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1 Introduction

In the last few years measurements of the spin asymmetries AN
1 (N = p, n, d) in

longitudinally polarized deep-inelastic scattering (DIS) have provided much new

information on the spin structure of the nucleon. Theoretical leading order (LO)

[1–3] and next-to-leading order (NLO) [1–4] analyses of the data sets demonstrate,

however, that these are not sufficient to accurately extract the spin-dependent

quark (∆q = q↑ − q↓) and gluon (∆g = g↑ − g↓) densities of the nucleon. This

is true in particular for ∆g(x, Q2) since it contributes to DIS in LO only via the

Q2-dependence of g1 (or A1) which could not yet be accurately studied experi-

mentally. As a result of this, it turns out [1–4] that the x-shape of ∆g seems to

be hardly constrained at all by the DIS data, even though a tendency towards

a fairly large positive total gluon polarization,
∫ 1

0
∆g(x, Q2 = 4 GeV2)dx & 1,

was found [1, 2, 4]. The measurement of ∆g thus remains one of the most in-

teresting challenges for future spin physics experiments. When selecting suitable

processes for a determination of ∆g, it is crucial to pick those that, unlike g1,

have a gluonic contribution already at the lowest order. Sticking to polarized

lepton-nucleon interactions, this implies to consider processes less inclusive than

DIS. Among those is the production of a (charged) hadron with large transverse

momentum pT . To obtain a large number of such hadrons, it is expedient to go to

photoproduction, i.e. to the limit when the (circularly polarized) photon which

is exchanged between the polarized lepton and the nucleon, is almost on-shell. In

this way one avoids the suppression of the cross section by the photon propagator.

As was shown recently [5], a polarized version of the HERA collider with
√

s ≈
300 GeV would be a very promising and useful facility for studying polarized

photoproduction reactions. In particular, two of the conceivable processes, single-

inclusive hadron production and jet production, show strong sensitivity to the

polarized gluon distribution of the proton and also appear likely to yield statistics

good enough for a successful measurement [5]. In the framework of the LO

calculation performed in [5], the sensitivity of these reactions to ∆g is due in
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the first place to the subprocess ~γ~g → qq̄, where the arrows denote longitudinal

polarization. As was stressed in [5], and as is well-established in the unpolarized

case, the (quasi-real) photon will not only interact in a direct (“point-like”) way,

but can also be resolved into its hadronic structure. As far as a determination

of ∆g is concerned, such “resolved” contributions (which appear at the same

order in perturbation theory as the “direct” piece) are to be considered as a

background. As was shown in [5], the resolved component is subdominant with

respect to the direct one in certain regions of rapidity and transverse momentum

of the produced hadron or jet, thus maintaining the clear-cut sensitivity to ∆g

resulting from the direct piece. Focusing on the other hand on the resolved

component, the study of polarized photoproduction at HERA might even allow

a measurement of the parton content of polarized photons in the long run [5] –

a unique task for HERA which makes the polarization upgrade option of HERA

appear even more fascinating.

Polarized photoproduction reactions can also be studied in fixed target experi-

ments with polarized lepton beam and polarized target, like the future COMPASS

experiment at CERN, or HERMES at DESY. Among other things, one could look

for charged tracks with large pT also in these experiments, whereas the energies

would obviously not be large enough for producing decent jets. The resolved

component at fixed target energies is expected to be generally negligible.

In order to make reliable quantitative predictions for a high-energy process

such as polarized inclusive-hadron photoproduction, it is crucial to extend LO

studies like the one of [5] to NLO by determining the O(αs) QCD corrections.

The key issue here is to check the perturbative stability of the process considered,

i.e. to examine to what extent NLO corrections affect the cross sections and spin

asymmetries relevant for experimental measurements. Only when the corrections

are reasonably small and under control can a process that shows good sensitivity

to, say, ∆g at the lowest order, be regarded as a genuine probe of the polarized

gluon distribution and be reliably used to extract it from future data. The first
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basic ingredient for such an extension to NLO has been provided in the past

two years by the NLO fits to polarized DIS data mentioned above, which yielded

spin-dependent nucleon parton distributions evolved to NLO accuracy. Focusing

on the direct part of inclusive-hadron photoproduction, the calculation of the

polarized cross section to NLO is then completed by using also (unpolarized)

NLO fragmentation functions for the produced hadron (as provided in [6]), and

by including the O(αs) corrections to the spin-dependent “direct” subprocess

cross sections for the inclusive production of a certain parton that fragments into

the hadron. The calculation of the latter is the purpose of this paper.

