 1)!

k!(d− 1− k)!
, (A.15)

and that the number of degrees of freedom of a massless d-dimensional k-form
potential is

N(d, k)massless =
(d− 2)!

k!(d− 2− k)!
, (A.16)

one can check that the number of degrees of freedom of the theory (A.14) is
the same as that of the original (A.7)49:

49The Higgs mechanism by which the massless (p + 2)-form “eats” the (p + 1)-form
becoming a massive (p+ 2)-form is based in it.
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N(d, p+ 2)massive = N(d, p+ 2)massless +N(d, p̃+ 1)massless . (A.17)

The usual electric-magnetic duality for massless d-dimensional (p + 1)-
and (p̃+ 1)-form potentials is based on the identity

N(d, p+ 1)massless = N(d, p̃+ 1)massless , (A.18)

while the electric-magnetic duality between massive d-dimensional (p + 2)-
and (p̃+ 1)-form potentials (which we are going to see next) is based on

N(d, p+ 2)massive = N(d, p̃+ 1)massive . (A.19)

Now, the action (A.14) does not depend explicitly on B(p+2) anymore and
we can follow again the usual prescription for dualization of this field. We
find the intermediate action (after integration by parts)

S[H(p+3), Ã(p̃+1), B̃(p̃)] =

∫
ddx

√
|g|

{
(−1)(p+2)

2·(p+3)!
1

e2
(p+1)

H2
(p+3) + (−1)(p̃+1)

2·(p̃+2)!
e2

(p)F̃
2
(p̃+2)

+ 1
(p+3)!

H(p+3)
?H̃(p̃+1)

}
,

(A.20)
where

H̃(p̃+1) = (p̃+ 1)∂B̃(p̃) + Ã(p̃+1) . (A.21)

Substituting the equation of motion of H(p+3)

H(p+3) = (−1)(p+1)e2
(p+1)

?H̃(p̃+1) , (A.22)

we arrive at the action

S[B̃(p̃), Ã(p̃+1)] =
∫
ddx

√
|g|

{
(−1)(p̃+1)

2·(p̃+2)!
e2

(p)F̃
2
(p̃+2) + (−1)p̃

2·(p̃+1)!
e2

(p+1)H̃
2
(p̃+1)

}
(A.23)

This action is now invariant under the usual gauge transformations of
B̃(p̃)

δB̃(p̃) = p̃∂χ̃(p̃−1) , (A.24)
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and the following massive gauge transformations (B̃(p̃) playing now the role
of Stueckelberg field): 

δÃ(p̃+1) = −(p̃+ 1)∂λ̃(p̃) ,

δB̃(p̃) = λ̃(p̃) .

(A.25)

These transformations allow us to eliminate B̃(p̃) by setting it to zero. We
then get the following action

S[Ã(p̃+1)] =
∫
ddx

√
|g|

[
(−1)(p̃+1)

2·(p̃+2)!
e2

(p+1)F̃
2
(p̃+2) + (−1)p̃

2·(p̃+1)!
e2

(p)Ã
2
(p̃+1)

]
, (A.26)

which is the one given in Ref. [14]. Had we set p = 0, e(1) = 1 and e(0) = 1/m

at the beginning, rescaling now Ã(p̃+1) we would have found that the dual
mass parameter is identical to the original one m̃ = m. We would also have
found that the dual NS/NS 6-form B̃ is the Stueckelberg field for the R-R
7-form C(7).

It seems strange that one can replace a massive field by a pair of massless
fields. Observe that one of them (the (p̃+ 1)-form potential) corresponds to
the p̃-extended objects whose condensation gives mass to the (p + 2)-form
potential which was previously massless. Then, the action makes sense as a
slightly more general action which can describe the situation in which there
is no condensation of p̃-branes and the (p+ 1)-branes are massless, and also
the opposite situation. The WZ interaction term is crucial for this.

B Target Space Fields

In this Appendix we collect the field strengths and the gauge transformations
of the different fields that appear throughout the paper. We also give the
relation with 11-dimensional fields.

