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ABSTRACT

We quantify the amount of fine tuning of input parameters of the Minimal Supersymmetric
Extension of the Standard Model (MSSM) that is needed to respect the lower limits on sparticle
and Higgs masses imposed by precision electroweak measurements at LEP, measurements of
b → Xsγ, and searches at LEP 2. If universal input scalar masses are assumed in a gravity-
mediated scenario, a factor of >∼ 180 is required at tanβ ∼ 1.65, decreasing to ∼ 20 at tanβ ∼
10. The amount of fine tuning is not greatly reduced if non-universal input scalar Higgs masses
are allowed, but may be significantly reduced if some theoretical relations between MSSM
parameters are assumed.
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The measured magnitudes of the gauge coupling strengths are consistent with the presence
of light sparticles within a supersymmetric GUT model [1], - for a recent updated analysis see
[2] - and precision electroweak data are also consistent with a relatively light Higgs boson [3, 4]
as predicted in the MSSM, but other ad hoc interpretations of these pieces of circumstan-
tial evidence for low-energy supersymmetry are also possible. The primary phenomenological
motivation for observable supersymmetric particles with masses <∼ 1 TeV is that they render
MW �MP l natural and thereby alleviate the fine tuning of input parameters required to keep
MW small. Some time ago, it was proposed [5, 6] that the amount of fine tuning be measured
by the logarithmic sensitivity ∆ of MZ to input model parameters a: ∆ ≡ |(a/M2

Z(∂M2
Z/∂a)|,

and the requirement that ∆ be not too large was used to motivate numerically the lightness of
sparticles [5, 6, 7, 8].

This argument offered hope that some sparticles might be detected at LEP 2. At the
time of writing, no such sparticles have been seen, nor have any Higgs bosons [9, 10], and
precision electroweak measurements [11] and observations of b→ Xsγ decay [12] are consistent
with the Standard Model. This depressing lack of evidence for supersymmetry is in prima
facie disagreement with some of the previous optimistic suggestions [6, 8] motivated by the
absence of fine tuning. How much should one worry about this apparent disappointment? The
answer is necessarily subjective, since the fine-tuning argument is not a rigorous mathematical
statement, but rather an intuitive physical preference. However, it is possible to make an
objective contribution to the debate by quantifying the amount of fine tuning that is required
by the data. The reader may then reach her/his own judgement how seriously to take the
continued absence of supersymmetry.

This paper describes a first attempt to formulate the fine-tuning problem in this way. Our
theoretical framework is that of supergravity with gravity-mediated supersymmetry breaking
and universal gaugino masses M1/2 and trilinear (bilinear) supersymmetry-breaking parameters
A0 (B0) at the input supergravity scale 1. We shall for the most part assume universality also for
the input scalar masses m0, but shall also discuss the implications of relaxing this assumption
for the Higgs scalar masses. The data we take into account include the latest set of precision
electroweak data reported at the Jerusalem conference [11], which are dominated by those
from LEP 1, the latest measurement of B(b→ Xsγ) by the CLEO collaboration [12], and the
lower limits on sparticle and Higgs boson masses from LEP 2. For the latter, we again base
ourselves on the data reported in Jerusalem [9], but also comment on the impact of more recent
limits from LEP running at 183 GeV [10]. To set our results in context, we also remark on
the inflation in the price of fine tuning since the initial LEP runs in 1990, and mention the
potential implications of non-observation of supersymmetry when LEP 2 running is completed,
and if no sparticles appear during Run II of the Tevatron.

At the present time, we find that a fine-tuning price ∆ >∼ 180 must be paid if tanβ is close
to its infra-red fixed-point value and universal boundary conditions are chosen for the input
scalar masses m0. This price is reduced to ∆ ' 60 for tanβ = 2.5, and ∆ ' 20 for tanβ = 10.
The fine-tuning price is not decreased significantly if one allows the input scalar Higgs masses