An immediate problem arises here, as the direct part on its own is no longer

a really well-defined quantity beyond the LO. This is due to the fact that be-

yond LO collinear singularities appear in the calculation of the subprocess cross

sections for photon-parton scattering which are to be attributed to a collinear

splitting of the photon into a qq̄ pair and need to be absorbed into the photon

structure functions. As the latter only appear in the resolved part of the cross

section, and since factorizing singularities is never a unique procedure, it follows

that only the sum of the direct and the resolved pieces is independent of the

factorization scheme chosen and thus is physical. This has been known for a

long time from the unpolarized case where the corrections to the direct [7, 8] and

to the resolved [9] contributions have all been calculated. Nevertheless, we will

concentrate in this work only on the corrections to the direct part of the polar-

ized cross section, mainly because this calculation – albeit already being quite

involved – is much simpler than the one for the resolved piece. Our results will

therefore only be the first step in a full calculation of NLO effects to polarized

inclusive-hadron photoproduction. Despite the fact that they are not complete in

the sense discussed above, we believe our results to be very important, both phe-

nomenologically and theoretically: As mentioned earlier, the direct component

dominates at fixed target energies and also still for the HERA collider situation

in certain regions of phase space. This means that our NLO results should be

rather close to the true NLO answer in these cases even if the resolved component
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is only taken into account on a LO basis, which in turn implies that our NLO

corrections should already be sufficient to shed light on the question of general

perturbative stability of the process. We also mention in this context that our

results for the NLO corrections to the direct hard subprocess cross sections will

help to obtain or to check those for the resolved ones as the abelian (“QED-like”)

parts of the two are the same.

The paper is organized as follows: in sec. 2 we present the calculation of the

O(αs) corrections to the direct part of polarized inclusive-parton photoproduc-

tion. Section 3 is devoted to a brief numerical evaluation of our results for HERA

and fixed target kinematics. Section 4 contains the conclusions.

2 Calculation of the NLO corrections to the di-

rect part of polarized inclusive-parton photo-

production

2.1 General framework

The process we want to study is the single-inclusive production of a hadron h in

photoproduction in collisions of longitudinally polarized electrons (or muons) and

protons, i.e. ~e(pe)~p(pp) → h(ph)X. The NLO expression for the corresponding

spin-dependent cross section is given by

Eh
d∆σh

d3ph
≡ 1

2

(

Eh

dσh
++

d3ph
− Eh

dσh
+−

d3ph

)

(1)

=
1

πS

∑

i,j

∫ 1

1−V +V W

dz

z2

∫ 1−(1−V )/z

V W/z

dv

v(1− v)

∫ 1

V W/vz

dw

w

∆f e
γ (xe, M

2)∆f p
i (xp, M

2)Dh
j (z, M2

F )
παs(µ

2)αem

s
× (2)

×
[

d∆σ̂
(0)
γi→j(v)

dv
δ(1− w) +

αs(µ
2)

π

d∆σ̂
(1)
γi→j

dvdw
(s, v, w, µ2, M2, M2

F )

]

,
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the subscripts “++”, “+−” in (1) denoting the settings of the helicities of the

incoming electron and proton. We have introduced the hadronic variables

V ≡ 1 +
T

S
, W ≡ −U

S + T
,

S ≡ (pe + pp)
2 , T ≡ (pe − ph)

2 , U ≡ (pp − ph)
2 , (3)

and the partonic ones

v ≡ 1 +
t

s
, w ≡ −u

s + t
,

s ≡ (pγ + pi)
2 , t ≡ (pγ − pj)

2 , u ≡ (pi − pj)
2 . (4)

Neglecting all masses, one has the relations

s = xexpS , t =
xe

z
T , u =

xp

z
U ,

xe =
V W

vwz
, xp =

1− V

z(1− v)
, (5)

where xe (xp) is the fraction of the longitudinal momentum of the electron (pro-

ton) taken by the photon (by parton i). Similarly, z is the momentum share that

hadron h inherits from its parent parton j in the fragmentation process. The

spin-dependent (“helicity-weighted”) parton distributions of electrons and pro-

tons that appear in the expression (2) for the polarized cross section are defined

as usual by

∆f e,p
i (x, M2) ≡ f

e,p(+)
i(+) (x, M2)− f

e,p(−)
i(+) (x, M2) , (6)

where f
e,p(+)
i(+) (x, M2) (f

e,p(−)
i(+) (x, M2)) denotes the probability at scale M of finding

parton i with positive helicity and momentum fraction x in an electron or proton

with positive (negative) helicity. As we only deal with the direct case, the only

parton type occurring for the polarized electron structure functions is the photon,

and the ∆f e
γ coincide with the spin-dependent Weizsäcker-Williams spectrum1

[10]:

∆f e
γ (y, M2) ≡ ∆Pγ/e(y) =

αem

2π

[

1− (1− y)2

y

]

ln
Q2

max(1− y)

m2
ey

2
, (7)

1For the resolved contribution, one has ∆fe
γ → ∆fe

k in (2), where ∆fe
k is a convolution of

∆fe
γ in (7) with the polarized photon structure function for parton type k.
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with me being the electron (or muon) mass and Q2
max the allowed upper limit on

the radiated photon’s virtuality, to be fixed by the experimental conditions. The

fragmentation function Dh
j (z, M2

F ) in (2), describing the fragmentation process

j → h, is of course the usual unpolarized one since we sum over all polarizations

in the final state.

