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Abstract

The effect of spin-0 goldstino superpartners is considered on the nucleosynthe-

sis bounds arising when a superlight gravitino appears as an effective mass-

less neutrino species. When the scalar and pseudoscalar superpartners are

relativistic they will decouple at much later times than the goldstino and

consequently will be the dominant effect when obtaining a nucleosynthesis

bound on the scale of supersymmetry breaking. Assuming that the scalar

and pseudoscalar fields decouple at a temperature no later than O(100) MeV,

then typically the scale of supersymmetry breaking
√
F >
∼ 60 TeV. This cor-

responds to a lower bound on the gravitino mass m3/2
>
∼ 1 eV.
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I. INTRODUCTION

If supersymmetry is realised in nature then it is presumably broken at some energy scale
and subsequently transmitted indirectly to the low energy observable mass spectrum [1].
While naturalness arguments essentially constrain the amount of supersymmetry breaking
in the low energy mass spectrum, the scale at which supersymmetry is broken remains largely
undetermined. In general, realistic supersymmetry breaking scenarios can be parametrised
by a spurion chiral supermultiplet (φ, ψ, F ) in which a nonzero vacuum expectation value for
the F-term gives rise to the spontaneous breaking of supersymmetry at the scale

√
F . The

fermion, ψ represents the massless Nambu-Goldstone fermion which becomes part of the
massive gravitino after the superHiggs effect. This fermion is referred to as the goldstino G̃.
The gravitino mass m3/2 is determined purely by gravitational interactions and is fixed by the

relation F =
√

3m3/2MP , where the reduced Planck mass MP =
√

8πGN = 2.4× 1018GeV
is related to the gravitational Newton constant GN . When the gravitino mass m3/2 → 0,
the goldstino becomes the dominant component of the gravitino during interactions.

The mass of the spin-0 superpartner φ, is however not fixed and can in general depend on
nonminimal terms in the Kahler potential as well as terms in the superpotential. When the
complex scalar is decomposed into real fields φ = (S+iP )/

√
2, we need to consider the scalar

massmS and pseudoscalar massmP as additional parameters to the supersymmetry breaking
scale F . In this framework we will be interested in placing a lower bound on the scale of
supersymmetry breaking from the effect of a superlight gravitino together with its scalar
superpartners contributing as extra effective neutrino species during the nucleosynthesis
epoch.

The effect of a superlight gravitino in the early universe was considered in a previous
calculation [2]. There it was assumed that the spin-0 superpartners were essentially mass-
less (mS,mP � T , where T is the temperature during the nucleosynthesis epoch) and that
they decouple before the superlight gravitino. More recently, there have appeared additional
papers [3–5] in which the general question of determining an effective gravitino Lagrangian
have been addressed. In addition these references investigated the case of massive super-
partner masses mS,mP � T and noticed qualitatively different behaviour for scattering
cross sections than the superlight scenario. However they did not address the question of
superlight scalar superpartners during nucleosynthesis.

In this work we will consider the effect of the scalar superpartners in determining the
nucleosynthesis bounds on the supersymmetry breaking scale F and in particular consider
the case of superlight masses for the scalars. It will be shown that S and P decouple
much later than the goldstinos, so that the scalar and pseudoscalar contributions actually
strengthen the bound considered in [2], when mS and mP are superlight as well. While
we provide a more complete study of the effect of the scalar and pseudoscalar fields during
nucleosynthesis, the result for superlight S, P masses will agree with [6]. In section 2 we
will consider the scattering cross sections for S, P and G̃ which are relevant during the
nucleosynthesis epoch. This will then allow us, in section 3, to obtain an expression for
the corresponding decoupling temperature. We will see that this leads to a bound on the
supersymmetry breaking scale, F and consequently a lower bound on the gravitino mass
m3/2. The conclusion and final comments appear in section 4.
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II. SCATTERING CROSS SECTIONS

