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ABSTRACT

We present the form of the Dirac quantisation condition for the p-form charges carried

by p-brane solutions of supergravity theories. This condition agrees precisely with the

conditions obtained in lower dimensions, as is necessary for consistency with Kaluza-klein

dimensional reduction. These considerations also determine the charge lattice of BPS soliton

states, which proves to be a universal modulus-independent lattice when the charges are

defined to be the canonical charges corresponding to the quantum supergravity symmetry

groups.
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1 Introduction

The global (i.e. rigid) supersymmetry algebra of D = 11 supergravity takes the form [1,2]

{Q,Q} = (CΓM)PM +
1

2
(CΓM1M2)ZM1M2

+
1

5!
(CΓM1M2...M5)YM1M2···M5

, (1.1)

where M = (0,M) are tangent-space D = 11 indices, C is the charge conjugation matrix,

PM is the D = 11 ADM momentum and ZM1M2
and YM1M2···M5

are the analogues of the

‘central charges’ of the D = 4 supersymmetry algebra. These charges are not ‘central,’

in D = 11, evidently since they carry non-trivial Lorentz indices. Upon Kaluza-Klein

dimensional reduction to D = 4, these indices become labels for the various Lorentz-scalar

central charges of the descendant N = 8, D = 4 supergravity theory. The occurrence of such

tensorial charges is one of the striking features of the D = 11 theory, and is fundamental

for the subject of p-branes, which are the carriers of such charges.

In this paper, we shall study the implications of the Dirac quantisation condition for ten-

sorial charges such as ZM1M2
and YM1M2···M5

, both in their original higher-dimensional in-

carnations and also in regard to the quantisation conditions on their dimensionally-reduced

descendants. Along the way, we shall cast further light on the structure of the p-brane

charge lattice, showing the way in which charge-unit scales are set.

The paper is organised as follows: in section 2, we shall discuss with some care the con-

struction of the tensorial charges, focusing in particular on the topological class of curves in

the p-brane transverse space that leads to ostensibly scalar charges nonetheless being labeled

by p-forms. In section 3, we shall use this information to derive the Dirac quantisation condi-

tion for p-branes, following [3] and [4], but emphasising the existence of ‘Dirac-insensitive’

configurations. In section 4, we shall show how this charge-quantisation picture accords

perfectly with the quantisation conditions obtained in lower dimensions by dimensional re-

duction. In section 5 we shall extend this picture to include quantisation of wave and NUT

solutions by classical arguments which nonetheless fit in neatly with the Dirac condition.

This is then extended in section 6 and section 7 to cover dyonic and self-dual p-branes and

the relation between Dirac insensitive configurations and intersecting p-branes. This leads

us in section 8 to a discussion of the web of relations between charge scales for all p-branes

in various dimensions. This discussion will be similar to that presented in Refs [6] and [7],

but we shall make the point that by considering the implications of T duality together with

some special ‘scale-setting’ p-brane species, namely the self-dual 3-branes in D = 10 type

IIB theory and the dual pairs of D0 branes and (D − 4) branes, charge scales in D ≤ 10
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supergravity theories are in fact determined without recourse to M theory. (In fact the

relations that we derive can be interpreted as supporting evidence for the M-theory conjec-

ture.) The resulting charge lattices will then be discussed in section 9. In the Appendix, we

discuss the structure of Dirac quantisation conditions for dyons in even dimensions, which

have the familiar antisymmetric structure in D = 4k dimensions, but become symmetric in

D = 4k + 2 dimensions such as for the self-dual cases of strings in D = 6 and 3-branes in

D = 10.

2 p-form charges

A charged p-brane embedded in a D-dimensional supergravity background naturally carries

a conserved (p + 1)-form current1 Jp+1. For a p-brane carrying electric (magnetic) charge

Qe (Qm) under some n-form field strength Fn, where n = p + 2 (n = D − p − 2), this

current appears as a source term on the RHS of the field equation (Bianchi identity) for

the field strength. The conservation condition for the current can be concisely formulated

as d ∗ Jp+1 = 0. It implies that the charge

QΣ =

∫
Σ
∗Jp+1, (2.1)

where Σ is a (D−p−1)-dimensional spacelike surface, is conserved in time, provided that the

current flowing through the boundary ∂Σ vanishes. Note that unless p = 0, the integration

surface Σ is a subsurface of the chosen spacelike hypersurface that serves as the integration

domain for ordinary scalar charge integrals.2 Thus, for p 6= 0, the integration surface Σ is not

unique, i.e. there is no unique embedding of Σ into this spacelike hypersurface. The p-brane

charge QΣ may thus in general be expected to depend on the choice of integration surface

Σ. We shall see in the following, however, that this dependence is essentially topological.

Consider accordingly now the dependence of the p-brane charge on the choice of the

integration surface Σ. In a coordinate system xM = {t, xM} (M = 1, 2, . . . (D − 1)) the

integral (2.1) can be written as

QΣ =
1

p!

∫
Σ
J0M1M2···Mp dΣM1M2···Mp , (2.2)

1Such a current may be considered to exist even for non-singular p-brane solutions to the supergravity field

equations. Even though the singularity structure of the solution does not then necessitate the introduction

of source terms, it is nevertheless possible to couple a p-brane source consistently to a non- singular p-brane

supergravity background. For further detail on source placement in supergravity solutions, cf. [8].
2In this paper, we shall mostly consider static solutions for which a natural ‘rest frame’ set of coordinates

exists, thus defining a preferred spacelike hypersurface as the general arena for charge integrals such as (2.1).
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where dΣM1M2···Mp is the coordinate volume element on Σ and the p-brane current density

J0M1M2···Mp is given by an integral over the p-brane worldvolume Wp+1

J(x)0M1M2···Mp = Qe/m

∫
Wp+1

δ(t− T ) δ(x −X) dT ∧ dXM1 ∧ dXM2 ∧ · · · ∧ dXMp . (2.3)

Here, XM = (T,XM ) are the coordinates of the p-brane and Qe/m is the electric or magnetic

source charge. Owing to the presence of the δ-functions in the integral (2.3), the non-zero

contribution to QΣ comes from the intersection of Σ with the worldvolume Wp+1 of the

p-brane [9]. The dimension of this intersection is zero and hence Σ ∩ Wp+1 consists in

general of a finite number of discrete points. Each point in the intersection contributes

±Qe/m to the integral, according to the orientation with which Wp+1 pierces Σ, i.e. from

‘above’ or from ‘below’. It is also possible for the integration surface Σ to be tangential

to the p-brane worldvolume Wp+1 at the intersection point, or indeed for Σ and Wp+1

to overlap partially (in which case there are an infinite number of intersection points).

However, in such cases an infinitesimal deformation of Σ near the intersection point would

result in no intersection at all, or in pairs of intersections, with one from ‘above’ and one

from ‘below’ in each pair. The net contribution to the corresponding charge QΣ is always

zero in such cases. Hence, one may effectively ignore both ‘tangential’ intersection points

and ‘overlapping’ integration surfaces. The two possible values of QΣ are thus {Qe/m, 0},

according to whether the intersection consists of an odd or even number of points. These

two values for QΣ naturally partition the set of all integration surfaces into two distinct

subsets corresponding to the two values of the p-brane charge. We shall next show that these

subsets can also be thought of as topological equivalence classes of integration surfaces.

To this end, consider deforming the integration surface Σ infinitesimally to a nearby

surface Σ′. Mathematically, this is achieved by considering the flow ΦV induced by a

spacelike vector field V normal to Σ. The flow ΦV maps a point P ∈ Σ to a nearby point

P ′, which is obtained by going an infinitesimal parameter distance along the integral curve

(through p) of the vector field V .3 Mapping each point P ∈ Σ to a nearby point P ′, we

get the deformed surface Σ′. The infinitesimal change in the charge QΣ is then given by

the integral (over Σ) of the Lie derivative along V of ∗Jp+1. Because the p-brane current is

conserved, LV ∗ Jp+1 = d ιV ∗ Jp+1, where ιV denotes the interior product with the vector

field V . Using Stokes’ theorem, we may write the change in QΣ as an integral over the

3The integral curve of V through a point P with coordinates xM(P) is given by the solution to the

differential equation dxM/dσ = VM(x(σ)), with initial condition xM(0) = xM(P).
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boundary of Σ:

δQΣ =

∫
∂Σ
ιV ∗ Jp+1 =

1

p!

∫
∂Σ
J0M1M2···MpV N dΣM1M2···MpN . (2.4)

Because the p-brane current density J0M1M2···Mp is non-zero only on the p-brane worldvol-

ume Wp+1, δQΣ thus vanishes unless ∂Σ intersects the p-brane. Since the charge integrals

are always carried out within a fixed spacelike hypersurface in spacetime (i.e. at fixed ‘time’),

the question of whether ∂Σ intersects the p-brane at a fixed time is more precisely the ques-

tion whether ∂Σ intersects the intersection ofWp+1 with the chosen spacelike hypersurface.

The vanishing of δQΣ implies that two integration surfaces Σ1 and Σ2 give rise to the same

p-brane charge if their boundaries can be continuously deformed into one another without

intersecting the p-brane in the course of the deformation. The set of integration surfaces

is therefore naturally partitioned into equivalence classes of surfaces whose boundaries can

be continuously deformed into one another without crossing the p-brane. All surfaces be-

longing to a given equivalence class give rise to the same value of the p-form charge. If the

spacetime manifold is simply connected, the converse of this statement also holds. Any two

integration surfaces Σ1 and Σ2 such that QΣ1 = QΣ2 must belong to the same equivalence

class, i.e. their boundaries can be continuously deformed into one another without inter-

secting the p-brane worldvolume.4 We therefore conclude that the set of equivalence classes

of integration surfaces for a given p-brane solution consists of only two points, which are

naturally associated with the two values {Qe/m, 0} of the p-brane charge.

What remains to be done now is to find a representative member of the equivalence class

of integration surfaces which give rise to a non-zero p-brane charge. One might think it nat-

ural for the p-brane charge to be labeled by this representative integration surface. However,

it is clear from the above that the spatial p-brane section of the p-brane worldvolume de-

termines the set of topologically equivalent integration surfaces that give rise to a non-zero

charge. Hence, we expect that the form structure of the p-brane charge is ultimately charac-

terised by the configuration of this spatial section itself. To make these ideas more precise,

let us concentrate on p-branes of infinite spatial extent with IRp topology. In fact, it will

turn out that these, together with p-branes wrapped around compact dimensions, are the

only ones that can carry non-zero p-form charge [9]. Now, in order for a p-brane of infinite

spatial extent to have a finite energy density, it must be asymptotically flat. ‘Asymptotically

4Note the equality of the charges associated with the integration surfaces Σi implies that the numbers

of intersections of the Σi themselves with the p-brane differ (at most) by an even number, where this even

difference of contributions to the charges cancels out in positive/negative pairs. In such a case, however, the

integration surface boundaries ∂Σi may still be deformed into one another without intersecting the p-brane.
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flat’ is here taken to consist of the following two conditions: (i) the deviation of the metric

from the flat Minkowski metric vanishes ‘sufficiently rapidly’ as one approaches transverse

spatial infinity in spacetime (for more details, see [10]), and (ii) the transverse vibrations of

the p-brane worldvolume vanish ‘sufficiently rapidly’ as one approaches transverse spatial

infinity on the worldvolume. The second condition in particular implies that the tangent

vectors to the p-brane worldvolume at spatial infinity on the worldvolume must point along

asymptotically flat directions in spacetime. These directions then define the asymptotic

orientation of the p-brane. For sake of definiteness, we assume that the spatial section

of the p-brane worldvolume is asymptotically oriented along the {x1, x2, . . . xp} directions,

where xM = {t, xi, ym} (i = 1, 2, . . . p and m = (p + 1), . . . (D − 1)) is an asymptotically

flat coordinate system. The remaining asymptotically flat spatial directions {ym} define

the asymptotic transverse space, which we denote by Σ12···p.