Finally, the spin-dependent LO and NLO cross sections for the subprocesses

γi → jX, d∆σ̂
(0)
γi→j/dv and d∆σ̂

(1)
γi→j/dvdw, which have been stripped of trivial

factors involving the electromagnetic coupling constant αem and the strong one

αs(µ
2), are defined in complete analogy with eq. (1). Note that, as indicated

in (2), d∆σ̂
(1)
γi→j/dvdw will explicitly depend on the renormalization scale µ as a

result of the renormalization procedure for the NLO virtual corrections, and also

on the scales M , MF of the parton distributions and fragmentation functions,

owing to the factorization of initial and final state collinear singularities. The

calculation of the d∆σ̂
(1)
γi→j/dvdw is the purpose of this paper.

To conclude this section, let us note that the expression for the unpolarized

cross section for single-inclusive hadron photoproduction is similar to the one in

eqs. (1),(2), taking the sum instead of the difference in (1) and using unpolar-

ized subprocess cross sections dσ̂
(0)
γi→j/dv, dσ̂

(1)
γi→j/dvdw and parton distributions

in (2). The latter correspond to taking the sum instead of the difference in (6),

and for the electron case the unpolarized Weizsäcker-Williams spectrum [10] is

obtained from (7) by replacing 1 − (1 − y)2 → 1 + (1 − y)2. When calculat-

ing the polarized d∆σ̂
(1)
γi→j/dvdw, we will at the same time also determine their

unpolarized counterparts and compare them to existing analytical results in the

literature [8]. This will serve as a very good check on our calculation. Further-

more, the unpolarized cross section is needed when one wants to calculate spin

asymmetries, defined by

Ah ≡ Ehd∆σh/d3ph

Ehdσh/d3ph
, (8)

which are usually the only quantities directly accessible to experiment.
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2.2 LO contributions

The subprocesses contributing to ∆σ̂
(0)
γi→j are

~γ~q → g(q) ,

~γ~q → q(g) ,

~γ~g → q(q̄) . (9)

Here it is understood that the final-state particle in brackets is unobserved and

integrated over its entire phase space, while the other fragments into the hadron.

Note that the last process in (9) is symmetric under exchange of q, q̄. The

corresponding spin-dependent cross sections read:

d∆σ̂
(0)
γq→g(v)

dv
= 2CF e2

q

1− v2

v
,

d∆σ̂
(0)
γq→q(v)

dv
= 2CF e2

q

1− (1− v)2

1− v
,

d∆σ̂
(0)
γg→q(v)

dv
= −2TRe2

q

v2 + (1− v)2

v(1− v)
, (10)

where CF = 4/3, TR = 1/2, and eq is the fractional charge of the quark.

2.3 NLO contributions

Apart from the generic inclusive processes γq → g, γq → q, and γg → q that are

already present at the LO level, there are also contributions that can arise only

beyond the Born approximation. These are γg → g, γq → q̄, and γq → q′, where

in the latter process q′ denotes a quark (or antiquark) of flavour different from q.

This means that the following explicit subprocesses have to be evaluated:

a) the interference between the Born graphs ~γ~q → g(q), ~γ~q → q(g), ~γ~g → q(q̄)

and the virtual corrections to them,

b) the real corrections to the Born graphs, ~γ~q → g(qg), ~γ~g → q(q̄g), and

~γ~q → q







(gg)
(qq̄)
(q′q̄′)
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(note that for the latter contribution a finite answer is obtained only if all

three subprocesses are added),

c) ~γ~g → g(qq̄), ~γ~q → q̄(qq), ~γ~q → q′(qq̄′) .

2.4 Regularization of singularities

It is well known that singularities are encountered when calculating the loop

diagrams or when performing the phase space integrations for the unobserved

partons in the 2→ 3 processes: first of all, the loop-diagrams contain ultraviolet

divergencies which are removed by renormalization. Adding the renormalized

loop and the corresponding 2→ 3 contributions, the infrared singularities which

are individually present in both parts, also cancel out, and one is left with collinear

singularities which are finally removed by the factorization procedure (for the

contributions from c) only singularities of the latter type occur). Of course, for

being able to handle the singularities, one has to choose a consistent method

of regularization. In our calculation we use dimensional regularization for this

purpose, where d = 4− 2ǫ, which is the most convenient and customary choice.