We will assume that all gravitino interactions are dominated by a superlight goldstino in
determining the gravitino scattering cross sections. The associated scattering cross sections
of the scalar superpartners will also be considered when they are superlight as well. We
will make the usual assumption that a massless and weakly interacting particle decouples
when the relic abundance is frozen. Thus it will be sufficient to consider processes that
change particle number. The scattering cross sections can be obtained once all the effective
interactions between the relevant particle species is known. While the full supergravity
formalism was employed in [7,2], it will be simpler instead to use the effective Lagrangian
approach adopted by [3] where the effects of gravity are formally decoupled in the limit
MP → ∞ while keeping F fixed 1. During the nucleosynthesis era the particle species
that are assumed to be in thermal equilibrium besides S, P and G̃ will be the photon (γ),
three families of massless neutrinos (νi) and fermions, including at least electrons (e±) and
possibly muons (µ±). The temperature of the universe at these times will be in the range
O(1− 100) MeV.

A. Goldstino annihilation

The cross section for goldstino annihilation in the massless S, P limit was previously
calculated for various channels in [2,7]. For goldstino annihilation into photons the result is

σ(G̃G̃→ γγ) =
1

64π

M̃2

F 4
s2, (1)

where s denotes the Mandelstam variable for the total energy in the center of mass frame and
M̃ generically denotes the gaugino mass (the effects of neutralino mixing will be ignored in
this paper). The result (1) is valid in the limit m3/2,mS,mP �

√
s � M̃ . It is also

straightforward to obtain the annihilation cross section in the limit
√
s � mS ,mP , M̃ for

which one finds

σ(G̃G̃→ γγ) =
1

640π

s3

F 4
. (2)

This expression for the annihilation cross section agrees with the result derived by [3,5],
where it was noted that the cancellations of the leading order terms change the massless
S, P limit cross section (1). These cancellations are obviously absent when one derives the
cross section in the massless S, P limit and there is no inconsistency with the previous
literature [7,8,2], in which the massless limit was always the underlying assumption.

Similarly, the Goldstino annihilation into fermions was calculated in [2,4]. As shown in
[4] the cross section for annihilation into fermions is ambiguous up to an unknown parameter

1An alternative approach using a nonlinear realisation of the supersymmetry algebra can also be

used [5].
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which represents the neglect of higher derivative terms in the effective Lagrangian approach.
While this ambiguity will be seen to have no direct consequences on the results obtained in
this paper, we will nevertheless use a minimum value of the cross section, namely [9]

σ(G̃G̃→ ff̄) =
1

1280π

s3

F 4
, (3)

in order to derive a model independent bound.
The above annihilation channels into photons and fermions are not the only possible

channels. Since the goldstino superpartners S and P are also assumed to be in thermal
equilibrium we need to also consider the annihilation channels G̃G̃ → SS, PP, SP . The
effective Langrangian governing these interactions is given by

L = −
1

2
√

2

m2
S

F
SG̃G̃−

i

2
√

2

m2
P

F
PG̃G̃+ h.c. (4)

This leads to the following Goldstino annihilation cross sections into the scalar superpartners
S, P in the limit mS,mP �

√
s

σ(G̃G̃→ SS) =
1

128π

m8
S

F 4

1

s

log

 s

m2
3/2

− 2

 , (5)

σ(G̃G̃→ PP ) =
1

128π

m8
P

F 4

1

s

log

 s

m2
3/2

− 2

 , (6)

σ(G̃G̃→ SP ) =
1

16π

m4
Sm

4
P

F 4

1

s

log

 s

m2
3/2

− 2

 . (7)

Clearly in the massless limit these cross sections are significantly smaller than (1) and
will contribute negligibly to the overall goldstino annihilation rate.

B. S and P annihilation

The annihilation channels available for S and P are similar to those for the goldstino,
except that unlike goldstinos there are no fermion couplings in the leading order 1/F . Thus
the effective Lagrangian describing their interactions will be the goldstino Lagrangian (4)
together with the interaction with photons [3]

L =
−1

2
√

2
Re

(
M̃

F

)
SFµνF

µν +
1

4
√

2
Im

(
M̃

F

)
SεµνρσFµνFρσ (8)

+
1

2
√

2
Im

(
M̃

F

)
PFµνF

µν +
1

4
√

2
Re

(
M̃

F

)
PεµνρσFµνFρσ (9)

In the limit that mS,mP �
√
s this leads to an annihilation cross section

σ(SS → γγ) = σ(PP → γγ) =
5

64π

|M̃ |4

F 4
s, (10)
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obtained via t and u-channel photon exchange. This cross section agrees with the result
obtained by employing the full supergravity formalism [8]. Notice that the dependence on
the Mandelstam variable s is qualitatively different from that of (1) and we can already
see that S and P interact more strongly with the thermal plasma when T <∼ M̃ . This will
ultimately correspond to S and P decoupling later than the goldstino.