We now note that the asymptotic transverse space Σ12···p of a given p-brane solution

is a (D − p− 1)-dimensional spacelike surface which necessarily intersects a spatial section

of the p-brane worldvolume in an odd number of points. It is therefore a representative

integration surface for the equivalence class of integration surfaces that give rise to a non-

zero p-brane charge. As this asymptotic transverse space is entirely determined by the

asymptotic orientation of the spatial section of the p-brane worldvolume, it is natural to

label the p-brane charge by the asymptotic orientation of this spatial section. Another way of

seeing why this labeling is natural is to realise that the boundaries of all integration surfaces

that give rise to a non-zero p-brane charge must have the same topology, because they can

be continuously deformed into one another. The boundary of the asymptotic transverse

space is topologically equivalent to the (D− p− 2)-dimensional sphere SD−p−2 that totally

surrounds the spatial section of the p-brane worldvolume. So, the equivalence class of

integration surfaces that give rise to a non-zero p-brane charge can be characterised by the

fact that the boundary of each surface in the equivalence class is topologically equivalent to

a SD−p−2 that totally surrounds the p-brane. This topological condition on the boundaries

of the integration surfaces is manifestly dependent on the asymptotic orientation of the

p-brane worldvolume’s spatial section.

It now is clear why only infinite p-branes or p-branes that are wrapped around compact

dimensions can carry non-zero p-form charges [9].5 Only such p-branes can be ‘captured’

5While it is true that only infinite or wrapped p-branes can carry the p-form charges appearing in the

supersymmetry algebra (2.7), conserved charges defined by (2.1) with surfaces Σ that do not necessarily

extend out to transverse infinity also have important rôles to play in the theory. For example, the conser-

vation of charges of this sort, with ∂Σ closely looping around a p-brane segment, may be used to derive
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by a bounding SD−p−2 surface at infinity, recalling that continuous deformations of such

a bounding surface can be made provided they do not intersect the p-brane. Thus, for a

p-brane of finite extent, any candidate integration surface could have its boundary deformed

and completely moved away from the p-brane at infinity, in which case the resulting charge

is clearly zero. Another way of saying this is to note that integration volumes for p-form

charge integrals will be intersected an even number of times by p-branes of finite extent,

with positive and negative contributions to the charge canceling out.

We may encode the information about the value of the p-brane charge and the asymptotic

orientation of an infinite p-brane’s spatial worldvolume section by defining a p-form charge

Qp whose magnitude |Qp| is equal to the electric or magnetic charge Qe/m of the p-brane

and which is proportional to the p-brane’s asymptotic spatial section volume form. For

example, if the p-brane is asymptotically oriented as above, Qp = Qe/mdx
1∧dx2∧· · ·∧dxp.

Note that is always possible to rotate the asymptotically flat coordinate basis in such a way

that the p-form charge Qp is proportional to a single p-form basis element, which labels the

asymptotic orientation of the p-brane.

We conclude this section by giving some examples of p-form charges in D = 11 super-

gravity and by recalling the rôles they play in determining the residual supersymmetries

of a p-brane configuration. It follows from the field equation (Bianchi identity) for the 4-

from field strength F4 of D = 11 supergravity in the presence of electrically (magnetically)

charged 2-brane (5-brane) sources that the canonical 2-brane electric charge QΣ (5-form

magnetic charge PΣ̃ ) are given in terms of F4 by

QΣ =

∫
∂Σ

(∗F4 −
1
2A3 ∧ F4) (2.5)

PΣ̃ =

∫
∂Σ̃
F4. (2.6)

Note that the canonical charges (2.5) and (2.6) differ from the source charges in (2.4) by a

factor of κ2
11, i.e. Qcanonical = κ2

11Qsource. This is because the 11-dimensional gravitational

coupling constant κ11 (κ2
11 = 8πG) only multiplies the D = 11 supergravity action (as

1
2κ2

11
) but not the p-brane source action. Henceforth, all charges will be understood to be

canonical, unless otherwise stated. Both the source and the canonical charges here are

dimensionful; we shall later discuss charge lattices in terms of dimensionless charges in

sections 8 and 9.

It is easy to verify, for the standard charge Qe 2-brane solution [12] oriented along the

the intersection rules between different p-branes [11]. There does not seem to be any way to associate such

‘small ∂Σ’ charges with p-forms, however.
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{x1x2} directions, that QΣ = 0 unless ∂Σ is topologically equivalent to the 7-dimensional

sphere at transverse spatial infinity surrounding the 2-brane. This implies that the only non-

vanishing independent component of the 2-form electric charge Q2 is Q12 = Qe. Similarly,

for the charge Qm 5-brane [13] oriented along the {x1x2 · · · x5} directions, one must have

that ∂Σ̃ is the 4-dimensional sphere at transverse spatial infinity surrounding the 5-brane.

We therefore get P12345 = Qm with all other independent components of P5 equal to zero.

This is of course exactly what was expected from the general analysis given above.

The relevance of the electric 2-form charge Q2 and the magnetic 5-form charge P5

for determining the supersymmetries of a p-brane configuration in D = 11 supergravity

comes from their appearance in the ‘maximally extended’ D = 11 supersymmetry algebra

(1.1) The algebra (1.1) can be derived using the Nester form of D = 11 supergravity [2]

whence it becomes apparent that the spatial components of Z2 and Y5 are proportional

to the components of Q2 and P5, the explicit relations being Z2 = κ
− 14

9
11 Q2 and Y5 =

κ
− 3

9
11 P5, the factors of κ11 being chosen to correct for dimensionality. The mixed time-

space components of Z2 and Y5 are associated with charges in Kaluza-Klein vacua [14].

Ignoring these and setting also the spatial momentum PM to zero, we can rewrite (1.1) in

the Majorana representation, where C = Γ0, as

{Q,Q} =M+
1

2
Γ0M1M2ZM1M2 +

1

5!
Γ0M1M2···M5YM1M2···M5 , (2.7)

whereM is the ADM mass of the p-brane. This form of the D = 11 supersymmetry algebra

is appropriate for a static p-brane configuration. It makes explicit the dependence of the

algebra, and hence the supersymmetries of the p-brane, on the 2- and 5-form charges Q2

and P5. In the next section, we shall formulate the Dirac quantisation condition for Q2 and

P5.

3 Dirac quantisation conditions for p-branes

The usual Dirac quantisation condition between electric and magnetic charges in four di-

mensions admits a straightforward generalisation to extended objects in higher dimensions.

Specifically, if an electrically charged p-brane exists in the presence of its magnetically

charged dual (p̃ = D − p− 4)-brane, then by considering the phase of the wavefunction of

the p-brane as it is transported around the p̃-brane, one can derive a quantisation condition6

between the electric and magnetic charges [3, 4], namely QeQm = integer × 2πκ2. Strictly

6See also [5] and references therein for more detailed discussions of Dirac quantisation conditions in string

theory.
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speaking, this is a quantisation condition for the magnitudes of the electric and magnetic

charges only. However, as we have seen in the previous section, a (p 6= 0)-brane charge

carries additional indices labeling the asymptotic directions along which the spatial section

of the p-brane worldvolume is oriented. The magnitude of the charge together with the

asymptotic spatial orientation of the p-brane are encoded in the p-form charge Qp. It is

always possible to find an asymptotically flat coordinate basis in which Qp is proportional

to a single basis p-form. This p-form points along the asymptotically flat spatial directions

of the p-brane worldvolume. The magnitude of this p-form charge is equal to the electric or

magnetic charge carried by the p-brane, i.e. |Qp| = Qe/m. The Dirac quantisation condition

can then be rewritten in terms of the electric p-form charge Qp and the magnetic p̃-form

charge Pp̃ as |Qp| |Pp̃| = integer×2πκ2. Here, we want to generalise this condition by taking

the asymptotic directions of the worldvolumes into account. To be precise, we shall show

that there is a quantisation condition involving the magnitudes of Qp and Pp̃ only if there is

no overlap between the asymptotic orientations of the spatial sections of the electric p-brane

and the magnetic p̃-brane worldvolumes.

To begin, let us recall how one arrives at the Dirac quantisation condition for p-branes

[3, 4]. We take as an example the quantisation of the electric 2-brane charge and the

magnetic 5-brane charge in D = 11. Suppose we bring a 2-brane ‘probe’ with charge

|Q2| = Qe into a 5-brane D = 11 supergravity background with charge |P5| = Qm. The

2-brane and the 5-brane share a common time direction, but for the moment we shall not

make any assumptions about the relative orientation of their spatial worldvolume sections.

We denote the 2-brane coordinates by XM = (T,XM ) (M = 1, 2, . . . 10); A3 is the singular

3-form potential for the 4-form field strength F4 in the presence of the 5-brane. Now

consider deforming the 2-brane (i.e. a spatial section of the 2-brane worldvolume) through

a spacelike path at a constant time, with identical initial and final 2-brane configurations.

The chosen spatial section of the 2-brane worldvolume traces out a closed spacelike three-

dimensional surface W. Of course, the surface W does not correspond to a physical motion

of the 2-brane, but nevertheless it needs to be taken into account in a quantum-mechanical

description (e.g. in a path integral formulation) of the 2-brane. As the 2-brane is taken

around W, the 2-brane’s wavefunction acquires a phase factor

exp

(
iQe

3!κ2

∮
W
AM1M2M3 dX

M1 ∧ dXM2 ∧ dXM3

)
. (3.1)

Here, the charge multiplying the integral is a canonically defined charge and hence we need

the additional κ−2 factor (c.f. section 2).
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Using Stokes’ theorem, we can rewrite the integral of A3 over W as the integral of

F4 = dA3 over any ‘capping’ surface M whose boundary is W, i.e. ∂M =W:

Qe

3!κ2

∮
W
AM1M2M3 dX

M1 ∧ dXM2 ∧ dXM3

=
Qe

4!κ2

∫
M
FM1M2M3M4 dX

M1 ∧ dXM2 ∧ dXM3 ∧ dXM4

=
Qe

κ2
ΦM, (3.2)

where ΦM is the flux of F4 through the cap M. Taking two different choices M1 and M2

for the cap, one can end up with a discrepancy ΦM1 −ΦM2 if the two caps taken together

form a four-dimensional closed surfaceMtotal =M1 ∪M2 that captures the net flux from

the 5-brane, which by Gauss’ law is equal to the magnetic charge, i.e. Φtotal = Qm. This

may be viewed as the discrepancy between zero and
∫
Mtotal

dA, which would have vanished

if the gauge potential A3 for the 5-brane background had been everywhere non-singular. In

the quantum-mechanical description, this discrepancy gives rise to a phase factor

exp

(
i
QeQm

κ2

)
(3.3)

in the wavefunction of the 2-brane probe. The Dirac quantisation condition arises from the

requirement that this phase factor equal unity, i.e. that

QeQm = 2πκ2n , n ∈ ZZ . (3.4)

The above derivation produces a Dirac quantisation condition involving the magnitudes

of the 2-brane’s electric 2-form charge Q2 and the 5-brane’s magnetic 5-form charge P5

whenever the orientations of the 2-brane and the 5-brane allow one to construct a surface

Mtotal, with W as the boundary separatingM1 andM2, that captures the 5-brane’s total

magnetic flux Φtotal.