The calculation of the spin-dependent squared matrix elements requires pro-

jection onto definite helicity states of the incoming particles (which are taken to

have momenta p1, p2), which is achieved by using the relations

u(p1, hq)ū(p1, hq) =
1

2
6p1(1− hqγ5) (11)

for incoming quarks with helicity hq (analogously for antiquarks) and

ǫµ(p2, λg)ǫ
∗ν(p2, λg) =

1

2(1− ǫ)

[

−gµν +
1

p1 · p2
(pµ

1p
ν
2 + pν

1p
µ
2 )

]

+
iλg

2p1 · p2
ǫµν

ρσpρ
2p

σ
1

(12)

for incoming gluons with helicity λg. The parts independent of hq and λg con-

tribute to the unpolarized matrix elements, for which the averaging of gluon spins

in d dimensions should be performed by dividing by the d− 2 = 2(1− ǫ) possible

spin orientations, as has been made explicit in eq. (12).
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As is well known, the use of γ5 and the Levi-Civita tensor appearing in

(11),(12) is not entirely straightforward in d 6= 4 dimensions. For our calculations

we will use the original prescription of ‘t Hooft and Veltman [11], afterwards sys-

tematized by Breitenlohner and Maison [12] (HVBM scheme), which is usually

regarded as the most reliable scheme in the sense that its internal algebraic con-

sistency is well established. In this scheme explicit definitions for γ5 and ǫµνρσ

are given. In particular, γ5 ≡ iǫµνρσγµγνγργσ/4!, the ǫ-tensor being regarded as a

genuinely four-dimensional object with its components vanishing in all unphysical

dimensions. In this way the d-dimensional Minkowski space is explicitly divided

into two subspaces, a four-dimensional one and a (d − 4)-dimensional one, each

of them equipped with its metric tensor. As a result, apart from d-dimensional

scalar products p · q (the usual Mandelstam variables), also their respective “sub-

space” counterparts can show up in calculations, which renders the calculation

of traces and phase space integrations somewhat more complicated. Fortunately,

we can rely in our calculation to a certain extent on known results, as will be

discussed in the next subsection.

2.5 Virtual corrections and 2→ 3 matrix elements

In [13] the NLO corrections to the (“non-fragmentation”) part of the hadronic

single-spin cross section for the production of circularly polarized prompt photons,

i.e. the QCD corrections for ~pp→ ~γX, were calculated. This calculation involved

the virtual corrections to the Born graphs ~qg → ~γq, ~gq → ~γq, ~qq̄ → ~γg, as well

as the 2→ 3 matrix elements ~ab→ ~γcd. These ingredients were obtained in [13]

in the HVBM scheme. We therefore can get the virtual corrections for ~γ~q → gq,

~γ~q → qg, ~γ~g → qq̄ and the 2 → 3 cross sections ~γ~a → bcd by appropriately

crossing the polarized photon with the unpolarized incoming parton in the results

of [13], which greatly facilitates the calculation.
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The virtual corrections obtained in this way read in the MS scheme:

d∆σ̂
(1),V
qγ→q

dvdw
=

CF e2
qµ

2ǫ

Γ(1− 2ǫ)

(

(4πµ2)2

s2v(1− v)

)ǫ

δ(1− w)

[

−2 CF + NC

ǫ2
δTqγ

− 1

ǫ

(

b0 δTqγ − 2 CF ln v1 δTqγ + NC δTqγ ln
v1

v
+ NC

v2
1

v
+ CF

v1

v
(5 + v)

)

+ b0 ln
µ2

s
δTqγ − (2 CF −NC) ln v1 ln v

1− 2 v

v
+ (2 CF −NC) ln2 v

1− 2 v

2 v

+ CF ln v
3− 2 v

v
− b0

v1
2

v
+ (2 CF −NC)

v2
1

v
ln v1 − 2 CF v1

5 + 2 v

v

+ CF π2 2− 6 v + v2

3 v
+ NC ln v

1− v + v2

v
−NC π2 1− 6 v + 2 v2

6 v

]

, (13)

d∆σ̂
(1),V
qγ→g

dvdw
=

d∆σ̂
(1),V
qγ→q

dvdw

[

v ←→ (1− v)
]

, (14)

d∆σ̂
(1),V
gγ→q

dvdw
=

TRe2
qµ

2ǫ

Γ(1− 2ǫ)

(

(4πµ2)2

s2v(1− v)

)ǫ

δ(1− w)

[

−2 CF + NC

ǫ2
δTgγ

− 1

ǫ
(b0 δTgγ + 3 CF δTgγ −NC δTgγ ln(vv1)) + NC ln(vv1)

− 7 CF δTgγ + b0 ln
µ2

s
δTgγ −NC δTgγ ln v1 ln v +

1

6
(4 CF −NC) π2 δTgγ

− CF ln v
3− v

v
− CF ln v1

2 + v

1− v
− (2 CF −NC) ln2 v

1 + v2

2 (1− v) v

− (2 CF −NC) ln2 v1
2− 2 v + v2

2 (1− v) v

]

, (15)

where NC = 3, b0 = 11NC/6 − nf/3 (nf being the number of active flavours),

and µ is the renormalization scale. Furthermore,

δTqγ = (1− v2)/v , (16)

δTgγ = −v1/v − v/v1 , (17)

with v1 = 1− v. Note that the result for ~q~γ → qg can also be obtained from the

one of [14] for ~q~g → γq after crossing and correct adjustment of colour.