1Similar considerations may also be applied to gauge-mediated models, but lie beyond the scope of this
paper.
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to be non-universal, because there are additional parameters whose fine tuning must be taken
into account in evaluating ∆. In the absence of an objective criterion for interpreting ∆, we
observe that ∆ ∼ 3 was possible before LEP started setting limits on supersymmetry, and that
if the remaining stages of LEP 2 do not find the lightest supersymmetric Higgs boson with a
mass below 95 MeV, there will be lower bound ∆ >∼ 1000 for tanβ ' 1.65 and ∆ >∼ 130 for
tanβ = 2.5, though the impact will be less severe for larger values of tanβ. For higher values
of tanβ(∼ 10), the minimal amount of fine tuning is for Mh ≈ 105 GeV. The non-observation
of gluinos and squarks at the FNAL Tevatron collider during Run II would not increase the
fine-tuning price much further. Non-universal boundary conditions for the Higgs scalar masses
do not reduce greatly the fine-tuning price, but it could be reduced significantly if there was
some theoretical relation between the input MSSM parameters.

Before discussing our analysis in more detail, we first specify more precisely the fine-tuning
criterion we use. Following [5, 6, 8], we consider the logarithmic sensitivities of MZ with respect
to variations in input parameters ai:

∆i =

∣∣∣∣∣ aiM2
Z

∂M2
Z

∂ai

∣∣∣∣∣ (1)

and then define
∆ = maxi∆i (2)

In the specific case of the MSSM with universal gaugino and scalar masses (M1/2,m0) at the
input supergravity scale and a universal trilinear (bilinear) supersymmetry-breaking parameter
A0 (B0), we consider the following input parameters ai:

(M1/2,m0, µ0, A0, B0) (3)

and we use the tree level formula for the scalar Higgs potential, with parameters renormalized
at the electroweak scale 2. The ∆i are calculated as in ref. [8], with the dependence of tanβ
on the input parameters taken into account, from the master formula

∆i =

∣∣∣∣∣ 2ai
(tan2 β − 1)M2

Z

{
∂m2

1

∂ai
− tan2 β

∂m2
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∂ai
−

tanβ
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×(
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M2

Z

m2
1 +m2
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)[
2
∂m2

3

∂ai
− sin 2β

(
∂m2

1

∂ai
+
∂m2

2

∂ai

)]}∣∣∣∣∣ (4)

where the m2
i are the mass parameters of the Higgs potential of the MSSM.

We now review in more detail the data set used in our analysis. As already mentioned,
we use the precision electroweak data set reported at the Jerusalem conference [11, 4]. As is
well known, the data set are fitted well by the Standard Model with a value of the Higgs mass
compatible with MSSM predictions, and measurements of Z0 → b̄b, c̄c decays no longer give any
hint of new physics beyond the Standard Model. We constrain MSSM parameters by requiring

2The full one-loop corrections to the scalar potential relax the degree of fine tuning by 20-30% [13]. We
ignore this effect here, since it is inessential for our conclusions.
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that ∆χ2 < 4 in a global MSSM fit [14]. The main effect of this constraint is a lower bound on
the left-handed stop, Mt̃L

>∼ 300−400 GeV [15, 16]. We also take into account the direct LEP 2
lower limits on the masses of sparticles and Higgs bosons that were also reported at Jerusalem.
Qualitatively, these impose M1/2

>∼ 100 GeV but still alow m0 → 0 in the absence of other
constraints. As we shall see, an important rôle can played by searches for MSSM Higgs bosons.
However, the preliminary results from data taken around 183 GeV in centre-of-mass energy,
although representing a significant advance on the Jerusalem data by imposing Mh

>∼ 75 GeV,
are still insufficient to increase the fine tuning price beyond that already required by the rest
of the constraints. For that, one must wait for further upgrades of the LEP 2 energy.

The final accelerator contraint we use is the measured value of 1 × 10−4 < B(b → Xsγ) <
4.2 × 10−4 at 95% C.L. [12]. The interpretation of this measurement in the MSSM is still
subject to some uncertainty, because not all the O(αs) corrections have yet been calculated.
Resumming large QCD logaritms up to next-to-leading order (NLO) accuracy has been recently
accomplished in the SM [17]. All these calculations are identical in the SM and the MSSM
except for that the initial numerical values of the Wilson coefficients at the scale µ ≈MW are
different. In our analysis we have used for them only the leading order results available in the
MSSM. The uncertainty due to order αs/π corrections to them has been, however, included as
in ref. [18, 16]. Those references also contain extensive discussion of the role played by the
b→ sγ measurement in constraining the parameter space of the MSSM.