Let us now take the asymptotic orientations of the 2-brane and 5-brane into account

to assess exactly under what conditions one can construct Mtotal. We can always choose

an asymptotically flat coordinate system xM = (t, xM ) such that the spatial section of the

5-brane worldvolume lies asymptotically along the {x1, x2, . . . x5} directions. It follows from

the general considerations in section 2 that the non-vanishing component of the magnetic

5-form charge P5 is

P12345 =

∫
∂Σ̃
F4 = Qm, (3.5)

where ∂Σ̃ is topologically equivalent to the S4 at transverse spatial infinity that surrounds

the 5-brane. This identifies the closed surface that captures the total 5-brane flux as

9



Mtotal = S4. The two capping surfaces M1 and M2 for the 2-brane path W must there-

fore correspond to the ‘northern’ and ‘southern’ hemispheres of the S4, with W being the

‘equatorial’ S3. Note thatMtotal lies entirely within the asymptotic transverse space of the

5-brane.

Let’s now bring the 2-brane into play, which we assume to be asymptotically oriented

along the {xM1 , xM2} directions, and see how we can generate a closed spacelike surface

W, by deforming the 2-brane configuration of fixed 2-form charge through a closed path W

which is topologically equivalent to an ‘equatorial’ S3 at transverse spatial infinity.7 The

asymptotic orientation of the 2-brane is part of its boundary conditions, and hence has to

be maintained throughout the motion around the closed path.

Two distinctly different cases now arise, according to whether or not the asymptotic ori-

entations of the spatial sections of the 2-brane and 5-brane worldvolumes partially coincide.

Suppose first that they do coincide, i.e. that M1 ∈ {1, 2, 3, 4, 5} or M2 ∈ {1, 2, 3, 4, 5}. Re-

call that this means that, as we approach spatial infinity on the 2-brane’s worldvolume, one

(or both) of the tangent vectors to the 2-brane spatial worldvolume section starts pointing

in directions along which the 5-brane is asymptotically oriented. It follows that any three-

dimensional surface W generated by taking the given 2-brane around a closed path shares

the following property: there exists a subspace of W with tangent vectors lying parallel to

spatial infinity on the 2-brane worldvolume, for which one (or two) of these tangent vectors

point along the directions of the asymptotic orientation of the 5-brane. Compare this to

the ‘equatorial’ S3 which we wish to generate. Its tangent vectors are everywhere linearly

independent from those of the spatial worldvolume section of the 5-brane. To see this, it

is useful to note that the ‘equatorial’ S3 lies at transverse spatial infinity in the 5-brane

spacetime, where the metric is flat, by the usual boundary conditions for the 5-brane D = 11

supergravity background. Alternatively, the geometry of the spacelike hypersurfaces of the

5-brane background at transverse spatial infinity has topology IR5 × S4, where IR5 corre-

sponds to the flat spatial worldvolume of the 5-brane and S4 to the four-sphere at infinity.

Clearly, the ‘equatorial’ S3 lies within the S4 factor, which is everywhere transverse to

the spatial worldvolume of the 5-brane. Thus, in order for the capping surface Mtotal to

capture the 5-brane’s flux, the path W must lie within the topological equivalence class of

7There are two ways to view the path W. One is as the motion of a 2-brane held rigidly in the same

shape as it is taken around in the 5-brane background, but compactifying the points at the 2-brane’s spatial

infinity, so that IR2 × S1 → S3. Another way to view W is to keep the asymptotic configuration of the

2-brane fixed, but to deform its shape, expanding out a ‘bubble’ of 2-brane that then sweeps out an S3 path

surrounding the magnetic charge centre. The latter appears to be the point of view adopted in [3].
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paths ‘surrounding’ the 5-brane as discussed in section 2, with tangent vectors everywhere

independent of those of the 5-brane worldvolume. Any other path can be deformed into

one for which the flux captured is zero. It follows that one cannot establish a quantisation

condition for the electric 2-brane and magnetic 5-brane charges whenever the spatial world-

volumes of the 2-brane and 5-branes have an asymptotic coincidence of orientations. Such

a 2-brane/5-brane configuration will be called Dirac-insensitive.

Whenever there is no asymptotic coincidence of orientations between the spatial sections

of the 2-brane and the 5-brane worldvolumes, i.e. when M1 /∈ {1, 2, 3, 4, 5} and M2 /∈

{1, 2, 3, 4, 5}, then the asymptotic directions along which the 2-brane is oriented will also

lie in the asymptotic transverse space of the 5-brane. There will then be no topological

considerations preventing the construction of Mtotal as a union of capping surfaces of W.

The above argument leading to the quantisation of the electric 2-brane and magnetic 5-

brane charges then applies, and thus one obtains the quantisation condition (3.4) involving

the magnitudes of the electric 2-form charge Q2 and the magnetic 5-form charge P5.

One can verify the orientation dependence of the Dirac quantisation condition explicitly

for a case in which the spatial worldvolumes of both the 2-brane and the 5-brane are strictly

flat. A flat 5-brane oriented along the {x1, x2, . . . x5} directions with charge Qm is given by

the following classical solution [13]

ds2
11 = H−

1
3 dxµdxνηµν +H

2
3 dymdym

F4 = ∗(d6x ∧ dH−1), (3.6)

where H is a harmonic function of the {ym} with a pole strength such that P12345 = Qm.

Furthermore, let the flat 2-brane ‘probe’ be oriented along the {xM1 , xM2} directions and

construct a closed spacelike surfaceW as described above. The quantum mechanical phase

factor (3.1) associated with W now reduces to

exp

(
iQe

κ2

∮
W

∂XP

∂σ
AM1M2P

)
, (3.7)

where the ∂XP

∂σ vector points in the ‘third’ direction along the pathW, i.e. the one not lying

along the spatial section of the 2-brane worldvolume; the coordinate volume element on W

has also been suppressed. Now note that since the non-vanishing components of F4 in (3.6)

all point in directions transverse to the 5-brane, one can always find a gauge in which the

potential A3 is entirely transverse as well. The phase factor (3.7) is then trivially equal

to unity whenever M1 or M2 point along the spatial worldvolume of the 5-brane, because

the integrand vanishes identically in such cases. This confirms that whenever the (strictly
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flat) 2-brane and 5-brane overlap, one cannot establish a quantisation condition for their

charges.

Let us now summarise the general situation for the D = 11 Dirac quantisation condition

in D = 11 between the electric 2-form charge Q2 and the magnetic 5-form charge P5. The

requirement that there be no coincidence between the asymptotic orientations of the spatial

worldvolume sections of the 2-brane and the 5-brane is formulated concisely as the condition

that Q2∧P5 6= 0. In this case, the magnitudes |Q2| = Qe and |P5| = Qm obey a quantisation

condition. Therefore, the Dirac quantisation condition, taking into account the asymptotic

orientations of the 2-brane and the 5-brane, may be written in general

Q2 ∧ P5 = 2πκ2n
Q2 ∧ P5

|Q2| |P5|
, n ∈ ZZ . (3.8)

Equivalently, one may express this condition as

(|Q2| |P5| − 2πκ2n)Q2 ∧ P5 = 0 . (3.9)

Note that (3.8) or (3.9) becomes vacuous whenever the 2-brane and the 5-brane asymp-

totically align, i.e. whenever Q2 ∧ P5 = 0. Such cases are precisely the Dirac-insensitive

configurations. However, these configurations clearly form a subset of measure zero within

the general configuration space of a 2-brane and a 5-brane. Since a small rotation is all that

is necessary to change an insensitive configuration into one for which Dirac quantisation

becomes applicable, generic 2-branes and 5-branes in D = 11 must all satisfy the Dirac

condition.

It is nonetheless worth noting the existence of the Dirac insensitive configurations for

several reasons. One is that this will be relevant for the comparison that we shall shortly

make between higher and lower dimensional Dirac quantisation conditions in theories that

are related by dimensional reduction. Another reason for taking note of the insensitive

configurations is the observation that the insensitive configurations coincide with those of

intersecting p-branes, which also possess zero-force properties related to the preservation of

residual supersymmetry. Yet a third reason concerns the sharpness with which the p-form

charges are defined in quantum mechanics.

One might consider that quantum fluctuations would smear out the orientation of a

p-brane, so that the measure-zero set of Dirac-insensitive configurations might disappear at

the quantum level. We shall not enter into a detailed discussion of the question, but shall be

content to make some indicative observations as to why this insensitive set may nonetheless

persist at the quantum level. We have seen that the conserved charges carried by p-branes
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are naturally p-form objects, and these carry sharply-defined information about the object’s

asymptotic spatial orientation. Note that these p-form charges would have as conjugate

variables the time-independent modes of the p-form gauge parameters Λp for the (p + 1)-

form gauge potentials Ap+1 (δAp+1 = dΛp). Since these gauge parameters do not contain

physical degrees of freedom, one might expect there to be no inconsistency with having the

p-form charges sharply defined at the quantum level. Another way to think of this is to recall

that in order for a p-brane to carry a non-vanishing charge, it must either be infinite in extent

or must be wrapped around a compact dimension, with the charge arising for essentially

topological reasons whenever it is possible to ‘capture’ the p-brane with the boundary of the

charge integration surface. Infinite p-branes have sharply-defined asymptotic orientations

because their moments of inertia are infinite. Moreover, p-branes wrapped around compact

dimensions have sharply-defined orientations when they are in their ground states, while

their excited states have energies that tend to infinity as one shrinks the radius of the

compact dimension. Accordingly, the Dirac-insensitive configurations may have a more

persistent role than they might at first seem to have, even though they constitute only a

subset of measure zero within the set of all p-brane configurations.

4 Dimensional reduction and Dirac quantisation conditions

Now let us consider the Dirac quantisation condition for p-branes in the context of di-

mensional reduction to D = 4. In this case, one has only to deal with electrically and

magnetically charged particles (i.e. black holes). For this, one first needs to study how

the charges of the higher-dimensional p-branes are related to those of their dimensionally

reduced descendants.