The integration of the real 2 → 3 matrix elements over the phase space of

the unobserved particles has been discussed in detail in [15, 14] and needs not

be recalled here. The technical complications related to the use of the HVBM

scheme discussed above have been solved in [14].
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Adding the renormalized virtual and the real contributions, all infrared singu-

larities cancel out. In the next section we briefly recall the factorization procedure

which removes the remaining collinear singularities.

2.6 Factorization

The factorization procedure based on the factorization theorem [16] has been

outlined in, for instance, refs. [15, 14]. The mass singularities arise when either

an incoming particle collinearly emits another particle (or splits into a pair of

collinear particles), or when the “observed” final state particle is collinear to an

unobserved one. The singular terms attached to the initial legs are separated off at

the factorization scale M and absorbed into the initial-state parton distributions

which then obey NLO QCD evolution equations. In particular, if the singularity

results from a collinear splitting γ → qq̄, it is absorbed into the “pointlike”

part of the photon structure function. Of course there is freedom in choosing

the factorization prescription, i.e. in subtracting finite pieces along with the

pole terms. As already pointed out in the introduction, this is the reason why a

separation of direct and resolved contributions to a photoproduction cross section

becomes, strictly speaking, meaningless beyond LO. Final state singularities are

factorized at the scale MF into the (NLO) unpolarized fragmentation functions

Dh
f .

As an example, let us briefly discuss the factorization of the polarized ~q~γ →
g(qg) subprocess. This is performed in the easiest way by adding a “counter cross

section” [15] which, taking into consideration all possible collinear configurations,

has the form

d∆σ̂
(1),F
qγ→g

dvdw
∼ −αs

2π

[
∫ 1

0

dx1∆Hqq(x1, M
2)

d∆σ̂qγ→gq
ǫ

dv
(x1s, 1 +

t

s
) δ (x1(s + t) + u)

+

∫ 1

0

dx3

x2
3

Hgg(x3, M
2
F )

d∆σ̂qγ→gq
ǫ

dv
(s, 1 +

t

x3s
) δ

(

s +
1

x3

(t + u)

)

+

∫ 1

0

dx3

x2
3

Hgq(x3, M
2
F )

d∆σ̂qγ→qg
ǫ

dv
(s, 1 +

t

x3s
) δ

(

s +
1

x3

(t + u)

)]

11



−αem

2π

[
∫ 1

0

dx2∆Hqγ(x2, M
2)

d∆σ̂qq̄→gg
ǫ

dv
(x2s, 1 +

t

x2s
) δ (x2(s + u) + t)

]

, (18)

where the d∆σ̂ab→cd
ǫ (s, v)/dv are the polarized d-dimensional 2→ 2 cross sections

for the processes ab→ cd, to be found for the HVBM scheme in [14]. Furthermore,

(∆)Hij(z, M
2) ≡ −1

ǫ̂
(∆)Pij(z)

(

µ2

M2

)ǫ

+ (∆)fij(z) , (19)

where 1/ǫ̂ ≡ 1/ǫ − γE + ln 4π, as usual in the MS scheme. In eq. (19) the

(∆)Pij(z) denote the unpolarized (polarized) one-loop splitting functions for the

transitions j → i [17]. The functions (∆)fij(z) represent the freedom in choosing

a factorization prescription. In the MS scheme these functions vanish. Note that

even in the polarized case only the unpolarized Hij contribute to the factorization

of final-state singularities, as we do not consider the production of polarized

hadrons.

Before proceeding, we have to mention an important subtlety related to

the use of the HVBM prescription for γ5, which affects the polarized function

∆Hqq. It is a well-known property of the HVBM–γ5 that it leads to helicity

non-conservation at the qqg vertex in d dimensions, expressed by a non-vanishing

difference of unpolarized and polarized d-dimensional LO quark-to-quark splitting

functions,

∆P 4−2ǫ
qq (x)− P 4−2ǫ

qq (x) = 4CF ǫ(1− x) . (20)

A disagreeable consequence of this is a non-zero first moment (x-integral) of

the non-singlet NLO anomalous dimension for the evolution of polarized non-

singlet quark densities, in obvious conflict with the conservation of the flavour

non-singlet axial current [18, 19, 20]. At the same time, (20) is responsible for

producing a result for the O(αs) correction to the Bjørken sum rule [21] which

disagrees with the one of [22]. These two effects turn out to be closely related,

as they can be simultaneously removed by a factorization scheme transformation

[19, 20], generated by the term on the right-hand-side of (20). In other words,

it is advisable, albeit not mandatory in a purely mathematical sense, to slightly

deviate from the MS scheme in the polarized case by choosing (see also [20])

