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Abstract

Meson–photon–photon transition form factors for S-, P -, and D-wave states
are calculated, the meson being treated as a non-relativistic heavy-quark–
antiquark pair. The full dependence on both photon virtualities is included.
Cross-section formulas for charge-conjugation even mesons with JP = 0−,
0+, 1+, 2+, and 2− in electron–positron collisions are presented and numer-
ical results for LEP energies are given. In particular, we find two-photon
event rates for χc1, ηc(2S), and ηb(1S) within reach of LEP.
With minor modifications to incorporate SU(3)-flavour breaking we esti-
mate rates for 18 light mesons as well, based on the observation that their
two-photon decay widths agree remarkably well with measured data. Fi-
nally we point out that e+e− cross sections for 1+ states do not vanish at low
Q2, the Landau–Yang suppression factors of the two-photon cross sections
being compensated by the photon propagators.
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1 Introduction

In this paper we discuss resonance production in two-photon fusion in high-energy elec-
tron–positron (e+e−) collisions. The main focus of our study is the dependence of the
cross section on the photon virtualities Q2

i , which we take fully into account. While there
exist several papers on the Q2 dependence of the (single) form factor that governs the
production of pseudo-scalar mesons [1, 2, 3, 4], much less is known about the (in general
several) form factors associated with any other charge-conjugation even (C = +1) meson
[5, 6, 7] (for experimental data, see [8, 9]).

Here we present analytical results for the form factors and cross sections of C = +1
mesons up to and including D-wave states. We compare these results with existing cal-
culations where available. Moreover, we give numerical results for 30 mesons at typical
LEP energies, for various representative experimental setups. All formulas are imple-
mented in the Monte Carlo event generator GALUGA [10], and hence cross sections and
distributions for any kind of e+e− environment can be easily obtained.

Let us now briefly discuss the theoretical framework in which our results are derived.
Our calculation starts from the limit of heavy quarks, in which case a meson can be
considered a non-relativistic bound state of a heavy quark (Q) and a heavy antiquark
(Q̄). Corrections from both the motion of the heavy quarks within the meson and higher-
Fock-state components are small. The theoretical description of production and decay of
heavy quarkonia is based on the NRQCD factorization framework [11], where relativistic
corrections and higher-Fock-state contributions are suppressed by powers of v, the relative
velocity of the quarks in the meson.

The velocity v is reasonably small for charmonia and bottomonia, 〈v2〉 ∼ 0.3 and 0.1,
respectively, so that reliable results can be expected for heavy quarkonia. On the contrary,
the application of this approach to light mesons (consisting of u, d, and s quarks) can
certainly not be derived from QCD and has to be considered as a model. However, we
shall see that, with only minor modifications, the two-photon widths of essentially all
measured light mesons agree remarkably well with data. Hence we proceed to present
form factors and cross sections for the light mesons as well.

The dominant contribution to two-photon production of mesons arises from the (ex-
clusive) short-distance process where a QQ̄ pair is produced with quantum numbers equal
to those of the asymptotic meson, i.e. where the meson is produced in its dominant Fock
state. For a meson with total angular momentum J , parity P and charge-conjugation C
this is a colour-singlet QQ̄ pair with total spin S (= 0, 1) and orbital angular momentum
L (= 0, 1, 2, . . . or S, P , D, etc.) such that J = L + S, P = (−1)L+1 and C = (−1)L+S.
Specifically, for the five C = +1 mesons of JP = 0−, J+, 2− considered in this paper,
the dominant Fock state is a QQ̄ state with 2S+1LJ = 1S0, 3PJ , 1D2, respectively (in the
spectroscopic notation and J = 0, 1, 2).

Four of the above mesons are produced in two-photon fusion without any short-
distance suppression. Hence no enhanced O(αs) and O(v2) corrections can occur and
estimates based on the lowest-order O(α2α0

s) calculation should be reliable. The situ-
ation could be different for the 1+ state. Its O(α2) cross section vanishes when both
photons are real and is therefore suppressed by ∼ 〈Q2〉 /M2 (details will be given below).
Hence, if the reaction is not totally exclusive, other processes can be important. The Q2

suppression of the exclusive process γγ → R then competes with the suppression by extra
powers of αs(m) and/or v2 of inclusive resonance production, which, however, are finite
at zero Q2

i .
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To leading order in αs and/or v, three different mechanisms for the inclusive resonance
production can occur for real photons. First, the short-distance production of a QQ̄1(3P1).
Here and in the following a subscript 1 (8) indicates a colour-singlet (colour-octet) QQ̄
pair. This production proceeds via γγ → QQ̄1(3P1) + gg or QQ̄1(3P1) + QQ̄ and is sup-
pressed by α2

s v
0. Secondly, there is the α0

s v
4-suppressed mechanism where a QQ̄1(3P0,2)

pair, produced at short distances, turns into the 1+ state via a double E1 transition. Both
contributions are small with respect to a third mechanism that is suppressed merely by
a power of αs(m): a QQ̄8(3S1) pair is produced, which then turns into a QQ̄1(3P1) via
a single E1 transition. The power of v2 of the E1 transition is compensated by the fact
that S-wave production is favoured against P -wave production by 1/v2. Whether or not
any of the above-mentioned processes is important depends on the experimental setup:
all these mechanisms are characterized by the presence of at least one more pion. Here we
assume that the experimentally selected events are truly single resonance states so that
these contributions are absent.

In the following sections we shall discuss helicity amplitudes and widths for the decay
of resonances (section 2), form factors for the production (section 3) and finally results
for the production cross sections.