The D-dimensional bosonic Lagrangian resulting from the dimensional reduction of

eleven-dimensional supergravity takes the form

L = eR − 1
2e (∂~φ)2 − 1

48e e
~a·~φ F 2

4 −
1
12e

∑
i

e~ai·
~φ (F

(i)
3 )2 − 1

4e
∑
i<j

e~aij ·
~φ (F

(ij)
2 )2 (4.1)

−1
4e
∑
i

e
~bi·~φ (F (i)

2 )2 − 1
2e

∑
i<j<k

e~aijk ·
~φ (F

(ijk)
1 )2 − 1

2e
∑
i<j

e
~bij ·~φ (F (ij)

1 )2 + LFFA ,

where the ‘dilaton vectors’ ~a, ~ai, ~aij, ~aijk,~bi,~bij are constants that characterise the couplings

of the dilatonic scalars ~φ to the various gauge fields. They are given by [15]
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FMNPQ vielbein

4− form : ~a = −~g ,

3− forms : ~ai = ~fi − ~g ,

2− forms : ~aij = ~fi + ~fj − ~g , ~bi = −~fi , (4.2)

1− forms : ~aijk = ~fi + ~fj + ~fk − ~g , ~bij = −~fi + ~fj ,

where

~g · ~g = 2(11−D)
D−2 , ~g · ~fi = 6

D−2 ,
~fi · ~fj = 2δij + 2

D−2 . (4.3)

The field strengths are associated with the gauge potentials in the obvious way; for example

F4 is the field strength for A3, F
(i)
3 is the field strength for A

(i)
2 , etc. The complete expres-

sions for the Kaluza-Klein modifications to the various field strengths are given in [15], as

are the cubic Wess-Zumino terms LFFA coming from the F4 ∧ F4 ∧A3 term in the eleven-

dimensional Lagrangian. The eleven-dimensional and D-dimensional metrics are related

by [15,16]

ds2
11 = e

1
3~g·

~φ ds2
D +

∑
i

e2~γi·~φ (hi)2 , (4.4)

where ~γi = 1
6~g −

1
2
~fi, and

hi = dzi +Ai1 +Ai0j dz
j . (4.5)

We shall define the electric and magnetic charges for each field strength to be the

canonical Noether charges

Qe =

∫
(e~c·

~φ ∗ F +K(A)) , Qm =

∫
F̃ , (4.6)

where F = F̃ + · · · is the field strength, with the ellipses representing the Kaluza-Klein

modifications, F̃ = dA, and ~c is the dilaton vector corresponding to F , as given in (4.2).

The term K(A) represents the contributions coming from the Wess-Zumino terms LFFA

in the D-dimensional Lagrangian. The vector ~c denotes the dilaton vector for F , as given

above. Let us now see how these charges are related to charges in D = 11. We begin by

considering the cases where the D-dimensional field strengths come from the dimensional

reduction of F̂4 in D = 11. From this, the following fields can arise in D dimensions: F4,

F
(i)
3 , F

(ij)
2 or F

(ijk)
1 . The expansion of the eleven-dimensional 4-form field strength F̂4 in

terms of the D-dimensional fields is as follows [15]:

F̂4 = F4 + F
(i)
3 ∧ h

i + 1
2F

(ij)
2 ∧ hi ∧ hj + 1

6F
(ijk)
1 ∧ hi ∧ hj ∧ hk . (4.7)
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It is easy to show from (4.4) that the eleven-dimensional Hodge dual ∗̂ of F̂4 is related to

the D-dimensional Hodge duals ∗ of the D-dimensional fields by

∗̂F̂4 = e~a·
~φ ∗ F4 ∧ v + e~ai·

~φ ∗ F
(i)
3 ∧ v

i + 1
2e
~aij ·~φ ∗ F

(ij)
2 ∧ vij + 1

6e
~aijk ·~φ ∗ F

(ijk)
1 ∧ vijk , (4.8)

where we have defined

v = 1
(11−D)! εi1···i11−D h

i1 ∧ · · · ∧ hi11−D , vi = 1
(10−D)! εii2···i11−D h

i2 ∧ · · · ∧ hi11−D , (4.9)

vij = 1
(9−D)! εiji3···i11−D h

i3 ∧ · · · ∧ hi11−D , vijk = 1
(8−D)! εijki4···i11−D h

i4 ∧ · · · ∧ hi11−D .

From (4.6), one may then obtain the expressions for the eleven-dimensional charges in terms

of the D-dimensional ones. The results are given in Table 1 below.

F4 F
(i)
3 F

(ij)
2 F

(ijk)
1

Electric Q11
e = QD

e V QD
e
V
Li

QD
e

V
Li Lj

QD
e

V
Li Lj Lk

Magnetic Q11
m = QD

m QD
m Li QD

m Li Lj QD
m Li Lj Lk

Table 1: Relations between Q11 and QD

In Table 1, Li denotes the period of the compactification coordinate zi, and the com-

pactification volume is V =
∫
d11−D~z =

∏11−D
i=1 Li. Note that the expressions for the

eleven-dimensional charges in terms of the D-dimensional canonically-defined charges do

not depend on the scalar moduli of the D-dimensional theory.

From the results in Table 1, we see that any Dirac quantisation condition between a

conjugate pair of electric and magnetic charges in D dimensions, namely

QD
e Q

D
m = 2π κ2

D n , (4.10)

agrees precisely with the Dirac quantisation condition

Q11
e Q11

m = 2π κ2
11 n (4.11)

between the membrane and the 5-brane charges in D = 11, since the gravitational couplings

in the two cases are clearly related by

κ2
11 = V κ2

D . (4.12)

The result (4.11) gives the quantisation condition on the magnitudes of the membrane

and 5-brane charges. As we have discussed in the previous section, the true quantisation
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condition must take account of the form structure of the charges for the extended objects.

The form indices correspond to the worldvolume spatial-section indices of the objects. Let us

consider the special case where one reduces to D = 4, so that the conjugate pairs of objects

subject to Dirac quantisation conditions are simply electric and magnetic black holes, for

which the charges carry no indices. Then, from the Dirac quantisation condition for any

electric and magnetic charge carried by one given 2-form field strength in D = 4, we can

deduce the corresponding quantisation condition on membranes and 5-branes in D = 11.

In particular, a black hole supported by an electric charge for the field strength F
(ij)
2 in

D = 4 will oxidise to a membrane in D = 11 with spatial worldvolume coordinates zi and

zj . Conversely, a magnetic black hole supported by the same field strength will oxidise to

a 5-brane with world-volume directions complementary to these, i.e. {zk1 , . . . , zk5}, where

i, j, k1, . . . , k5 are all different [18]. Thus we obtain a Dirac quantisation condition involving

the membrane and 5-brane charges when the worldvolume spatial sections of the two objects

share no common directions. This agrees precisely with the results obtained in the previous

section.

In order for a Dirac quantisation condition in a lower dimension D, as expressed in

(4.10), to be inherited from the original D = 11 condition (4.11), one requires at each step

of dimensional reduction a mixed combination of a diagonal dimensional reduction for one

p-brane and a vertical dimensional reduction for the other. Otherwise, the electric and

magnetic brane solutions in the lower dimension will not be supported by the same field

strength, and so no Dirac quantisation condition will arise. If one persists nonetheless in

making other combinations of dimensional reduction, the orientation-sensitivity of the Dirac

condition (3.8) will give a nil result again, fitting in precisely with the expected pattern of

quantisation conditions in lower dimensions.

For example, consider making a diagonal dimensional reduction for both a 2-brane and

a 5-brane in D = 11. This will produce in D = 10 a 1-brane (i.e. a string) supported by

a 3-form field strength and a 4-brane supported by a 4-form field strength, so there should

be no Dirac quantisation condition. But taking into account the orientation sensitivity

expressed in (3.8), one sees that this is precisely what happens, because in order to make

a diagonal dimensional reduction for both of the D = 11 branes, they must share a spatial

worldvolume direction, in which case (3.8) gives zero, as required.

As another example, consider making vertical dimensional reductions for a 2-brane and

a 5-brane. Vertical dimensional reduction works by first making a ‘stack’ of branes in

the compactification direction [20], in order to generate a translational symmetry in a
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direction transverse to the worldvolume. Both electric and magnetic charges now need to be

interpreted as charge densities per unit length in this compactification direction, in addition

to the natural p-brane interpretation of charge as a density per unit p volume. Letting the

period in the compact direction be L, the total phase factor for a closed-circuit deformation

as discussed in section 3 will be eiκ−2
11 QeQmL

2
, with one factor of L in the exponent coming

from each stack of branes. In the compactification limit, one has limL→0
L2

κ2
11

= 0, so

no Dirac quantisation condition is inherited in the lower dimension. This case should be

contrasted with that of a mixed diagonal/vertical reduction, where only one of the branes

is stacked up and with the corresponding charge being given a density interpretation in

the compactification dimension. For such a mixed reduction configuration, one has a phase

factor eiκ−2
11 QeQmL, and, noting the relation (4.12) between the gravitational couplings, one

obtains precisely the lower-dimensional Dirac quantisation condition (4.10). Note also that

the relative orientations of the two branes in the higher dimension do not in this case

correspond to a Dirac-insensitive configuration.

Thus we have seen that there is a complete accord between the form structure of the

Dirac quantisation condition for p-branes (3.8) and the natural Dirac quantisation conditions

occurring in lower dimensions, obtained from the higher-dimensional one by Kaluza-Klein

dimensional reduction. The absence of Dirac conditions between descendant branes that

are not duals of each other in the lower dimension does not mean, however, that there are

no relations at all between the spectra of such branes. We shall see in sections 8 and 9 that

there are ‘incidental’ relations between non-dual branes, which are implied by T duality

together with the existence of certain ‘scale-setting’ p-branes.

5 Waves, NUTs and quantisation conditions

In the previous section, we showed how the Dirac quantisation rules for charges constructed

using components of the D = 11 4-form field strength are related under dimensional reduc-

tion. One should also consider the Dirac quantisation rules for charges constructed using

the Kaluza-Klein vectors occurring in lower dimensions, and should investigate how these

rules are related to the quantisation rules in D = 11. However, although objects carrying

these charges in the lower dimension will be ordinary p-branes, e.g. D0-branes in D = 10,

their oxidations to D = 11 will give either pp waves, in the case of electric charges, or

Taub-NUT-like monopoles (i.e. NUTs), in the case of magnetic charges.

Let us begin by considering the reduction from D = 11 to D = 10. The metrics in the
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two dimensions are related by

ds2
11 = e

1
6φ ds2

10 + e−
4
3φ (dz +A1)2 . (5.1)

The total canonically normalised momentum Pz carried by a wave moving in the z direction

in eleven dimensions is given by [21]

Pz =

∫
∗̂dêz , (5.2)

where the integral is restricted to the 11 − 2 = 9 dimensional boundary of the spacelike

hypersurface in D = 11 spacetime, êz = e−
2
3φ(dz + A1) is the vielbein for the eleventh

direction, and ∗̂ denotes the eleven-dimensional Hodge dual, as given earlier. Note that

(5.2) defines the total momentum of a plane wave with translational invariance in the

direction of propagation, which therefore would diverge in an uncompactified spacetime.

At transverse spatial infinity, the dilaton φ tends to the constant value φ0, and so we find

that the momentum (5.2) can be rewritten in a fashion ready for compactification as

Pz = e−
5
6φ0

∫
∗F2 ∧ (dz +A1) , (5.3)

where ∗ denotes the ten-dimensional Hodge dual. Since the electric charge in D = 10 is

given by Qe =
∫
e−

3
2φ ∗ F2, it follows that the total momentum of the pp wave in D = 11

is related to the electric charge of the Kaluza-Klein vector in D = 10 by

Pz = Qe e
2
3φ0 L , (5.4)

where L is the period of the compactifying coordinate z. From (5.1) we see that the physical

radius of the eleventh dimension is given by R11 = e−
2
3φ0 L/(2π), and so we have

Pz =
Qe L

2

2πR11
. (5.5)

At the quantum level, the momentum of a wave must be quantised so that an integer number

of wavelengths fit around the circle. Thus we must have that

Pz =
nκ2

11

R11
, (5.6)

where the κ2
11 factor compensates for the dimension (length)8 of the canonically normalised

momentum (compare the relation between canonical and source charges given in section 2).