∆fqq(z) = −4CF (1− z) (21)
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in (19). The factorization scheme transformation defined by this equation has

also been performed in the calculations of the spin-dependent NLO splitting func-

tions [19, 20] and is thus respected by the available sets of spin-dependent NLO

parton densities [1–4]. The “γ5-effect” described above has been known to occur

in the HVBM scheme for quite some time [23, 24, 18, 25] and is obviously a

pure artefact of the regularization prescription chosen. Since furthermore physi-

cal requirements such as the conservation of the non-singlet axial current serve to

remove the effect in a straightforward and obvious way, results of NLO calcula-

tions in “spin-physics” (like the ones of [19, 20], or ours) are usually regarded as

being “genuinely” in the conventional MS scheme only after this transformation

has been carried out. The quantities ∆fqg, ∆fgq, and ∆fgg in (19) will of course

be set to zero, as in the usual MS scheme. Needless to say that in the unpolarized

case (MS) one has fqq = fqg = fgq = fgg = 0.

Another comment concerns the functions (∆)Hqγ needed for factorizing initial-

state collinear singularities from photon-splitting to a qq̄ pair. As mentioned

above, such singularities are absorbed into the “pointlike” part of the photon

structure functions. Studies [26, 27, 28] of the photon structure beyond LO have

revealed that the MS-scheme photonic coefficient functions for the photon’s DIS

structure functions F γ
2 , gγ

1 exhibit a logarithmically singular behaviour at large

x. Combining at NLO the “pointlike” parts of F γ
2 , gγ

1 with estimates for the

“hadronic” component based on vector meson dominance (VMD) arguments,

one encounters strongly negative results at large x, ruling out the use of intu-

itive VMD ideas in the MS scheme. Instead, an appropriately adjusted (“fine

tuned”) non-VMD hadronic NLO input would be required in the MS scheme,

substantially differing from the LO one, as the only means of avoiding unwanted

and physically not acceptable perturbative instabilities for physical quantities

like F γ
2 , gγ

1 . In the unpolarized case the so-called DISγ factorization scheme [26]

was introduced to avoid such “inconsistencies”. Here the idea was to absorb the

photonic Wilson coefficient for F γ
2 into the photon’s quark densities by a factor-

ization scheme transformation, hereby leaving the “hadronic” part untouched. In

13



[28], this procedure was extended to the polarized case. It was found that after

transforming to the DISγ scheme, a pure VMD input can be successfully used for

phenomenological analyses going beyond the LO. We will therefore specify the

functions (∆)fqγ to be used to transform to the DISγ scheme. They read:

fqγ(x) = TR

[

(x2 + (1− x)2)

(

ln
1− x

x
− 1

)

+ 6x(1− x)

]

,

∆fqγ(x) = TR

[

(2x− 1)

(

ln
1− x

x
− 1

)

+ 2(1− x)

]

, (22)

where TR = 1/2. Of course, the choice of factorization scheme cannot affect the

result for a physical quantity. In other words, in the unpolarized case, where all

contributions can be consistently calculated to NLO, it does not matter eventually

whether we use photonic parton densities defined in the DISγ or the MS scheme,

as long as we use NLO hard cross sections determined in the same scheme. In

the polarized case however, we are not yet able to consistently include the NLO

“resolved” contributions, as was pointed out several times before. Therefore,

comparing the results for the direct part of the NLO cross section in the MS and

the DISγ schemes might indicate the uncertainty resulting from not performing

a consistent NLO calculation.

2.7 Final results

For all processes the final partonic cross section can be cast into the form:

d∆σ̂
(1)
γi→j

dvdw
(s, v, w, µ2, M2, M2

F ) =

[(

caδ(1− w) + cb
1

(1− w)+
+ cc

)

ln
M2

s

+

(

cãδ(1− w) + cb̃

1

(1− w)+

+ cc̃

)

ln
M2

F

s

+ c̃1δ(1− w) ln
µ2

s
+ c1δ(1− w)

+ c2
1

(1− w)+

+ c3

(

ln(1− w)

1− w

)

+

+ c4 ln v

+ c5 ln(1− v) + c6 ln w + c7
ln w

1− w
+ c8 ln(1− w)

+ c9 ln(1− vw) + c10

ln 1−v
1−vw

1− w
+ c11 ln(1− v + vw)
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+ c12
ln(1− v + vw)

1− w
+ c13

]

. (23)