Let us start with some conventions: when indices are not shown explicitly
and partial derivatives are used, we assume that all indices are completely
antisymmetrized in the obvious order. For instance:

G(4) = 4
(
∂C(3) − 3∂BC(1) + 3

8
mB2

)
, (B.1)

means

G(4)
µνρσ = 4

[
∂[µC

(3)
νρσ] − 3

(
∂[µBνρ

)
C(1)

σ] + 3
8
mB[µνBρσ]

]
. (B.2)
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Differential form components are defined as follows:

A(k) = 1
k!
A(k)µ1...µkdx

µ1 ∧ . . . ∧ dxµk , (B.3)

but we will often omit the ∧ symbol.
The 11-dimensional 3-form and dual 6-form fields are denoted by Ĉ and

ˆ̃
C respectively. In the massless theory their field strengths Ĝ and ˆ̃

G are:
Ĝ = dĈ ,

ˆ̃
G = d

ˆ̃
C + 1

2
ĈdĈ = ?Ĝ ,

(B.4)

and their gauge transformation laws are
δĈ = dχ̂ ,

δ ˆ̃C = dˆ̃χ+ 1
2
dχ̂Ĉ .

(B.5)

The action of 11-dimensional supergravity in differential forms language
is

S = 1

16πG
(11)
N

∫ {
Ω(11)R̂−

1
2
Ĝ ∧ ?Ĝ+ 1

6
dĈ ∧ dĈ ∧ Ĉ

}
. (B.6)

Ten-dimensional R-R k-form fields are denoted by C(k) and their field
strengths by G(k+1). B is the NS/NS 2-form and B̃ its dual NS/NS 6-form,
and their field strengths are H and H̃. The (k − 1)-form parameters of the
R-R gauge transformations are denoted by Λ(k−1), and those of the NS/NS
fields B, B̃ are denoted by Λ, Λ̃. The parameters of the massive gauge trans-
formations are λ, λ̃.

The definitions of the field strengths of all these fields are50 [13, 22]

50The gauge parameters used in Ref. [13] are related to ours by Λ = ΛGHT e
B. Of course,

other differences in conventions need also be taken into account.
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G(2) = dC(1) + m
2
B ,

H = dB ,

G(4) = dC(3) − dBC(1) + 1
2!
m
2
B2 ,

G(6) = dC(5) − dBC(3) + 1
3!
m
2
B3 ,

H̃ = dB̃ +G(6)C(1) − 1
2
C(3)dC(3)

−m
2

[
C(7) − C(5)B + 1

2
C(3)B2

]
,

G(8) = dC(7) − dBC(5) + 1
4!
m
2
B4 .

(B.7)

The field strengths of the massless theory are obtained by setting m = 0.
In this case the gauge transformations of the fields are:

δC(1) = dΛ(0) ,

δB = dΛ ,

δC(3) = dΛ(2) + dΛ(0)B ,

δC(5) = dΛ(4) + dΛ(2)B + 1
2!
dΛ(0)B2 ,

δB̃ = dΛ̃− 1
2
dΛ(2)C(3) + dΛ(0)

(
C(5) − 1

2
C(3)B

)
,

δC(7) = dΛ(6) + dΛ(4)B + 1
2
dΛ(2)B2 + 1

3!
dΛ(0)B3 ,

(B.8)

and those of the massive theory are obtained by the replacements

dΛ(0) → dΛ(0) +mλ ,

Λ → −2λ ,

dΛ̃ → dΛ̃ +mλ̃ ,

Λ(6) → 2λ̃ ,

(B.9)

that is
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δC(1) = dΛ(0) +mλ ,

δB = −2dλ ,

δC(3) = dΛ(2) +
(
dΛ(0) +mλ

)
B ,

δC(5) = dΛ(4) + dΛ(2)B + 1
2!

(
dΛ(0) +mλ

)
B2 ,

δB̃ =
(
dΛ̃ +mλ̃

)
− 1

2
dΛ(2)C(3) +

(
dΛ(0) +mλ

) (
C(5) − 1

2
C(3)B

)
,

δC(7) = 2dλ̃+ dΛ(4)B + 1
2
dΛ(2)B2 + 1

3!

(
dΛ(0) +mλ

)
B3 .

(B.10)
Defining, as in Ref. [13] the Grassmann algebra objects

C = C(0) + C(1) + C(2) + . . .

G = G(0) +G(1) +G(2) + . . .

Λ(·) = Λ(0) + Λ(1) + . . . ,

(B.11)

the gauge transformations and field strengths of the R-R fields can be written
in the more compact form

δC =
(
Λ(·) +mλ

)
eB ,

G = dC − dBC + m
2
eB .