Putting this together with (5.5), we see that the electric charge in D = 10 carried by the

D0-brane obtained from the pp wave by dimensional reduction is quantised according to

Q10
e =

2πnκ2
11

L2
=

2πnκ2
10

L
. (5.7)
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Note that the quantisation of the D0-brane charge implied by these eleven-dimensional

considerations is quite different from the usual kind of Dirac quantisation condition, in

that it occurs without needing the existence of a conjugate magnetically-charged object. If,

nevertheless, one does consider the magnetic charge at the same time, it becomes important

to verify that the above quantisation is consistent with the Dirac quantisation condition.

The magnetic dual of the D0-brane in D = 10 is a D6-brane. From the eleven-dimensional

point of view, it is a NUT. The associated ‘NUT charge’ QNUT =
∫
F2 is classically quantised,

in the sense that in order for the eleven-dimensional metric (5.1) to be non-singular, the

period of z must satisfy L = 1/k
∫
F2 = QNUT/k, where k is any integer. Since the magnetic

charge carried by the D6-brane in D = 10 is also given by Qm =
∫
F2 = QNUT, it follows

that we have a classical discretisation of the allowed magnetic charge values

Q10
m = k L , k ∈ ZZ . (5.8)

Thus, combining this with (5.7), we see indeed that one obtains a result that is consistent

with the D = 10 Dirac quantisation condition, namely

Q10
e Q10

m = 2π κ2
10 q , (5.9)

where q is an integer.

An important distinction between the quantisations (5.7) and (5.8) for D0-branes and

D6-branes in D = 10, as compared to the standard Dirac quantisation rules, is that an

absolute scale is obtained for the individual electric and magnetic charges of the D0-branes

and D6-branes. Usually, in a Dirac quantisation condition, there is an arbitrariness under

which the unit of electric charge can be scaled up by any factor, with a simultaneous

corresponding scaling down of the unit of magnetic charge. As we shall see in section 8,

the absolute scale of the Kaluza-Klein pp wave quantisation will play an important rôle in

giving all of the charges in type IIA theory the same scale, and this gives an important

consistency condition for the conjectured existence of M-theory.

6 Dirac quantisation for dyonic and self-dual p-branes

Dyonic p-branes can arise in any even dimension, and self-dual p-branes can arise in D =

4n+ 2 dimensions (in the case of Lorentzian spacetime signature). In fact, it is appropriate

to divide the discussion of all dyonic p-branes into two classes corresponding to D = 4n+ 2

and to D = 4n. We shall begin by considering dyons in D = 4n. First, we recall that in
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D = 4, the electric and magnetic charges e and g carried by two dyons must satisfy the

Dirac quantisation condition

e1 g2 − e2 g1 = 2π n . (6.1)

An analogous result can also be obtained for dyonic membranes in D = 8. These membranes

can be obtained from simple single-charge electric or magnetic membranes by making a

transformation under the SL(2, IR) factor of the SL(3, IR)×SL(2, IR) global symmetry group

of D = 8 maximal supergravity [22]. The Dirac quantisation rule for dyonic membranes

can be derived simply by acting with an SL(2, IR) transformation on the standard QeQm =

2π κ2
8 n quantisation rule for a pure electric and a pure magnetic membrane. The result,

which is SL(2, IR) invariant, is

QT1 ΩQ2 = 2π κ2
8 n , (6.2)

where Q = (Qe, Qm), and Ω is the SL(2, IR)-invariant antisymmetric matrix

Ω =

(
0 1

−1 0

)
. (6.3)

To be precise, as we have explained in section 2, the charges in this case really carry indices,

corresponding to the world-volume directions for the two dyons. The quantisation condition

(6.2) arises only in cases where the two individual dyonic membranes have non-aligned

orientations of their spatial world-volumes, so that the wedge product of their charge forms

is non-zero. It is worth recalling that, in both D = 4 and D = 8, the quantisation conditions

become vacuous for the case of two dyons whose electric and magnetic charges are in the

same ratio. One way in which this may be seen is by observing that a global symmetry

transformation can be used to rotate both of the dyons simultaneously to a purely electric

or purely magnetic form, for which there is no quantisation condition.

The situation is quite different in D = 4n+2 dimensions. Let us first consider the D = 6

case. There are five 3-forms F
(i)
3 in D = 6 which, together with their duals, form a ten-

dimensional irreducible vector representation under the global symmetry group8 O(5, 5)

. The O(5, 5)-invariant Dirac quantisation condition for dyonic strings with five electric

charges ~Q and five magnetic charges ~P will then be

1
2 ( ~Q1 + ~P1 , ~Q1 − ~P1 )

(
1l 0

0 −1l

) ( ~Q2 + ~P2

~Q2 − ~P2

)
= 2π κ2

6 n , (6.4)

and so

~Q1 · ~P2 + ~Q2 · ~P1 = 2π κ2
6 n . (6.5)

8See, for example, [16] for a detailed discussion of this symmetry. A general discussion of duality sym-

metries in dimensions 4k and 4k + 2, including cases with matter coupling, may be found in [17].
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If we specialise to the case where only one of the five field strengths carries the electric and

magnetic charges, this result reduces to

Q(1)
e Q(2)

m +Q(2)
e Q(1)

m = 2π κ2
6 n , (6.6)

where Q
(1)
e and Q

(1)
m are the electric and magnetic charges of the first dyon, and Q

(2)
e and

Q
(2)
m are the charges for the second dyon.

This symmetric quantisation condition may seem surprising, but one may also verify

that the symmetric structure is correct for (2k + 1)-forms in dimensions D = 4k + 2 by

generalising the original quantum phase arguments of Ref. [23], noting that in D = 4k + 2

dimensions, one has (for Minkowski signature)
˜̃
F 2k+1 = F2k+1. In such cases, the phase

acquired by taking one dyon with charges (Qe, Qm) around another with (electric, magnetic)

sources (J2k, J̃2k) is κ−2(Qe
∫
∗J2k +Qm

∫
∗J̃2k), confirming the symmetric structure.9

As a consequence of this symmetric structure, the quantisation condition for the six-

dimensional dyonic strings survives even when both of the dyons have the same ratio of

electric to magnetic charges.10 In particular when the electric and magnetic charges are

equal, Q = Qe = Qm, so that the dyonic strings are self-dual, then the quantisation rule

(6.6) becomes

Q(1) Q(2) = π κ2
6 n . (6.7)

From this, it follows that the charge of the self-dual string acquires an absolute scale, given

by

Q = κ6
√
πm , (6.8)

where m is an integer. As in the previous cases, the Dirac quantisation condition arises

only when the two self-dual strings have non-aligned spatial world-volume directions.

Now let us consider the type IIB theory in D = 10, where there exists a self-dual 5-form

field strength, which can support a self-dual 3-brane. The Dirac quantisation condition for

9Although not widely commented upon in the literature, this symmetric structure has been recognised

in a number of contexts, including in particular the basic case of D = 2, and in the O(5, 5)-invariant

six-dimensional supergravity [24]. A clear treatment of the dyonic quantisation condition in D = 4k + 2

dimensions based upon the requirement that Dirac strings be unobservable has been given in [25]. This

argument fixes the overall coefficients in the conditions (6.4–6.6). We shall see in Section 8 that this

coefficient is also essential for consistency with the ordinary Dirac condition obtained in one less dimension

by dimensional reduction from (6.4–6.6).
10Naively, one might think that dyons of equal charge-ratio could be rotated to purely electric or purely

magnetic complexions, just as can be done in 4n dimensions. However this is not possible here, since there

is no duality symmetry between electric and magnetic strings coupled to the same field strength (see the

Appendix).
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the self-dual 3-brane is once again symmetric, and analogously to the case of the self-dual

string in D = 6, one finds that the charge Q satisfies the condition

Q(1)Q(2) = π κ2
10 n . (6.9)

This implies that there is again an absolute scale for the charge of the self-dual 3-brane,

namely

Q = κ10

√
πm , (6.10)

where m is an integer.

One way to understand the origin of the quantisation condition (6.9) for self-dual 3-

branes is by studying the Dirac quantisation condition for black holes in D = 4 that arise

from 3-branes wrapping around the internal coordinates. The 2-form field strengths F
(αβ)
2

in D = 4, where the usual i, j · · · indices have been split as i = (1, 2, α), etc., can also be

obtained by dimensional reduction from the self-dual 5-form in the type IIB theory. In

particular, this implies that both electric and magnetic black holes using a given F
(αβ)
2 can

be oxidised to give rise to self-dual 3-branes in D = 10. Furthermore, in D = 4 only the

electric and magnetic charges for the same field strength F
(αβ)
2 suffer a Dirac quantisation

condition. As we saw in section 3, this pair of black holes will oxidise to give a pair of

3-branes in D = 10 with no overlapping spatial worldvolume coordinates, in accordance

with the discussion in section 2 showing that Dirac quantisation conditions arise only in

cases with no spatial orientation coincidences. Thus, the quantisation condition (6.9) for the

self-dual 3-brane should be obtained as a consequence of the ordinary D = 4 quantisation

condition for black holes.

In order to make the relation between quantisation conditions in the various dimensions

more precise, one needs to be careful with certain factors that arise in the dimensional

reduction process for self-dual fields. The dimensional reduction of the D = 10 self-dual

5-form yields both a 4-form H4 and a 5-form H ′5 in D = 9; the D = 10 self-duality condition

then yields the D = 9 condition that the 5-form is in fact the dual of the 4-form: H ′5 = H̃4.

Upon eliminating H ′5 from the formalism, one obtains a theory involving only a 4-form

H4, but this form does not yet have the canonical normalisation. In order to correct for

its non-standard normalisation, one needs to rescale it: Hcanonical
4 =

√
2H4. Accordingly,

charges defined using Hcanonical
4 and its further dimensional descendants need to be scaled

up by
√

2 in order to be compared with the charge scale set for the D = 10 self-dual 3-brane

by (6.10); for example, for the D = 9 electric 2-brane and the dual magnetic 3-brane, both
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supported by Hcanonical
4 , one obtains the quantisation condition

Q9
e Q

9
m = 2π κ2

9 n , (6.11)

as expected. Further dimensional reductions of the pure electric and pure magnetic solutions

in D = 4 proceed as discussed earlier, with the relations between the charges as given in

Table 1. Accordingly, the D = 10 quantisation condition (6.9) both implies and is implied

by the standard D = 4 black-hole Dirac quantisation conditions.

A similar argument to the above, in which a self-dual string in D = 6 is obtained

by oxidation from a dual pair of 2-charge black-holes in D = 4, gives the quantisation

condition (6.7). To see this, we note that a self-dual string can be first diagonally and

then vertically reduced to an electric black hole in D = 4. A second self-dual string with no

spatial orientation coincidences relative to the first can first be vertically and then diagonally

reduced, giving the magnetic dual black hole in D = 4 that is dual to the electric one first

obtained. The Dirac quantisation condition for the electric/magnetic black holes in D = 4

then implies the quantisation rule for non-aligned self-dual strings in D = 6, after taking

into account a factor of 1/
√

2 rescaling analogous to that discussed above for the D = 10

3-brane case.11 By taking the electric and magnetic charges on the black holes in D = 4 to

be independent, one can similarly derive the Dirac quantisation rule (6.6) for dyonic strings

in D = 6.