There are also possible annihilation channels into goldstino pairs due to the interactions
(4). These are the inverse of the processes considered in (5-7) and give rise to similar
cross sections for annihilation into goldstino pairs, namely σ(SS → G̃G̃) = 4 σ(G̃G̃ →
SS) and similarly for P . The overall factor of 4 comes from the averaging over initial
polarisations of the goldstino in the expressions for the unpolarised cross section (5-7).
Again this annihilation channel will have a negligible effect on determining the decoupling
temperature. Other channels such as SG̃→ PG̃ will also not be important.

The form of the S, P couplings to photons (8-9) also allows for the channel Sf → γf . A
photon is exchanged in the t-channel and couples to fermion pairs in the standard way. In
the limit

√
s� mS,mf where mf is the fermion mass one finds that

σ(Sf → γf) =
α

2

|M̃ |2

F 2

[
log

(
s3

m4
Sm

2
f

)
−

7

4

]
, (11)

where α is the electromagnetic fine structure constant and f is a Dirac fermion (similarly
for P with the substitution mS → mP ). Notice that the dependence on the center of mass
energy

√
s is now logarithmic and no longer a power law like previous annihilation channels.

This channel (known as the Primakoff reaction) was also considered in [6] but in the limit
mf � Eγ � ES and is also important for establishing bounds on the gravitino mass from
supernova cooling [10,6]. When mS → 0 the cross section becomes singular due to collinear
singularities. In order to regulate this infrared divergence we can introduce a thermal mass
Mγ for the photon in the background plasma. Without going into a full finite temperature
calculation this will be a good approximation to leading log order [11]. Thus, in the massless
S limit the cross section (11) becomes

σ(Sf → γf) =
α

2

|M̃ |2

F 2

[
log

(
s

M2
γ

)
−

7

4

]
, (12)

and similarly for P . This cross section will become important in obtaining the decoupling
temperature of the S, P superpartners.

Similarly S and P can both scatter off the background photons via a t and s-channel
photon exchange with various particles in the final state. The scattering cross section for a
photon in the final state in the massless S, P limit is

σ(Sγ → γP ) = σ(Pγ → γS) =
11

192π

|M̃ |4

F 4
s. (13)

Similarly the cross section for pair production is

σ(Sγ → ff̄) = σ(Pγ → ff̄) =
α

6

|M̃ |2

F 2

(
1−

4m2
f

s

)3/2

. (14)
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The process (13) is comparable to (10), while (14) is subdominant compared to (12) and
neither will have a large effect in the determination of the decoupling temperature.

Up to now we have implicitly neglected the possibility of cubic scalar couplings in the
previous goldstino and scalar channels. In general these cubic scalar interactions arise from
nonminimal terms in the Kahler potential and superpotential terms [3]. While in all realistic
models the cubic scalar couplings vanish it is interesting to comment on their effect if the
scalar annihilation channel were to include such a term. For example, the effect of the scalar
cubic couplings on the cross section (10) can be seen if we parametrise the interaction as
L = −AS/3!S3. Including this term allows for an s-channel S exchange diagram contributing
to the annihilation into photons. In the massless S limit we obtain

σ(SS → γγ) =
1

64π

|M̃ |2

F 2

(
5
|M̃ |2

F 2
s+ 4

√
2

ReM̃

F
AS + 2

|AS|2

s

)
. (15)

The interesting feature of the above cross section is that while at high energies we repro-
duce the result (10), at low energies the cross section may grow due to the 1/s behaviour.
Cosmologically this would mean that the scalar S would actually come back into thermal
equilibrium at late times if the coupling AS were large enough. Similarly a cubic scalar
coupling of the form ∼ S2P would modify (13) to a form like (15) via a u-channel scalar
exchange diagram.