An important rôle may also be played by non-accelerator constraints, in particular the relic
cosmological density of neutralinos χ, if these are assumed to be the lightest supersymmetric
particles, and if R parity is absolutely conserved. Both of these assumptions may be disputed,
and a complete investigation of astrophysical and cosmological constraints is beyond the scope
of this analysis. We limit ourselves to a qualitative discussion based on the requirement that
0.1 ≤ Ωχh

2 ≤ 0.3, where Ωχ is the density of neutralinos relative to the critical density, and
h is the present Hubble expansion rate in units of 100 kms−1Mpc−1. Previous discussions [19]
have indicated that this requirement can be satisfied for some parameter choices in the ranges
0.2 <∼ m0/M1/2

<∼ 1 and M1/2
<∼ 450 GeV. We comment later on the potential impact of these

constraints.

We illustrate our discussion of fine tuning by discussing three specific choices of tan β: 1.65,
which is favoured by an infra-red fixed-point analysis and on the verge of being excluded by a
more detailed analysis of the compatibility between accelerator and astrophysical constraints,
an intermediate choice tanβ = 2.5, and a higher value tanβ = 10. The discussion of larger
values of tanβ requires a more complete treatment of the renormalization-group equations
below the supergravity scale, which is beyond the scope of this paper.

The case tan β = 1.65 with universal input scalar masses is displayed in Fig. 1. Panel
(a) shows the (µ,M2) plane, including the boundaries of the regions excluded by direct LEP
searches for charginos and neutralinos now and at LEP 1. We see that the combination of
the requirement of the proper electroweak breaking (which is possible only for µ > M1/2,m0),
precision electroweak data and the b → Xsγ constraint disallow regions of low µ and M2 that
were not excluded by the direct searches, particularly for µ < 0. Panel (b) exhibits a strong
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Figure 1: The price of fine tuning for tanβ = 1.65, assuming universal input scalar masses at
the supergravity scale. Panel (a) displays the regions of the (µ,M2) plane that are allowed by
LEP 2, and the restricted regions permitted when the other constraints discussed in the text
are implemented. The other panels display the ranges of the fine-tuning parameter ∆ obtained
as functions of (b) the Higgs mixing parameter µ, (c) the input gaugino mass parameter M1/2,
(d) the ratio of the universal scalar mass m0 to M1/2, (e) the CP-odd neutral Higgs mass MA,
and (f) the lightest neutral Higgs mass Mh.
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correlation between ∆ and |µ|, that ∆ increases as |µ| increases, and that more fine tuning is
required for negative values of µ. Panel (c) displays possible values of ∆ versus values of M1/2.
We see that the minimal values of ∆ are for M1/2 ≈ 140 GeV, and that they increase rapidly
for smaller or larger M1/2. The increase for increasing M1/2 has an obvious reason, whereas
that at low values of M1/2 is due to the constraints discussed above, which in that case require
a larger value of m0. Panel (d) displays values of ∆ versus the ratio m0/M1/2, where we see
little dependence for m0/M1/2 < 2, whilst the fine-tuning price increases for larger values of this
ratio. Panel (e) shows a correlation of ∆ with the CP-odd neutral Higgs mass MA: lower values
of MA are disallowed by the b → Xsγ constraint. Finally, panel (f) shows the variation of ∆
with the mass of the lightest MSSM Higgs boson Mh. The two populated regions correspond to
the different signs of µ: since At is essentially determined by M1/2 in the neighbourhood of the
fixed point, these different signs correspond to different amounts of t̃ mixing, and hence different
ranges of Mh. We see that ∆ increases with Mh, as might be expected from the sensitivity of
Mh to m0 and M1/2 via radiative corrections, and the dependences of ∆ on M1/2 and m0 seen
in panels (c) and (d). As the LEP 2 energy increases, and correspondingly the experimental
sensitivity to Mh, continued non-observation of the lightest MSSM Higgs boson would increase
significantly the fine-tuning price imposed by LEP.