7 Quantisation conditions, intersections and supersymmetry

In the previous sections, we have seen that there are several subtleties that arise in the

Dirac quantisation conditions for extended objects. In particular, the relative orientation of

a conjugate pair of electric and magnetic objects is important for determining whether or

not a quantisation condition between them arises. Relative orientations are also important

in the discussion of intersecting p-branes. In fact, the fraction of preserved supersymmetry is

determined by the relative orientation. This suggests that there is a close relationship in M-

theory or in type II string theory between the preservation of supersymmetry, intersections

and the Dirac quantisation conditions for extended objects.

Intersecting p-branes can be viewed as the higher-dimensional oxidations of multi-charge

p-branes in a lower dimension. We shall concentrate in particular on intersecting p-branes

that reduce to multi black hole solutions in D = 4. Since supersymmetry is preserved under

11The details of the dimensional reduction of self-dual strings in D = 6 have been given in Ref. [26].
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dimensional reduction, it follows that the relationships that we have mentioned above can

equally well be addressed in a four-dimensional framework. In D = 4, there are a total of

28 2-form field strengths. Thus there can be in total 56 charges, comprised of 28 electric

and 28 magnetic charges. Any pair of these can be used to construct a 2-charge black hole

solution. However, there are three quite distinct kinds of 2-charge solution that can arise,

which can be distinguished by the fraction of supersymmetry that they preserve. Let us

suppose that the dilaton vectors for the two field strengths are ~c1 and ~c2. We may then

define the quantity ∆̃ by

∆̃ = 1
4(ε1 ~c1 + ε2 ~c2)2 + 1 , (7.1)

where ε is +1 if the field carries an electric charge, and −1 if it carries a magnetic charge.

The three possible kinds of 2-charge black-hole can then be characterised by ∆̃, as given in

Table 2 below [18].

Mass
Bogomol’nyi

eigenvalues
Supersymmetry

∆̃ = 3 m =
√
Q2

1 +Q2
2 µ = m±

√
Q2

1 +Q2
2

1
2

∆̃ = 2 m = |Q1|+ |Q2| µ = m± |Q1| ± |Q2|
1
4

∆̃ = 1 m = (Q
2/3
1 +Q

2/3
2 )3/2 µ = m±

√
Q2

1 +Q2
2 0

Table 2: The three kinds of 2-charge black hole

The ∆̃ = 3 solution is nothing but a transformation of a single-charge black hole under an

SL(2, IR) subgroup of the E7 U-duality group, and so it preserves 1
2 of the supersymmetry.

The ∆̃ = 2 solution is a ‘genuine’ 2-charge solution, which cannot be reduced to a single-

charge solution by any duality transformation. As usual for such solutions, it preserves 1
4

of the supersymmetry. The ∆̃ = 1 solution is a dyonic black hole [27] where the electric

and magnetic charges are carried by the same field strength. This solution preserves no

supersymmetry. In all cases the fractions of preserved supersymmetry can be read off from

the eigenvalues of the Bogomol’nyi matrix, which is constructed as the anticommutator

of the eleven-dimensional supercharges [28, 15]. Specifically, each of its zero eigenvalues

corresponds to an unbroken component of supersymmetry. The ∆̃ = 3, 2 and 1 solutions

are described in terms of 1, 2 and 0 harmonic functions respectively.

As we have discussed previously, the Dirac quantisation conditions in four dimensions

arise only between a pair of electric and magnetic charges that are carried by the same field

strength. As we have seen above, such a pair of charges arise in the ∆̃ = 1 dyonic black hole
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solution. Oxidising the three kinds of 2-charge black holes back to D = 11, they all become

intersections of M-branes, waves or NUTs. In particular, a membrane and a 5-brane can

have three possible kinds of intersection, with three kinds of relative orientation, depending

on whether they originate from ∆̃ = 3, 2 or 1 black holes in four dimensions. These can

be called non-harmonic, harmonic and non-supersymmetric intersections respectively [18].

Specifically, the non-harmonic intersections occur when the membrane and 5-brane share

two common spatial world-volume coordinates; in harmonic intersections they share one

such coordinate; and in the non-supersymmetric intersections there are no common spatial

world-volume coordinates. Thus we see that whenever the relative orientations of the mem-

brane and 5-brane are such that they give supersymmetric intersections, there is no Dirac

quantisation condition between them.

Note that although we have taken the case of a membrane and a 5-brane as an example,

a similar conclusion applies to all the other possible intersections in D ≤ 11, namely: brane

intersections that preserve any degree of supersymmetry are not subject to Dirac quanti-

sation conditions. While we shall not give a formal proof of the correspondence between

supersymmetric and Dirac-insensitive configurations, one could most likely be worked out

by exploiting the relation between the Dirac quantisation conditions and the quantisation

of angular momentum in the presence of the field corrections to the angular momentum

of dual pairs of electric and magnetic objects, generalising the classic discussion for dyonic

point particles [19].

8 Dirac quantisation conditions and the M-theory conjecture

So far we have discussed the quantisation conditions for a variety of different charges. For

some, like those of Kaluza-Klein waves and NUTs, the electric and magnetic charges are

separately discretised in their own right, independent of (but consistent with) any Dirac

quantisation condition. In other words, the absolute units of electric and magnetic charge

are separately determined in these cases. In the case of self-dual p-branes, the absolute unit

of charge is also determined, by virtue of the Dirac quantisation condition and its symmetric

form in D = 4k+2 dimensions. For more general p-branes, however, the charges satisfy only

the ordinary Dirac quantisation condition, and this fixes only the product of the electric and

magnetic charges associated with each field strength, leaving the absolute units for each

of the charges undetermined. Thus in D-dimensions, the most general minimum-charge

25



solution to the Dirac quantisation condition QeQm = 2πκ2
D is given by12

Qe = (2π)γ κ
2(D−n−1)/(D−2)
D , Qm = (2π)1−γ κ

2(n−1)/(D−2)
D . (8.1)

where γ is a free parameter. Here we have made use of the fact that the charges and κD

have the following engineering dimensions

[Qe] = LD−n−1 , [Qm] = Ln−1 , [κD] = LD/2−1 . (8.2)

The degree of freedom parameterised by γ is obviously undesirable in a theory that is

believed to be fundamental. For example, in the type IIA string theory there are three field

strengths in all, namely F4, F
(1)
3 and F

(1)
2 , whose electric and magnetic charges are each

subject to Dirac quantisation conditions. There are therefore three as-yet undetermined

parameters γn associated with the absolute charge scales of the three pairs of minimum

electric and magnetic charges, namely

QAe(n) = (2π)γnκ
(9−n)/4
A , QAm(n) = (2π)1−γnκ

(n−1)/4
A (8.3)

for the field strengths of degree n = 4, 3 and 2, where the A superscripts indicate charges

in the type IIA theory. On the other hand, string theory is supposed to have only one free

parameter, namely the string tension. Purely within the string theory itself, it is hard to

see how these extra parameters in the spectrum of states can be fixed.

It has been conjectured that the strong-coupling limit of type II string theory is described

by a theory in eleven dimensions, known as M-theory. Its low-energy limit is described by

the usual eleven-dimensional supergravity Lagrangian. The membrane in D = 11 can be

double-dimensionally reduced to give the perturbative NS-NS string of the type IIA theory

in D = 10. It can alternatively be vertically reduced to give an R-R membrane in D = 10.

Similarly, the 5-brane in D = 11 can be vertically reduced to an NS-NS 5-brane in D = 10,

or diagonally reduced to an R-R 4-brane. The M-theory conjecture implies that the string

and membrane charges in D = 10 have scale sizes related by the compactification period L1,

since, as we showed in section 3, dimensional reduction yields canonically defined charges

related as shown in Table 1. Similarly, the 5-brane and 4-brane charges in D = 10 should

have related scale sizes. Furthermore, the D0-brane and D6-brane in type IIA theory now

are interpreted as the dimensional reductions of the Kaluza-Klein waves and NUTs, whose

charge discretisations are, as we have seen in section 5, already absolutely determined. Thus

12Note that in the following discussion, we shall always present only the minimum charge units. The

allowed charges are then any integer multiples of these minimum units.
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with the introduction of M-theory the number of undetermined charge parameters in the

type IIA string is reduced from three to only one, namely

QMe(4) = (2π)ακ
4/3
11 , QMm(4) = (2π)1−ακ

2/3
11 . (8.4)

Here the superscript M indicates M-theory charges, and the numerical subscripts on the

charges indicate the degree of the associated field strength. The duality between the type IIA

string and M-theory implies that κ2
11 = κ2

AL1, where L1 is the period of the compactifying

coordinate z1. Furthermore, we can express the three parameters γn in (8.3) in terms of the

single parameter α, by equating the type IIA charges to those coming from the dimensional

reduction of M-branes, waves and NUTs in D = 11. Thus we have

(2π)1−γ1 =
(κ2

11

L9
1

)−1/8
, (2π)α−γ2 =

(κ2
11

L9
1

)1/12
, (2π)γ3−α =

(κ2
11

L9
1

)1/24
. (8.5)

Although M-theory reduces the three free parameters in the spectrum of the type IIA

string to one, there still seems to be no mechanism within the theory itself for determining

the absolute quantised values of the M-brane charges. The situation changes, however, if

one also takes into account the T-duality that relates the type IIA and type IIB strings

when they are compactified on a circle. In fact this perturbative T-duality enables us to

fix the absolute scales of all the charges. To see this, recall that the type IIB theory has

the following field content in D = 10: the NS-NS sector comprises the metric, the dilaton

and a 2-form potential, while the R-R sector comprises an axion, another 2-form potential

and a 4-form potential whose field strength is self-dual. Compactification of the type IIB

theory on a circle gives a theory that can be related to the compactification of the type IIA

theory on a circle of inverse radius. The relations between the gauge potentials of these two

nine-dimensional theories (including the axions) are summarised in Table 3.
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IIA IIB

D = 10 D = 9 T-duality D = 9 D = 10

A3 A3 ←→ A3 B4

R-R A
(1)
2 ←→ AR

2 AR
2

fields A
(1)
1 A

(1)
1 ←→ AR

1

A
(12)
0 ←→ χ χ

NS-NS Gµν AA
(2)
1 ←→ ANS

1 ANS
2

fields A
(1)
2 A

(1)
2 ←→ ANS

2

A
(12)
1 ←→ AA1 Gµν

Table 3: Gauge potentials of type II theories in D = 10 and D = 9

The relation between the dilatonic scalars of the two nine-dimensional theories is given

by (
φ

ϕ

)
IIA

=

( 3
4 −

√
7

4

−
√

7
4 −3

4

)(
φ

ϕ

)
IIB

. (8.6)

The dimensional reduction of the ten-dimensional string metric to D = 9 is given by

ds2
str = e−

1
2φ ds2

10

= e−
1
2φ (eϕ/(2

√
7) ds2

9 + e−
√

7ϕ/2 (dz2 +A)2) , (8.7)

where ds2
10 and ds2

9 are the Einstein-frame metrics in D = 10 and D = 9. The radius

of the compactifying circle, measured using the ten-dimensional string metric, is therefore

given by R = e−
1
4φ−

√
7ϕ/4. It follows from (8.6) that the radii RIIA and RIIB of the

compactifying circles, measured using their respective ten-dimensional string metrics, are

related by RIIA = 1/RIIB .