(B.12)

The action of massive ten dimensional IIA supergravity can be written
in differential forms language as follows:

S = 1

16πG
(10)
N

∫ {
e−2φ

[
Ω(10)R− 4dφ ∧ ?dφ+ 1

2
H ∧ ?H

]

+1
2
G(2) ∧ ?G(2) + 1

2
G(4) ∧ ?G(4) + 1

2

(
m
2

)
∧ ?

(
m
2

)

+1
2
dC(3) ∧ dC(3) ∧ B + 1

3!
m
2
dC(3) ∧ B3 + 3

5!

(
m
2

)2
B5

}
.

(B.13)
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C Worldvolume Fields

Below we collect some useful gauge transformation rules of worldvolume fields
needed in the text. The compact form notation of these rules was given in
Section 2. The gauge transformation rules of the c(p) (p=0,2,4,6) are given
by



δc(0) = − 1
2πα′

Λ(0) + m
2
ρ(0) ,

δc(2) = 2∂κ(1) − 1
2πα′

Λ(2) + 2Λ(0)∂b− m
2

(2πα′)ρ(0)∂b−mλb ,

δc(4) = 4∂κ(3) − 1
2πα′

Λ(4) + 12Λ(2)∂b− 12(2πα′)Λ(0)∂b∂b

+2m(2πα′)2ρ(0)∂b∂b + 8m(2πα′)λb∂b ,

δc(6) = 6∂κ(5) − 1
2πα′

2λ̃+ 30Λ(4)∂b − 180(2πα′)Λ(2)∂b∂b

+120(2πα′)2Λ(0)∂b∂b∂b − 15m(2πα′)3ρ(0)∂b∂b∂b

−90m(2πα′)2λb∂b∂b .

(C.1)

The corresponding field strengths are



G(1) = ∂c(0) + 1
2πα′

C(1) − m
2
b, ,

G(3) = 3∂c(2) + 1
2πα′

C(3) − 3C(1)F + 3m
2

(2πα′) b∂b ,

G(5) = 5∂c(4) + 1
2πα′

C(5) − 10C(3)F + 15(2πα′)C(1)FF

−20m
2

(2πα′)2b∂b∂b .

(C.2)

The following gauge transformations of the a(p) fields are also used in the
paper:
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δa(0) = δc(0)

= − 1
2πα′

Λ(0) + m
2
ρ(0) ,

δa(2) = 2∂µ(1) − 1
2πα′

Λ(2) − 4∂a(0)λ+ m
2

(2πα′)ρ(0)∂b−mλb ,

δa(4) = 4∂µ(3) − 1
2πα′

Λ(4) − 24∂a(2)λ+ 2(2πα′)2mρ(0)(∂b)2

−4(2πα′)mλb∂b .

(C.3)

The corresponding field strengths are



H(1) = G(1)

= ∂a(0) + 1
2πα′

C(1) − m
2
b, ,

H(3) = 3∂a(2) + 3∂a(0)B + 1
2πα′

C(3) − 3 m
2

(2πα′)b∂b − 3 m
2
Bb ,

H(5) = 5∂a(4) + 30∂(2)B + 15∂a(0)B2 + 1
2πα′

C(5) − 20m
2

(2πα′)2b(∂b)2

−30m(2πα′)Bb∂b− 15m
2
bB2 .

(C.4)
For the fields that compensate the total derivatives in p-brane WZ terms

we have 

δb = 1
2πα′

2λ+ ∂ρ(0) ,

δb̃ = −5∂ρ(4) − 1
2πα′

Λ̃ + m
2
ρ(5) + 5Λ(4)∂c(0)

+15(2πα′)∂a(2)
(
δa(2) − 2∂µ(1)

)
,

(C.5)

and their respective field strengths are



F = 2∂b+ 1
2πα′

B ,

F̃ = 6∂b̃+ m
2
c(6) + 1

2πα′
B̃ − 6

(
C(5) − 5C(3)B

) (
∂c(0) − m

2
b
)

−30(2πα′)
[
∂a(2) − m

2
(2πα′)b∂b

] (
H(3) − 3∂a(2)

)
−120m

2
(2πα′)3∂c(0)b∂b∂b .

(C.6)
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