There are also dimension-6 terms ∼ SSFµνF
µν (similarly SP , PP ) which in a more gen-

eral framework must also be included2. The coupling is controlled by the second derivative
of the gauge kinetic function. Again for simplicity we will assume this term to be absent.

III. THE DECOUPLING TEMPERATURE

The decoupling temperature of a particle species in the early universe is obtained in
general by solving a set of coupled Boltzmann equations. However, in practice a reasonable
estimate of the decoupling temperature can be obtained by checking when the interaction
rate of a particular particle species begins to fall behind the Hubble expansion rate H. The
interaction rate for the scattering process 1 + 2 → F into a set of final states F is related
to the thermally averaged cross section times velocity, which can be calculated using the
definition [12]

〈σvMøl〉 =

∫
dneq1 dn

eq
2 σvMøl∫

dneq1 dn
eq
2

, (16)

where

dneqi = gi
d3pi

(2π)3
f(Ei, T ), (17)

2We thank F. Feruglio on this point.
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gi is the number of internal degrees of freedom for the particle species i and f(Ei, T ) is the
statistical distribution function for a particle with energyEi in a thermal bath at temperature

T . The factor vMøl =
√

(p1 · p2)2 −m2
1m

2
2/(E1E2) is known as the Møller velocity (see

Ref. [12]) and σ is the sum over all possible scattering channels of particles 1 and 2.
In general equation (16) can only be solved numerically, but if the particle species i

is massless then it is possible to obtain analytic formulae for (16). Since the decoupling
temperature of a particle species i will be calculated when T � mi it will be a good
approximation to use the analytic formulae for massless particles. For a cross section with
a power law like behaviour and parametrised as σ =

∑
i σ̂is

ni, where s is the Mandelstam
variable one finds that for Re(ni) > −3

〈σvMøl〉 =
1

ζ(3)2

∑
i

Ci
(ni + 2)

[Γ(ni + 3)ζ(ni + 3)]2 σ̂i T
2ni, (18)

where Ci = 22ni − 1, ((22+ni − 1)2/18) for Bose-Einstein (Fermi-Dirac) statistics, ζ is the
Riemann zeta function and Γ is the Euler gamma function. If the cross section has a
logarithmic dependence on s then for σ = σ̂0 log s + σ̂1 with a boson and fermion in the
initial state we obtain

〈σvMøl〉 = σ̂0 log T 2 + 2.63327σ̂0 + σ̂1. (19)

Let us first calculate the annihilation rate for the goldstino. In the limit that√
s � m3/2,mS,mP the dominant goldstino annihilation cross section is that into pho-

tons (1). Using the fact that the equilibrium number density of relativisitic goldstinos is
nG̃ = 3ζ(3)/(2π2)T 3 the goldstino annihilation rate is [2]

ΓG̃ = nG̃〈σvMøl〉 ' 1.22
M̃2

F 4
T 7. (20)

Similarly, we can determine the interaction rate for the scalars S and P . Comparing the
cross section (10) (or (13)) with (12) we find that the scattering of S, P off the background
thermal plasma (12) will be the dominant process determining the interaction rate. For the
scattering off relativistic fermions with equilibrium number density nf = 3ζ(3)/π2T 3 the
scalar interaction rate becomes

ΓSf = nf 〈σvMøl〉 ' 0.183α
M̃2

F 2
T 3

[
log

(
T 2

M2
γ

)
+ 0.88

]
, (21)

and similarly for P . As discussed previously, nonzero cubic scalar couplings can affect the
interaction rate at lower temperatures via the s-channel annihilation of scalars into two
photons (15). In this scenario with an equilibrium scalar number density nS = ζ(3)/π2 T 3

the interaction rate is given by

ΓSS = nS〈σvMøl〉 ' 0.009A2
S

M̃2

F 2
T. (22)

We will use this rate to make sure that the scalars do not come back into thermal equilibrium
during nucleosynthesis.
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FIG. 1. The Hubble expansion rate (solid line), ΓSf (long-dashed line), ΓSS s-channel (S ex-

change) (dashed line), ΓSS t-channel (γ exchange) (dotted line) and ΓG̃G̃ (dot-dashed line) as a

function of temperature in the early universe. Notice that the goldstino decouples before the spin-0

superpartners.