Now as we discussed in section 6, there is an absolute charge quantisation for the self-

dual 3-brane supported by the self-dual 5-form field strength in type IIB. On other hand,

the charges for the NS-NS and R-R 3-form field strengths each have an as-yet undetermined

scale parameter. Thus the type IIB charges in D = 10 are given by

QB(5) =
√
π κB ,

Qie(3) = (2π)βi κ
3/2
B , Qim(3) = (2π)1−βi κ

1/2
B . (8.8)

where i = 1 and 2 label the charges of the NS-NS and the R-R 3-form field strengths

respectively. Note that we have omitted the charge for the axion χ, which we shall discuss
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later. Thus before applying the T-duality relation, the charges in M-theory and in type IIB

have a total of three parameters, namely α, β1 and β2.

The dimensional reductions of M-theory and the type IIB theory to D = 9 give rise

to a total of six field strengths with degrees ≥ 2 in each case, as presented in Table 3.

The T-duality between the two theories implies that the electric charges and the magnetic

charges for the related pairs of IIA and IIB fields, as indicated in Table 3, should be set

equal. This gives rise to a total of twelve equations of constraint. However, the product of

the electric and magnetic charges for each field strength is the same, simply giving rise to

a constraint between the Newton constants of the theories:

κ2
11

L1L2
=
κ2
A

L2
=
κ2
B

LB
. (8.9)

(We are denoting by L1 and L2 the periods of the compactifying coordinates z1 and z2 in

the descent from M-theory, and by LB the period of the compactifying coordinate in the

descent from the type IIB theory.) This leaves us with six equations still to consider. The

dimensional reduction for canonically-defined charges was given in Table 1. Without loss

of generality, we shall present the equations relating just the electric charges of the two

theories, following the order presented in Table 3. Thus for the R-R sector we have

(2π)ακ
4/3
11

L1L2
=
√

2π κB ,

(2π)ακ
4/3
11

L1
=

(2π)β2κ
3/2
B

LB
, (8.10)

2πκ2
11

L2
1L2

= (2π)β2κ
3/2
B ,

and for NS-NS sector we have

2πκ2
11

L1L
2
2

= (2π)β1κ
3/2
B ,

(2π)ακ
4/3
11

L2
=

(2π)β1κ
3/2
B

LB
, (8.11)

(2π)ακ
4/3
11 =

2πκ2
B

L2
B

.

The solution to the equations (8.9), (8.10) and (8.11) is given by

κ2
11 = 1

2π (L1L2LB)3 , κ2
A = 1

2πL
2
1(L2LB)3 , κ2

B = 1
2π (L1L2)2L4

B ,

α = −2
3 , (2π)3−4β1 =

(L2

L1

)2
, (2π)3−4β2 =

(L1

L2

)2
. (8.12)

Thus we see that all three of the originally-free charge-scale parameters α, β1 and β2 are

determined in terms of parameters within the theories, namely the periods of the compact-

ifying coordinates. (Note that the three Newton constants are also expressed in terms of
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the periods.) In particular, this has the consequence that the 2π factors for all the electric

and magnetic charges cancel out, and thus all the minimum charge units can be expressed

purely in terms of products of certain powers of the three periods L1, L2 and LB. For

example, in M-theory we have

QMe(4) = (L1L2LB)2 , QMm(4) = L1L2LB , (8.13)

and in the type IIB string the NS-NS and R-R 3-form charges are given by

Q1
e(3) = L2L

2
1L

3
B , Q1

m(3) = L2LB ,

Q2
e(3) = L1L

2
2L

3
B , Q2

m(3) = L1LB . (8.14)

It is easy to work out the analogous expressions for all the charges in the type IIA and type

IIB theories, as functions of the three periods.

Note that the L periods are neither dynamical quantities nor moduli, and they are fixed

independently of any specific solutions to the lower-dimensional equations of motion. Since

they arise in combination with exponentials of the dilatonic scalars in (4.4), it follows that

their values can be adjusted by field redefinitions in which the dilatonic scalars are shifted by

constants. Since the periods have dimensions of length, they cannot be absorbed completely

into the dilaton exponentials, but one can however fix their values in any convenient fashion,

without loss of generality. A convenient choice is to take them all to be equal, and then it

follows from (8.12) that we have

Li = LB ≡ L = (2π κ2
11)1/9 . (8.15)

This eliminates all the free parameters, with all charge units now being expressed purely

in terms of the eleven-dimensional Newton constant κ11. Thus in this convention, we find

that the above analysis of the T-duality relation between the type IIA and IIB theories

implies that all the canonical charges are absolutely determined, and their minimum units

are given by

Qe = LD−n−1 , Qm = Ln−1 . (8.16)

The T-duality relationship for the quantised charges also provides supporting evidence

for the SL(2,ZZ) U-duality of the type IIB theory. In particular, as we have shown, in

the convention of (8.15) the units for the NS-NS and R-R charges are not independent

parameters, rather they are equal. In this convention, the SL(2,ZZ) group elements, under

which the NS-NS and R-R charges form a doublet, are integers. On other hand, the 7-

brane in the type IIB theory (supported by the axion χ) also (independently) discretises
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the continuous SL(2, IR) global symmetry group to SL(2,ZZ), owing to the topological

structure of the solution. Indeed, in the latter case the group elements are also pure integers,

since it is easy to verify that the allowed magnetic charges for the axion χ are now purely

integral, owing to the T-duality. This is necessary for consistency with the conjectured

non-perturbative SL(2,ZZ) symmetry of the type IIB theory.

A similar, but somewhat different, discussion of the relations between the charges (or

tensions) of the D-branes and the M-branes has been given in Refs [30,6,7]. This argument

also makes use of T-duality to relate all the Dp-branes in the type IIA and type IIB theories,

starting from M theory (i.e. from D = 11 supergravity). Specifically, the self-dual D3-brane

in D = 10 type IIB theory can be dimensionally reduced either diagonally to a D2-brane

or vertically to a D3-brane in D = 9. Mapping these over to the type IIA theory, and then

oxidising them back to D = 10, they become a dual D2-brane and D4-brane pair. This

give rise to another condition on the charges, namely on their quotient, in addition to the

Dirac condition on their product. In fact, using the T-duality that relates a Dp-brane to a

D(p+ 1)-brane, one can deduce from this that all of the R-R charges are integer multiples

of absolutely-determined fundamental units.

One may next relate the NS-NS and R-R charges using the SL(2,ZZ) duality symmetry of

type IIB theory, under which the NS-NS and R-R 2-form potentials form a doublet. Another

way to do this is to consider M-theory, in which the D2-brane and the D4-brane can be

oxidised up to D = 11, where they become a membrane and a 5-brane. Consequently, the

two M-branes are both related to the type IIB self-dual D3-brane, from which one acquires

an additional constraint [30, 6]. The M-branes can also be dimensionally reduced to give

rise to an NS-NS string and a 5-brane in D = 10, which implies that the NS-NS and R-R

charges should be related.

In this paper we made use of additional considerations, namely that the charges associ-

ated with Kaluza-Klein vectors are absolutely determined by mechanisms that go beyond

Dirac quantisation. In this case not only the product, but also the absolute units of each

of the electric and magnetic charges, are separately fixed. This, together with the abso-

lute quantisation of the self-dual charges, implies that all of the charges in the theory are

absolutely determined, after applying the T-duality relation. This is to be expected, since

in a fundamental theory there should be no further free parameters governing the charge

spectrum, other than the coupling constant of the theory. It is important to note that

M-theory alone is not enough to fix the charge lattice completely, and hence M-theory and

the type IIB string are both necessary parts of the full theory in which all of the charges
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are fixed.

It is interesting, by way of comparison, to analyse the situation in the case where M-

theory is not introduced. Then, the type IIA charge units are parameterised by the three

quantities γn, with n = 2, 3 and 4 for the charges (8.3) associated with the field strengths

of degree n. In this case, the type IIA and type IIB theories have, a priori, a total of five

parameters characterising the charge lattices. Applying the T-duality relation between the

type IIA and type IIB theories leaves us with two free parameters, one in the NS-NS sector

and the other in the R-R sector. Invoking the SL(2, Z) symmetry of the type IIB theory

enables us relate the NS-NS and R-R charges, which removes one more free parameter.

Thus we see that, purely from a string perspective, the charge spectrum of the theory is not

uniquely fixed, since one free parameter remains. It is interesting to note that M-theory by

itself also has one free parameter that sets the scales in its charge lattices. However, when

the duality symmetries relating M-theory, the type IIA string and the type IIB string are

all utilised, the quantised units of all charges become absolutely determined.

9 Charge lattices and quantisation conditions

Throughout this paper, we have been considering the quantisation conditions for canonically

defined charges descended from the D = 11 electric and magnetic charges (4.6) together with

the wave/NUT and D = 10 3-brane charge. These conditions have the effect of restricting

the classically allowed families of p-brane solutions to a discrete set at the quantum level,

with the allowed charges forming a charge lattice. In D = 11, there are conjugate electric

and magnetic charge lattices, which are effectively one-dimensional since the quantisation

condition (3.9) involves only the magnitudes of the electric and magnetic charge forms (for

Dirac-sensitive orientations). We have seen that the unit of the one-dimensional electric

charge lattice (and also the magnetic charge lattice) can be determined using T-duality

between the type IIA and type IIB theories.

By the arguments given in the last section, all of the lower-dimensional charge lattices for

branes of differing dimension p also prove to be integers times a fundamental unit given by

(8.16). It should be emphasised, however, that if one considers a specific lower-dimensional

maximal supergravity in isolation, without regard to its higher-dimensional origin, then the

charge lattices for non-dual pairs of p-branes will not necessarily be related. This is because

the Dirac quantisation condition is invariant under the global symmetry group of the theory.

Consequently, there is no unique charge-lattice solution to the Dirac quantisation condition
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alone; from any given Dirac-allowed lattice, others can be constructed by the action of the

global symmetry group. In particular, there would seem to be no a priori reason even

why the same Dirac-allowed lattice must arise at different points in the modulus space of

the scalar fields. On the other hand, as we showed in the previous section, if the lower

dimensional theory is viewed as a dimensional reduction from eleven dimensions, then the

charge lattice in the lower dimension is fixed uniquely, and turns out to be independent of

the values of the scalar moduli. Indeed, the lattices are all pure integers times a fundamental

unit (8.16). In such a situation, where the Dirac-allowed charge lattices are independent of

the moduli, the continuous global symmetry group is broken down to a discrete subgroup,

namely the U-duality group [31]. This modulus-independent charge lattice, which cannot be

derived purely from the Dirac quantisation condition in D-dimensional supergravity taken

in isolation, plays a crucial rôle in the discretisation of the classical global symmetry group

to the U-duality group [32].

