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Abstract

Normal form is a well developed tool to study the nonlinear dynamics of even the most complicated
structures. This can become particularly useful in the design of large nonlinear hadron colliders like
the LHC. In this study the correlation of various quality factors derived through normal forms with the
dynamic aperture are used to investigate a machine that is dominated by octupolar errors.
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1 Introduction
Almost ten years ago normal form [1–5] has been introduced to the accelerator com-

munity. Although this technique allows an in–depth analysis of complicated structures like the
Large Hadron Collider (LHC), the acceptance of this tool has been rather slow. This is mainly
due to the rather abstract character of the theory; indeed, we believe that this is also due to
the lack of easy-to-use tools with a simple interface with the existing codes. Normal forms
codes written by independent groups (i.e., the DaLie code by Forest [6] and the ARES code
by Bazzani et al. [7, 8]) have been used at CERN to analyse the nonlinear dynamics in the
LHC [9, 10]. Recently, the NERO program [11] has been developed on the basis of well-tested
existing tools [8, 12], in order to allow an easy analysis of resonances (including contributions
from higher orders) and a simple interface with tracking codes. The user-friendliness is ensured
by allowing the analysis of internally or externally produced maps and by providing an elaborate
user’s manual [13]. For the time being the program reads maps as produced by SIXTRACK [14]
which uses the differential algebra package of Berz [3] (on request the program can be adapted
to any other map format).

The main advantage of the analysis based on maps and perturbative tools that can be car-
ried out through the NERO code or similar tools is the possibility of analysing the correlations
of the dynamic aperture with some quantities, called quality factors, that can be computed in a
relatively easy way. It is well-known that in each lattice the dynamic aperture is dominated by
some effects, and therefore some quality factors can be well-correlated and some not. Indeed,
the correlation of a given quality factor indicates what is the dominant effect, and therefore
suggests a way to correct it.

Both NERO and the DaLie codes have been used in this report to study 60 different
realizations of the errors of the LHC version 4. In the first section the quality of the correlation
of the dynamic aperture with two simple quality factors are tested. In the second section more
sophisticated tools based on the computation of the detuning and on the resonance strength are
used. Results about the correlation of resonance norms including higher order contributions are
presented in the third section.

It has to be mentioned that for all studies with NERO the maximum amplitude where the
quality factors are evaluated is fixed to a value of eight beam sigmas which is close to the lower
end of the dynamic aperture. It must be pointed out that one has to select an amplitude in order
to weight the contributions of the higher orders with respect to the first one: if one restricts to
the analysis of the first order, no amplitude is necessary.

2 Simple quality factors
The dynamic aperture of LHC version 4 is dominated by just two values [15], i.e. the

octupole biasb4 anda4 of the main dipoles which are caused by fabrication tolerances. In that
report a correlation of the dynamic aperture has been found with a octupole strength norm
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In Tab.1 the correlation coefficientR2 of this case is denoted by ‘I’. Although the correlation is
not bad we have hoped to get an improvement by a more refined study. Moreover, one may need
something else as the knowledge of the multipolar errors may not be available with sufficient
precision to power the correction circuits.

A very simple quality factor can be defined as the norm of the nonlinear part of the map,
that gives a rough indication about the strength of the nonlinearities in a given mapping. It is
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defined as the sum of the absolute values of all map coefficientsjFi;nj relative to the ordern,
weighted with the power of the amplitudeA (see Ref. [10]):
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Fig. 1 and 2 show the correlation of the map norm with the dynamic aperture. While at
order 2 there is no correlation, at order three, where the first-order contribution of the octupoles
is present, the correlation is good, and slightly increases up to order seven. Both map norms up
to order three and up to order seven feature a correlation that is slightly better than the octupole
strength norm (0.63 and 0.64 respectively, see Table 1). In fact, we also evaluated the correlation
of the map norm up to order three with the octupole norm, finding a good correlation as expected
(see Fig. 3). This also implies that the sextupoles which also feed the map coefficients of order
three can be neglected.

After the large octupolar bias values are corrected, the map norm is practically not cor-
related any more (R2

= 0:12) with the improved dynamic aperture. This means that after the
correction the dynamic aperture is not dominated by the large octupolar terms as before, but is
determined by more intricate effects that become relevant when the octupole bias is wiped out.

As the map norm is excellently correlated with the octupole strength norm but also well
correlated with the dynamic aperture it can be used to correct the octupole effect. To this end
a map has been produced with the strength of each of theb4 anda4 spool piece correctors as a
parameter. The third order coefficients and thereby the third order map norm are therefore know
as a function of the two correctors. Using the first order terms only, the corrector strengths to
zero the map norm can easily be predicted. In Fig. 4 the original bias of theb4 coefficients of
the 60 error representations is compared with the resultingb4 bias after the map norm cancel-
lation with spool pieces. The improvement of dynamic aperture after such a correction has not
been tested but it will probably be very beneficial given the good correlations between the map
norm and the dynamic aperture. The possibility to predict a correction for a dominant multipole
coefficient after installation of the machine is very attractive, in particular as not all magnets
may have been measured. The prerequisites are a sufficient large number of correctors installed
in the machine and some means to measure the map. One possible candidate to measure those
map coefficients is the recently proposed method to derive them from the spectrum lines of a
kicked pencil beam [16].