Figure 2 displays corresponding panels for the choice tan β = 2.5. Panel (a) shows that
the non-LEP constraints exclude a smaller region of the µ,M1/2 plane for negative µ than was
the case for smaller tanβ. This is reflected in a reduction in the minimum fine-tuning price to
∆ ' 60, as we see in the other panels. We see that this is attained when M1/2 ∼ 100−140 GeV
[panel (c)] and also m0 ∼ 300−400 GeV corresponding to a relatively large value of m0/M1/2 ∼
3− 4 [panel (d)]. Finally, we note in panel (f) that the minimum value of ∆ is attained when
Mh ∼ 85 GeV, beyond the current reach of LEP but accessible to future LEP 2 upgrades.
Beyond this value of Mh, the fine-tuning price increases significantly, though it is always less
than for tanβ = 1.65, reflecting less need for large values of m0 and M1/2 to yield the same
value of Mh via radiative corrections.

The corresponding analysis for tan β = 10 is displayed in Fig. 3. We see in panel (b) that
the correlation between ∆ and µ has now become very tight, and note in panel (c) a familiar
tendency for ∆ to increase with M1/2, once a minimum around 140 GeV has been passed. The
minimum in panel (d) is for m0/M1/2 ∼ 2 to 5 and it is somewhat more pronounced than for
smaller tan β. Panel (b) shows the same correlation between ∆ and µ as for other values of
tanβ. Finally, we see in panel (f) that ∆ is minimized when Mh ∼ 105 to 110 GeV, which is
probably beyond the reach of LEP 2.

Figure 4 assembles our information on the minimum value of ∆ as a function of tanβ. The
current lower limit, assuming universal input scalar masses and the current data set reviewed
earlier, is shown in the left panel as a solid line. The fine-tuning price is not strongly dependent
on tanβ, except for tanβ <∼ 3. Also shown in Fig. 4 as a dashed line is the fine-tuning price
that was imposed by the first round of direct searches at LEP 1, which we model crudely by the
requirement that all charged and strongly-interacting sparticles weigh >∼ 45 GeV. Since these
early were much less constraining, they corresponded to a much smaller fine-tuning price, and
we see that ∆ <∼ 30 was possible for all the values of tan β above the infra-red fixed point. The
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Figure 2: As for Fig. 1, but for the value tanβ = 2.5. Black stars in panel (a) correspond to
points with ∆ < 100.
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Figure 3: As for Figs. 1 and 2, but for the value tan β = 10. Black stars in panel (a) again
correspond to points with ∆ < 100.
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Figure 4: Compilation of the minimal values of the fine-tuning parameter ∆ as a function of
tanβ. The left panel is for the case of universal scalar masses, with the current constraints
from LEP, b → Xsγ, etc., shown as a solid line. The dashed line is for the constraints that
were available after the initial runs of LEP 1, and the dotted line indicates what might be the
situation if no evidence for sparticles or MSSM Higgs bosons is found with future upgrades of
LEP 2. The right panel shows the corresponding lower limits on ∆ for the case of non-universal
Higgs masses, using the same conventions for the lines.

dotted line in Fig. 4 shows the fine-tuning price that may need to be paid if LEP 2 does not find
any sparticles or a MSSM Higgs boson in future runs at centre-of-mass energies <∼ 200 GeV. We
see that ∆ could be increased significantly at low tanβ, principally as a result of the increase
in the LEP 2 reach in Mh to about 100 GeV. LEP 2 has already raised significantly the price
of fine tuning, particularly at low tan β, and the price for tanβ <∼ 2 could become exorbitant
if no discovery is made with the remaining LEP 2 energy upgrades. If one assumes that the
principal constraint imposed by the FNAL Tevatron Run II will be M1/2

>∼ 150 GeV and
that, for example, the reach in Mh will not greatly exceed that of LEP 2, the fine-tuning price
would not increase at small values of tanβ, but there could be a marginally increased price at
intermediate tanβ.