The reduction of the supergravity symmetry group to a discrete subgroup can also be

seen in the structure of the perturbative counterterms to supergravity, whether they occur

with infinite coefficients in ordinary attempts at quantising (nonrenormalisable) supergrav-

ities, or with finite coefficients as determined in the effective supergravity theories obtained

from superstring theory. For example, one may consider the simple case of D = 4, N = 2

supergravity coupled to N = 2 matter, which gives rise to non-renormalisable counterterms

already at the 1 loop level [33]. In these one-loop counterterms, the Maxwell field oc-

curs through the stress tensor Tµν , which is invariant under duality transformations. This

good duality behaviour is actually in excess of the classical expectations, since the classical

Maxwell action itself is not in fact duality invariant, but instead transforms by an overall

phase. This homogeneous classical transformation behaviour of the action is sufficient to

yield a duality symmetry of the field equations, but when the classical action is combined

with the 1-loop counterterms, the homogeneity property of the total action’s transformation

behaviour is lost. The only transformations for which the phases of the classical action and

the counterterms ‘align’ are those of the quantum Z2 duality group, reproducing the conclu-

sions independently obtained by considering the Dirac quantisation condition. Analogous

arguments, taking into account the indications that the first non-trivial (‘3-loop’) extended

supergravity counterterms [34,35] are similarly invariant [35] under the full Cremmer-Julia

duality groups, imply that the U-duality discretisations of these groups may also be viewed

as arising from the differences in transformation behaviour between homogeneously trans-

forming actions and the invariance of the counterterms. Again, the phases only align after
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restriction to the discretised G(ZZ) duality groups.

The existence of an unbroken U-duality group at the quantum level depends on the

‘registration’ between the units of charge sublattices for the various p-branes that are not

directly related by the Dirac quantisation condition. If there were not such a registration,

a U-duality transformation on one field type, mapping between allowed points on that

field’s sublattice, would not at the same time map between allowed points on another field’s

sublattice. In this sense, requiring the persistence of an unbroken U-duality at the quantum

level may also be taken as a logical basis for requiring the different charge units to be

brought into registration with each other.

We have seen that dimensional reduction not only leads to a charge lattice in the lower

dimension that is consistent with the Dirac quantisation conditions, but that it furthermore

selects a unique lattice, which is independent of the values of the scalar moduli. This

additional condition can be seen from Table 1, where ‘incidental’ quantisation relations

between the various canonically-defined charge vectors arise even in cases where these are

not directly required by the D-dimensional Dirac quantisation conditions (4.10) between

conjugate pairs of electric and magnetic charges. For example, in D = 10 there are conjugate

electric strings and magnetic 5-branes supported by the same 3-form field strength, for which

a quantisation condition of the form (4.10) naturally occurs (provided the orientations do

not fall into the measure-zero Dirac-insensitive set). From the point of view of the parent

D = 11 supergravity theory, however, the 3-form field strength in D = 10 is just one of the

two descendants of the 4-form field strength of the D = 11 theory. The other descendant

is the 4-form field strength in D = 10. This 4-form field strength supports an electric

2-brane solution in D = 10, which is the vertical dimensional reduction [20] of the 2-brane

in D = 11 [12]. Although this ten-dimensional 2-brane is supported by a different field

strength from the ten-dimensional 5-brane, there is nonetheless an ‘incidental’ quantisation

relation between the 2-brane and the 5-brane charges in D = 10, since their lattice units

are related as shown in Table 1.

We see therefore that the D = 11 Dirac quantisation condition (3.9) is the parent of four

D = 10 relations: two genuine D = 10 Dirac quantisation conditions, between the string

and the 5-brane supported by the 2-form in D = 10, and between the 2-brane and the

4-brane supported by the 3-form in D = 10; plus the two incidental quantisation relations

discussed above. As we discussed in section 4, the genuine Dirac quantisation conditions

are characterised by the two possible sets of mixed vertical/diagonal dimensional reductions

of the D = 11 2-brane and 5-brane, which maintain the same supporting field strength for
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their D = 10 descendants. The incidental quantisation relations, on the other hand, are

characterised by the use of two vertical or two diagonal reductions, which give D = 10

solutions supported by two different field strengths. As we saw in section 4, configurations

of branes in D = 11 corresponding to these cases do not yield true Dirac quantisation

conditions. The distinction between the genuine and incidental cases is clearly seen in

the period-dependent factors in Table 1: only for the genuine D = 10 Dirac quantisation

conditions between conjugate solutions do the period factors Li cancel out. The incidental

quantisation conditions involve both T duality and the ‘absolute’ scale-setting properties of

IIB self-dual 3-branes and D0-brane/(D − 4)-brane pairs in IIA theory, as we have seen.

From the standpoint of supergravity theories, the canonical charges, with their univer-

sal charge lattices, are the most natural ones to consider. For comparison with results in

the literature, however, it is appropriate to relate the above canonical-charge results to

those corresponding to different basic definitions of the charges. A well-known result in

the context of D = 4 U(1) gauge theories with symmetry breaking via a Higgs sector is

the dependence of the charge lattice on the vacuum angle θ of the vacuum as well as the

standard dependence on the unit e0 of electric charge [29]. The ‘standard’ charge lattice to

which these results pertain makes use charges defined differently from the canonical charges

that we have been using. The canonical charges are obtained by an SL(2, IR) symmetry

transformation (whose supergravity generalisations are the G supergravity duality symme-

tries) that precisely removes the (e0, θ) modulus dependence of the standard charge lattice.

If the (φ, χ) scalar sector is described by an SL(2, IR) matrix

V =

(
e−

φ
2 e

φ
2 χ

0 e
φ
2

)
(9.1)

belonging to the Borel subgroup of SL(2, IR) [32], then the ‘physical’ charge lattice with the

coupling constants restored is given by Qphys = V −1
0 Q, where V0 is the matrix V evaluated

for the asymptotic scalar values, i.e. the moduli, with e0 = eφ0/2, θ = χ0. One then finds

that Qphys scales up as e0 is increased, and that the dependence of the electric and magnetic

components of the charges on the vacuum angle θ agrees precisely [36] with that of Ref. [29].

Note that the lattice of physical charges Qphys = V −1
0 Q is still invariant under a quantum

duality group, but that this is no longer simply the group of integer-valued G(ZZ) = SL(2,ZZ)

matrices that maps the canonical Q charge lattice into itself. Instead, the Qphys lattice is

mapped into itself by the conjugated13 group of matrices Ĝ(ZZ) = V −1
0 G(ZZ)V0.

13Note also that the sense of this conjugation is opposite to that for the vacuum stability group H =

SO(2) which leaves the scalar moduli (φ0, χ0) invariant; the latter is conjugated to Ĥ = V0HV
−1
0 . The
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Appendix: Dirac quantisation conditions in even dimensions

In this appendix, we shall discuss further the Dirac quantisation conditions for charges

carried by field strengths of degree n = 1
2D in even dimensions D. For simplicity, we shall

consider a single such field strength, coupled to gravity. We shall consider both Lorentzian

spacetime signature and Euclidean spacetime signature.

Consider a Lagrangian of the form

L = eR− 1
2n! eF

2 , (9.2)

where F is an n-form field strength. The energy-momentum tensor is given by

Tµν = Fµσ2···σn Fν
σ2···σn − 1

2n F
2 gµν . (9.3)

We now define the Hodge dual of F by

F̃µ1···µn = 1
n! εµ1···µn

ν1···νn Fν1···νn , (9.4)

The dualisations have the following properties, governed by dimension and signature:

Lorentzian Euclidean

D = 4k:
˜̃
F = −F

˜̃
F = F

D = 4k + 2:
˜̃
F = F

˜̃
F = −F

(9.5)

opposite cojgugation properties of these two groups gives rise to the existence of the special ‘self-dual’ point

(φ0, χ0) = (0, 0) in modulus space, at which point the intersection group Ĝ(ZZ) ∩ Ĥ is maximal. The action

of this maximal group agrees with that of the Weyl group of the duality group G. This occurrence of the

Weyl group of G as the maximal Ĝ(ZZ) ∩ Ĥ intersection persists for the complete list of Cremmer-Julia

supergravity symmetry groups G [37,20].
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It is straightforward to see that the energy-momentum tensor (9.3) can be rewritten using

F̃ in the form

Lorentzian: Tµν = 1
2(Fµσ2···σn Fν

σ2···σn + F̃µσ2···σn F̃ν
σ2···σn) , (9.6)

Euclidean: Tµν = 1
2(Fµσ2···σn Fν

σ2···σn − F̃µσ2···σn F̃ν
σ2···σn) . (9.7)

From these expressions, it is clear that when D = 4k, there is a continuous symmetry of

the energy-momentum tensor under transformations

Fµ1···µn −→ cFµ1···µn + sF̃µ1···µn , (9.8)

where the parameters c and s satisfy c2 + s2 = 1 in the Lorentzian case, and c2 − s2 = 1

in the Euclidean case. Thus in the Lorentzian case we may take c = cos θ, s = sin θ, while

in the Euclidean case we may instead take c = cosh θ, s = sinh θ. On the other hand, in

D = 4k + 2 dimensions there is no such continuous symmetry of the energy-momentum

tensor, in either the Lorentzian or the Euclidean signature. Thus we have the following

duality symmetries in the various cases, restricting attention to situations involving a single

n-form field strength:

Lorentzian:

{
D = 4k : SO(2)

D = 4k + 2 : –

Euclidean:

{
D = 4k : SO(1, 1)

D = 4k + 2 : –
(9.9)

In D = 4k dimensions we can derive the Dirac quantisation condition for dyons from

the quantisation condition for purely electric and magnetic charges, by acting on the latter

using the duality symmetry. Thus, starting from the result that (dimensionful) charges

(e1, 0) and (e2, g2) satisfy the condition e1 g2 = 2πκ2 n, one can deduce that

e1 g2 − e2 g1 = 2πκ2 n (9.10)

for dyons in D = 4k dimensions, regardless of the spacetime signature. By contrast, one

cannot deduce the quantisation condition for dyons in D = 4k + 2 dimensions by any

analogous calculation. In this case the electric and magnetic charges of the single field

strength F cannot form a doublet under any duality symmetry.14

14The absence of a continuous duality symmetry in the case of a single (2k + 1)-form field strength in

D = 4k + 2 dimensions has been discussed from the point of view of the impossibility of realising such a

symmetry as a canonical transformation in Ref. [25].
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Of course an enlarged system with more field strengths can have a duality symmetry,

such as in the case of D = 6 supergravity, where there is an O(5, 5) symmetry. Using this

O(5, 5) symmetry, one can derive the dyonic quantisation condition

e1 g2 + e2 g1 = 2πκ2 n (9.11)

as we showed in section 5. We saw in section 6 that this result holds for dyons in all dimen-

sions D = 4k+ 2, using a generalisation of the arguments of Ref. [23]. Moreover, in section

5, we saw that the quantisation condition (9.11) is consistent with dimensional reduction.

In section 5, we have exploited the fact that the Lorentzian D = 4k+ 2 quantisation condi-

tion (9.11) gives rise to a Dirac quantisation condition for self-dual charges in D = 4k + 2

Lorentzian spacetimes. Note, however, that there is no such condition for self-dual charges

in Euclidean D = 4k dimensional spacetimes, since here the dyonic quantisation condition

(9.10) becomes trivial in this case.
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