3 Tune Norm and First Order Resonances
The previous quality factors are based on the simple inspection of the octupole strength

and map coefficients respectively. Normal forms provide a perturbative way to compute both
detuning and resonances. Nonresonant normal form provide the tune as a function of amplitude,
and one can compute the average of the tune at a fixed amplitudeA (that has the same meaning
as before) in a analytical way, by using the perturbative series. We refer to [10] for more details.

It is now rather well understood that the tuneshift, as any other quality factor, is nota
priori correlated with the dynamic aperture. Indeed, it strongly depends on the particular lattice
if the dynamic aperture is dominated by the detuning, or by some resonance, or simply by the
norm of the map, as it seems in this case. The correlation of the detuning with the dynamic
aperture, even though it is increasing with the order, is always worse than the correlation with
the norm of the map (case III in Tab. 1). This provides some relevant information: the detuning
is not the driving mechanism of the dynamic aperture.

Even more interesting is the study of resonances. In parallel to this work, first order
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octupole resonances1) of the same case have been found to be correlated with the dynamic
aperture [17]. The authors have discovered that the linear multi-variant fit of the three largest
resonances, i.e. the ( 2 –2 ), the ( 3 1 ) resonance and the first order sub-resonance ( 1 –1 ) [18]
lead to a correlation factor ofR = 0:8. With the DaLie program we have calculated the same
cases except that we use the HamiltonianH instead of the conjugating functionF (both in
resonance basis). Although the results should be equivalent to good approximation we prefer
the Hamiltonian as it is the starting point for the higher order study to follow below. Moreover,
the Hamiltonian reproduces the same phases that one expects from first order calculations `a la
Guignard [18]. For the linear multi-variant fit we use theLINEST program ofEXCEl and
of course the results agree with those of Ref. [17] (see part ‘IV’ in Tab. 1.

4 Higher Order Resonances
The NERO program mainly aims at resonance at higher orders. The resonant perturbative

formalism is carried out at arbitrary order for generic mappings. A norm of the resonant part of
the interpolating Hamiltonian is worked out. When only the first order contribution is consid-
ered, this corresponds to the standard first order perturbative theory based on Hamiltonians [18].
One of the main advantages of the code is that it allows to determine whether the higher orders
are relevant or not, thus providing relevant information on the different effects that contribute
to the determination of the dynamic aperture.

For example, the correlation between the norm of the ( 3 1 ) resonance and the dynamic
aperture is shown in Fig. 5 up to order three, five and seven. The correlation coefficientR

2

jumps by some factor of four comparing order seven with three: the higher orders seem to be
rather relevant in this case. The figure shows that this improvement is due to a de–population of
the lower left corner of the figure. This procedure has also been performed for the ( 2 –2 ) reso-
nance. Also in this case we have a correlation improvement, even though it is less pronounced.
Nevertheless, with two resonances only we have achieved a correlation coefficient better than
0.5 at order seven (see part ‘V’ in Tab. 1). Of course one would have to check if the addi-
tion of the the ( 1 –1 ) resonance would further improve the correlation quality. Unfortunately
resonances of order two such as the (1 –1) are not yet considered in the code which analyses
presently only resonances of order greater or equal to three.

5 Conclusion
Various norms have found to be correlated with the dynamic aperture of 60 error rep-

resentations of the LHC lattice version 4. The octupole strength norm, the map norm and the
linear multi-variant fit of three first order resonances all have a correlation coefficientR

2 slightly
above 0.6. There are also indications that the higher order analysis of resonances may improve
the correlation quality. As the map norm is the simplest and may be obtained in the easiest way
it appears to be the best choice for this lattice lay-out. Moreover, it has been shown that it can
be used to predict the correction strength for the bias of largeb4 anda4. The usefulness of this
correction will have to be shown experimentally.

6 Acknowledgements
We would to thank M. B¨oge for helping us with software tools to evaluate the maps.

1) Of course these resonance are also driven by sextupoles in second order. For our purpose here there is no need
to separate the effects because the sextupole contributions are small following the argument of above.
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Table 1:Correlation coefficientR2 for all studied cases

Correlation CoefficientR2

# Case Description
Map Order

2 3 5 7
Octupole

I Strength 0:61

Norm
II 3 � 10�4

IIa Map 0:63

IIb Norm 0:64

IIc after Correction 0:12

IIIa Tune 0:25

IIIb Norm 0:42

IIIc 0:41

IVa First ( 2 –2 ) 0:25

IVb Order ( 3 1 ) 0:12

IVs Resonance ( 1 –1 ) 0:22

IVd Strength Combination 0:64

Va High ( 2 –2 ) 0:25 0:25 0:39

Vb Order ( 3 1 ) 0:12 0:23 0:46

Vc Resonances Combination 0:33 0:42 0:52
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Figure 1:Correlation of the dynamic aperture with the map norm of order two and three
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Figure 2:Correlation of the dynamic aperture with the map norm (order three through seven)
before and after the correction of the largeb4 anda4 bias
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Figure 3:Correlation of the octupole strength norm with the map norm (order three)
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Figure 4:Correction of the b4 bias using the map norm
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Figure 5:Correlation of the dynamic aperture with the resonance norm for the ( 3 1 ) resonance
between order three and seven
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