We have not included in the above analysis the requirement that the relic neutralino density
fall in the range 0.1 < Ωχh

2 < 0.3. As already mentioned, this may occur for 0.2 <∼ m0/M1/2
<∼

1, with larger values of m0/M1/2 corresponding to unacceptably large values of Ωχh
2. Looking

at panels (d) of Figs. 1,2 and 3 we see that this restriction on m0/M1/2 increases the fine-tuning
price noticeably only when tanβ ∼ 10, resulting in a small increase in the global minimum
value of ∆. A complete implementation of the relic-density constraint could only increase still
further the fine-tuning price, but such an analysis is beyond the scope of this paper.

We comment now on the possibility of non-universal input scalar masses for the Higgs mul-

8



tiplets m2
Hi
6= m2

0, i = 1, 2. One would think that the introduction of the two new parameters
m2
Hi

must enable one to find parameter sets that require less fine tuning. However, the appear-
ance of the m2

Hi
is accompanied by two additional sensitivity parameters ai which must also

be taken into account when evaluating ∆. We recall that ∆ is defined as the maximum of the
sensitivities |(ai/M2

Z)(∂M2
Z/∂ai)| (2). This means that ∆ could in principle even be increased

by the introduction of the m2
Hi

. Fig. 5 shows our results for tanβ = 1.65 with non-universal
boundary conditions: after all cuts, the results are similar to those for universal scalar masses,
though with a slight decrease in the minimal ∆. The most interesting point about non-universal
Higgs boson mases is that the region of small M1/2 and small, negative µ is consistent with the
requirement of the proper electroweak breaking but not with the experimental cuts other than
the limit on the chargino mass. After the cut ∆χ2 < 4 and/or Mh > 75 this region is disallowed
as for the universal case. It would be allowed by all the cuts only after radical departure from
the universality among the squark masses [20], which would increase the fine-tuning price.

Results for ∆ for other values of tanβ and choices of data sets are shown in the right panel
of Fig. 4. Although there are differences in detail, the general trends are similar to those for the
universal case shown in the left panel. We conclude that increasing the number of parameters
in this way does not reduce significantly the fine-tuning price.

We have stressed already that fine tuning is a subjective issue: there is no unambiguous
method for evaluating it, and there is no objective criterion for deciding when the price is too
high. Moreover, if one or more of the parameters ai is fixed by some external condition such
as some more sophisticated theoretical assumption, ∆ may well be reduced. We can illustrate
this point by calculating ∆ under the hypothetical assumption that some theory predicts a
relation between a pair of the five parameters, so that we have now only four independent
input parameters. For example, if there is a linear relation3 between µ and M1/2, we find
results that are qualitatively similar to those shown in Fig. 1 for tanβ = 1.65, but with the
minimum value of ∆ reduced by a factor ∼ 4. We have also found that ∆ could be reduced
by postulating a linear relation between µ and B0, but this is mainly for low values of Mh that
are apparently excluded by the latest LEP 2 limits [10].

In this paper we have made a first attempt to pose the experimental constraints on fine
tuning in an objective way. We have seen that LEP 2 has raised the fine-tuning price by a
significant factor, particularly at low tanβ close to the infra-red fixed point. We have seen
that important rôles in this price rise has been played by precision measurements, the obser-
vation of b → Xsγ decay and to some degree the non-observation of the lightest MSSM Higgs
boson. The price could rise again if the Higgs boson is not discovered with subsequent runs
of LEP 2 at higher energies. Moreover, the price is not reduced by postulating non-universal
boundary conditions for the Higgs scalar masses, and could be further increased if one imposes
an astrophysical requirement on the relic neutralino density.

Personally, we do not find the present fine-tuning price too high, particularly for tanβ >∼
2.5. The price rise at low tanβ does diminish somewhat the attraction of the infra-red fixed

3The requirement of the electroweak symmetry breaking selects approximately such a subspace in the pa-
rameter space [21].
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Figure 5: As for Fig. 1, but now with non-universal input scalar masses for the Higgs multiplets:
m2
Hi
6= m2

0, i = 1, 2. In panel (a), only points with ∆max < 500 are displayed.

10



point. However, this is a luxury model with added features, so the reader may be prepared
to pay a higher price for it! Alternatively, some more predictive theory may correlate some of
the five MSSM parameters that are currently regarded as independent, which may reduce ∆
significantly.
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