Notice that for temperatures T ∼ O(100) MeV the scalar S and P interaction rate
(21) is larger than the goldstino rate (20). Consequently S and P will remain in thermal
contact with the plasma much longer than the goldstinos. This can be clearly seen when
the interaction rates are compared with the Hubble expansion rate of the universe H. If
we express the energy density of the universe, ρ(T ) in terms of the photon energy density
ργ(T ) = π2/15T 4 then the Hubble expansion becomes

H =

√
8πGN

3
ρ =

π
√

90
g1/2
ρ

T 2

MP

, (23)

where gρ is the effective number of relativisitic degrees of freedom. In Figure 1 we have
shown how the various interaction rates compare with the Hubble expansion rate for the
representative values of gρ = 65/4, M̃ = 100 GeV, F = 3.8 × 109 GeV2 and we have used
Mγ ∼

√
αT . It is clear from the figure that the goldstino will decouple at times much earlier

than the spin-0 scalar superpartners and that the dominant scattering processes for S and
P come from the scattering off background fermions (21). Also in the figure we can see the
linear temperature dependence of (22) (with AS = 0.01 GeV) and the possibility of Γ >∼ H
at lower temperatures.

Let us now obtain the expressions for the decoupling temperature. In principle to de-
termine the decoupling temperatures of S, P and G̃ we would need to solve a set of coupled
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Boltzmann equations. However, in practice since the interaction rates are significantly differ-
ent between the scalar superpartners and the goldstino one finds that the coupled differential
equations become separate equations controlled by ratios of Γ/H. In particular the Boltz-
mann equations for S(P ) separate when the dominant interaction rate is ΓSf(ΓPf) since
the equations do not involve either of the other species. Thus it will be sufficient for our
purposes to consider the equation Γ ∼ H for the dominant interaction rate Γ. When the
cubic scalar couplings are included we will also compare the interaction rate with H even
though the equations may become coupled. Again this will be sufficient in order to obtain
an order of magnitude estimate.

When the cross section has power law behaviour the decoupling temperature may be
easily obtained analytically. One finds for the goldstino decoupling temperature the result

TG̃ ' 0.77g1/10
ρ

(
F 4

M̃2MP

)1/5

. (24)

For the spin-0 superpartners the dominant scattering mode is ΓSf . In this case, an analytic
expression for the decoupling temperature of the spin-0 superpartners of the goldstino can
be obtained since for a plasmon mass Mγ ∼

√
αT the temperature dependence in the

logarithmn cancels in ΓSf . Thus by requiring ΓSf ∼ H the decoupling temperature is given
by

TS '
1.81

(0.88− logα)

g1/2
ρ

α

(
F 2

M̃2MP

)
. (25)

Since in limit
√
s� m3/2,mS,mP the scalars S, P decouple later than the goldstino (see also

the figure) we will use (25) to set a lower bound on the scale of supersymmetry breaking F .
Note that, without loss of generality we are also implicitly assuming that S and P decouple
at the same time.

When the cubic scalar couplings are included the cross section (15) is again a power law
and the analytical expression for the decoupling temperature is

T ' 0.03g−1/2
ρ A2

S

(
M̃2MP

F 2

)
. (26)

We will need to make this temperature as low as possible in order that the fields S (and P )
do not come back into thermal equilibrium during nucleosynthesis.

It is also instructive to consider the limit mS,mP �
√
s � m3/2 in which only the

goldstino is assumed to be in thermal contact with the heat bath at temperatures T ∼
O(MeV). As noted earlier, in this limit the goldstino annihilation cross section into photons
changes to the form (2). Now the annihilation cross section into photons and fermions are
comparable and qualitatively similar σ ∝ s3. Including the electron, muon and 3 families of
massless neutrinos for the fermions gives for the decoupling temperature

TG̃ ' 0.53g1/14
ρ

(
F 4

MP

)1/7

. (27)
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This equation will be used to show how much weaker the bound on the supersymmetry
breaking scale F , becomes in the massive mS,mP case.