Distributions in w like δ(1−w), 1/(1−w)+, etc. only occur for the subprocesses

that are already present at the Born level. An expression similar to (23) holds for

the unpolarized case with, obviously, different coefficients ci(v, w). We note that

we have compared our unpolarized results to the ones presented in an analytical

form in [8]. We found an almost complete overall agreement; however, there are a

very small number of differences, some of which could be related to typographical

mistakes. The only major discrepancies arise for the subprocesses γq → q(q′q̄′)

and γq → q′(qq̄′). For the first, we believe that the result in [8] was accidentally

presented in terms of the “crossed” process qγ → q(q′q̄′). For γq → q′(qq̄′), it

seems that the result in [8] rather corresponds to γq → q̄′(qq′). Anyway, none

of these small discrepancies turns out to have a significant numerical effect. The

coefficients ci(v, w) for the unpolarized and polarized cases are rather lengthy and

will not be given here. They can be obtained in a Fortran code via electronic

mail from Werner.Vogelsang@cern.ch.

3 Numerical results

Let us now present some first numerical results for the NLO corrections to po-

larized single-inclusive photoproduction of charged hadrons. Rather than per-

forming a detailed numerical study of the process, we will restrict ourselves to

the most interesting questions. These concern the general size of the correc-

tions (“K-factors”) and the residual dependence of the NLO cross section on the

unphysical scales present in the calculation.

Before starting, we mention that whenever we will calculate the unpolarized

NLO cross section, we will do so in a completely consistent way, i.e. by including

both the direct and the resolved parts at NLO. Here we make use of our own

results for the NLO corrections to the direct part of the cross section (see sec. 2),

and of the ones in [9] for the NLO resolved part. Furthermore, we will for
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consistency use NLO parton densities for the incoming proton [29] and the photon

[26], as well as NLO fragmentation functions. For the latter we will use the ones

of [6] set up for the sum of charged pions and kaons. They will also be our choice

when calculating the polarized cross section.

In the polarized case at NLO, we will use spin-dependent parton distributions

for the proton evolved at NLO and fitted to the available DIS data. Several sets

for these are available [1, 2, 3]; for definiteness we will choose the ones of [1]

determined within the “radiative parton model”. These also have the agreeable

property of providing parametrizations at NLO and LO, the latter to be used

for Born level predictions. In particular, we will choose the “valence” set of [1],

which corresponds to the best-fit result of that paper, along with one other set of

[1] based on assuming ∆g(x, µ2) = g(x, µ2) at the low input scale µ of [1], where

g(x, µ2) is the unpolarized GRV [29] input gluon distribution. This set will be

referred to as “max. gluon” in what follows. Employing these two sets, which

both provide a good fit to the available DIS data, but differ significantly in the

polarized gluon density, we are able to see to which extent the relative size of the

NLO corrections depends on the set of parton distributions used.

We also note that whenever we calculate a cross section at LO (for instance,

when determining the K-factor K = σNLO/σLO), we will for consistency use LO

parton distributions and fragmentation functions. In this case we will also use

the one-loop expression for the strong coupling, whereas at NLO we obviously

employ its two-loop counterpart. The LO/NLO values for the QCD scale pa-

rameter Λ
(nf )
QCD for nf active flavours are taken from [29, 26, 1]. Heavy flavour

(c, b) contributions to the cross sections are neglected for simplicity. Unless we

explicitly study the scale dependence of our results, we will choose the renormal-

ization and factorization scales to be equal to the transverse momentum pT of

the produced hadron.

We will provide numerical results for both the fixed target and the HERA

collider kinematic domains. While the resolved component is expected to be
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Figure 1: Ratio of LO direct and full (direct + resolved) polarized cross sections for
HERA energies (Ee = 27 GeV, Ep = 820 GeV). a. pT dependence at η = −1, b. η
dependence at pT = 5 GeV.

generally small at fixed target energies, it is known [5] to be dominant in certain

regions of phase space at HERA also for the polarized case. Here the direct

contribution will dominate only at fairly large pT , and/or at negative rapidities

η of the produced hadron in the HERA laboratory frame, where we have, as

usual, counted positive rapidity in the proton forward direction. In order to

demonstrate this, and to isolate for our further HERA studies the region where

the direct contribution dominates, figure 1 shows the ratio of the direct part of

the polarized cross section over the full (direct + resolved) one, calculated at LO

and plotted vs. pT (at η = −1) and η (at pT = 5 GeV). We have assumed Ee = 27

GeV and Ep = 820 GeV; the cuts on the polarized Weizsäcker-Williams spectrum

were chosen as in [5]. We have used the GRSV “max. gluon” set for the polarized

proton. For the LO resolved part in the denominator we have to pick a suitable

set of LO parton distributions for the polarized photon. Of course, nothing is

known as yet experimentally about the latter, so we need to resort to models for

them. Here we will follow [5] to use two very different scenarios, first considered

in [30]. They are based on assuming “maximal” (∆fγ(x, µ2) = fγ(x, µ2)) or
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“minimal” (∆fγ(x, µ2) = 0) saturation of the fundamental positivity constraints

|∆fγ(x, µ2)| ≤ fγ(x, µ2) at the input scale µ for the QCD evolution, where µ

and the unpolarized photon structure functions fγ(x, µ2) were adopted from the

phenomenologically successful radiative parton model predictions in [26]. These

sets will be dubbed “max. γ” and “min. γ” sets, respectively, and figure 1

shows the results obtained for both sets. As can be seen, in the region defined

by η ≤ −1, pT ≥ 5 GeV the resolved component is expected to contribute about

20% or less to the cross section (note that the direct and resolved parts of the

cross section turn out to be of opposite sign).