In order to bound the decoupling temperature of a particle species i, we need to consider
its effect on nucleosynthesis. This can be done by noting that the energy density of new
massless particles is equivalent to an effective number ∆Nν of additional doublet neutrinos

∆Nν = fB,F
∑
i

gi

2

[
gρ(Tν)

gρ(TDi)

]4/3

, (28)

where fB = 8/7 for bosons, fF = 1 for fermions and gi is the number of internal degrees
of freedom of the particle species i [13]. If the scalars decouple at TS,P = Tν ' O(1 MeV)
then according to (28) S and P will effectively behave as 1.14 extra neutrino doublets. If,
however the scalars were to decouple during the epoch Tν < TS,P < Tµ, where Tµ is the
muon decoupling temperature then the effective number of additional doublet neutrinos
during nucleosynthesis due to S and P is 0.91. While neither of these bounds can be strictly
ruled out [14] we will nevertheless suppose that S and P decouple before the muon decouples3

to quote a bound on the supersymmetry breaking scale F .
As alluded to earlier there is no loss of generality if we calculate the bounds using the

expressions for the scalar field S. The bounds are identical if we were to use the expressions
for P , since to leading order the dominant cross sections have no dependence on mS or mP .
Thus using the expression (25) and requiring that TS > Tµ ' O(100 MeV) leads to the
bound

F >∼ 4× 109 GeV2

(
M̃

100 GeV

)
. (29)

This strengthens the bound considered in [2], where the effects of massless S and P during
nucleosynthesis were not considered. For M̃ ' 100 GeV the bound on the supersymmetry
breaking scale becomes F >∼ 4 × 109 GeV2. Using the relation F =

√
3m3/2Mp this leads

to a bound on the gravitino mass m3/2
>∼ 1 eV. This is similar to the bound obtained by

[6] where the logarithmic term was neglected. One may have expected a large enhancement
from the logarithmn factor in the massless limit due to the singularity, but since the plasmon
mass is large, the enhancement in the cross section is only logα ∼ −5 and thus impotent.
Also if the mass of the scalars mS,P

>∼ 1 MeV then the bounds calculated here would be
void because the cross section limits are no longer valid and a more detailed analysis in this
intermediate mass range would need to be done.

When the cubic scalar couplings, represented by AS are included we need to make sure
that they do not return to thermal equilibrium during nucleosynthesis. Requiring T <∼ O(eV)
leads to a bound of m3/2

>∼ 10−4AS, which vanishes in the limit AS = 0. We emphasise
that while this bound is approximate, a more detailed analysis than that given here could
provide interesting constraints on theories with nonzero cubic scalar couplings.

3This is somewhat plausible given that there may be other contributions to ∆Nν arising from

massive neutrinos.
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Finally, the gravitino mass bound coming from (27) in the limit mS,mP �
√
s� m3/2

is m3/2
>∼ 4× 10−7 eV and is independent of the gaugino mass M̃ . As expected the bound

becomes much weaker in this case and there are already stronger bounds from collider
phenomenology in this limit [9].

IV. CONCLUSION

We have shown that in the massless limit the scalar superpartners S, P of the goldstino
couple much more strongly to the background thermal plasma than the goldstino. This
means that during nucleosynthesis the scalars S and P may contribute as extra effective
neutrino doublets, while the goldstinos have long since decoupled. Requiring that S and P

decouple sufficiently early, so as not to upset current nucleosynthesis bounds, sets a lower
bound on the scale of supersymmetry breaking which depends on the gaugino mass M̃ . The
bound on the supersymmetry breaking scale assuming M̃ = 100 GeV is

√
F >∼ 60 TeV

which leads to a lower bound on the gravitino mass of m3/2
>∼ 1 eV. These bounds are

much stronger than those considered in [2], but complement the cosmological bounds in
[6]. Finally in the massive S, P case the nucleosynthesis bound is considerably weaker and
similar to other recent cosmological bounds [15,16].
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