Having determined the region where the direct component dominates for

HERA energies, we can now turn to NLO. Figure 2 shows the K-factors for

the direct part of the polarized cross section in the MS scheme, again vs. pT

(at η = −1) and η (at pT = 5 GeV). The solid line corresponds to the “max.

gluon” set for the polarized parton densities of the proton, whereas the dashed

one displays the result obtained within the “valence” best-fit scenario of [1]. As

one can clearly see, the K-factors are of very moderate size, K . 1 for almost

all pT and η examined. Only at very large pT , near the edge of phase space for

the η = −1 considered, does the K-factor become much larger than unity within

the “valence” scenario. This finding of generally small NLO corrections is very

important and corroborates the LO predictions previously made in [5].

As frequently mentioned earlier, the NLO direct part on its own is factoriza-

tion scheme dependent. For comparison we also plot in fig. 2 the K-factor for

the direct cross section obtained within the DISγ scheme introduced in sec. 2.6.

As can be seen, the corresponding change of the result is rather small. Finally,

figure 2 also presents the K-factor for the full (direct + resolved) unpolarized

cross section, which of course is scheme-independent. It turns out that it is very

similar in size and shape to the K-factors we have obtained for the direct part

of the polarized cross section. This, again, is a very satisfactory finding, as it

suggests that our K-factor for the direct part might not be too far off the result
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Figure 2: K-factors for the direct part of the polarized cross section at HERA energies
for different GRSV [1] parton distributions. In a. the K-factor for the total unpolarized
cross section is also shown.

for the one of the full polarized cross section, to be eventually determined when

the NLO corrections to the resolved part of the polarized cross section will have

been calculated.

Another important issue when going beyond the LO is the expected reduction

in the dependence of the results on the unphysical scales µ, M , MF introduced

previously. We now set µ2 = M2 = M2
F = ξp2

T and plot in fig. 3 the LO and NLO

direct cross sections as functions of ξ for fixed η = −1, pT = 5 GeV. Even though

we can only consider the direct part, the improvement in the scale dependence

when going from LO to NLO becomes already clearly visible.

We finally turn to the fixed target region, relevant for the HERMES and the

future COMPASS experiments. It is again interesting to study the size of the K-

factor for this situation, choosing a muon beam energy of 200 GeV. The results for

our two sets of polarized parton densities of the proton are displayed as functions

of pT in fig. 4, where we have fixed the centre-of-mass rapidity, ηcm = 0. We have
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Figure 3: Scale dependence of the direct part of the polarized inclusive-hadron pho-
toproduction cross section at pT = 5 GeV and η = −1 for HERA energies. All scales
have been set equal to

√
ξpT , and the parton distributions used correspond to the

“max. gluon” set of [1]. The NLO cross section has been calculated in the MS
scheme.

again calculated the NLO cross section in the MS scheme. One can clearly see

that again the K-factors are of very reasonable size, once pT ≥ 3 GeV, where one

intuitively would start to trust perturbation theory.

4 Summary and Conclusions

We have presented for the first time the next-to-leading order QCD corrections

to the spin-dependent cross section for single-inclusive charged-hadron photo-

production. This process derives its importance from its sensitivity to the pro-

ton’s spin-dependent gluon distribution and, at high energies, to the so far com-

pletely unknown parton content of circularly polarized quasi-real photons. It

could be studied experimentally in future polarized fixed-target lepton-nucleon

experiments, but also at the HERA ep collider after an upgrade to both beams
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Figure 4: K-factors for the direct part of the polarized single-inclusive charged-hadron
cross section in a fixed target experiment with s = 400 GeV2 at ηcm = 0.

being polarized.

Our calculation is an important first step in trying to assess the perturbative

stability of this process. First numerical results show generally moderate NLO

corrections for the direct part of the cross section, the K-factor being close to

unity over a wide kinematical range at both HERA and fixed target energies.

Also, the expected reduction in scale dependence of the cross section when going

from LO to NLO is found. We finally emphasize, however, that in order to be able

to use our results for obtaining truly physical predictions, the NLO corrections to

the resolved part of the cross section will also have to be calculated in the future.
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