2 Two-photon decays

Consider now the decay of a C = +1 resonance into two photons, R(P )→ γ?(k1)+γ?(k2),

and define W =
√
P 2, Ki =

√
k2
i , ν = k1 · k2, and X = ν2 − K2

1 K
2
2 . While W equals

the resonance mass M for the decay, the two variables may differ for the crossed reaction,
when one wants to take into account the Breit–Wigner formula in the production. We
calculate the decay amplitudes using standard techniques1. We prefer to calculate helicity
amplitudes rather than invariant amplitudes, since the former are more convenient to
implement (after crossing) for the e+e− cross section respecting the full Q2 dependence.
The amplitudes are given in the resonance rest system. As spin direction for the resonance
we take the photon momentum.

Our results for the independent helicity decay amplitudes A(λ1, λ2) are listed in Table 1

in units of cl =
√

3/M e2
Q 16 π αR

(l)
nl (0)Yl0(0, 0)/Dl+1 where Ylm(θ, φ) are the spherical

harmonics, D = W 2/4 − m2 − ν. In NRQCD the resonance mass is twice the quark

mass, M ≈ 2m. Here, R
(l)
nl (0) is the l-th derivative of the radial wave function Rnl(r) =

ψnlm(r)/Ylm(θ, φ) of the bound state at r = 0. The photon helicities can take on the
values λi = ±1, 0. The remaining helicity amplitudes can be obtained using the relations

A(λ1, λ2) = ηRA(−λ1,−λ2) (1)

A(λ1, λ2) = (−1)J A(λ2, λ1)|K1↔K2
, (2)

where ηR = 1 (−1) for mesons of the “normal” (“abnormal”) JP series JP = 0+, 1−, 2+, . . .

(JP = 0−, 1+, 2−, . . .).
Our amplitudes are normalized such that the two-photon decay width is given by

Γγγ [JP ] =
1

2 J + 1

1

32 πM

∑
λ1,λ2=±1

|A(λ1, λ2)|2 . (3)

1We modify the projection operators of [12] to conform to the convention diag(gµν) = (+,−−−) and
to include colour, and extend the rules to D-wave states.
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JP A(+−) A(++) A(+0) A(00) Γγγ

0− 0
√
X 0 0 4

0+ 0 2 (X+ν W 2)√
3W

0 −2√
3
K1K2W 144

1+ 0 −
√

2 ν
W

(K2
1 −K

2
2)

√
2K2 (ν −K2

1 ) 0 32

2+ 2W ν
√

2
3

ν (K2
1+K2

2)+2K2
1 K

2
2

W

√
2K2 (ν +K2

1) 2
√

2
3
W K1K2 192/5

2− 0 4 X3/2

M2 0 0 64

Table 1: Decay amplitudes A(λ1, λ2) in units of cl and two-photon decay width (reduced
with Γ̃γγ for 1+) in units of dl (see text for the definition of cl, dl).

The width formulas are also displayed in Table 1 and agree with the literature, see e.g.
[13]. Here we have defined dl = 3 e4

Q α
2 |R(l)

nl (0)|2/M2(l+1). In the case of the 1+ meson the

entry defines the reduced width2 Γ̃γγ. This is the transverse–transverse two-photon width
divided by a factor [(K2

1 − K
2
2 )/(2 ν)]2, which shows that Γγγ [1

P ] is zero, in agreement
with the Landau–Yang theorem.

Before presenting numerical results for the two-photon widths, we have to discuss the
input parameters, namely the wave functions and the squared charge factor e2

Q appearing
in cl and dl. Obviously, the electric charge of the quark is eQ = +2/3 (−1/3) for charmonia
(bottomonia). Moreover, the wave functions for the heavy quarkonia can quite reliably
be calculated by solving the Schrödinger equation with a phenomenological inter-quark
potential. We take values from a recent potential-model calculation [15]. The results are
valid in the large-mass limit, where the non-relativistic expansion makes sense.

For the light mesons we have to assume the constituent quark model to be still a good
approximation. We start from a linear potential ∝ λ r, in which case |RnS(0)|2 = 2µλ

(independent of the radial quantum number n), |R′1P (0)|2 = 0.268 (2µλ)5/3, |R′′1D(0)|2 =

0.151 (2µλ)7/3, where µ is the reduced mass. Using canonical values for the string tension
λ and constituent-quark masses, we take 2µλ = 0.74 GeV3. In order to incorporate SU(3)
breaking we multiply the above squared wave functions by r2l+1

M , rM = M/µ0, where M
is the meson mass and µ0 a hadronic scale of about 1 GeV. We thus use the following
values for R

(l)
nl (0):

Light mesons Charmonia Bottomonia

|R1S(0)|2 /GeV3 0.074 rM 0.81 6.5

|R′1P (0)|2 /GeV5 3.5× 10−3 r3
M 0.075 1.4

|R′′1D(0)|2 /GeV7 0.35× 10−3 r5
M 0.015 0.64

|R2S(0)|2 /GeV3 0.074 rM 0.53 3.2

(4)

For the light mesons we also have to replace e2
Q by the effective squared charge 〈e2

q〉,
which depends on the mixing angle θ characterizing the breaking of the SU(3)-flavour

2Our Γ̃γγ coincides with that of [14] and is one half that of [7].
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i\j I = 1 I = 0 (I = 0)′ cc̄ bb̄

0− π0 η η′ ηc(1S) ηb(1S)

1 1S0
7.74
103 (7.74

103 ) 0.41(0.46) 6.1(4.2) 7.8(7.5) 0.46(—)

0+ a0 f0 f ′0 χc0 χb0

3P0 5.1(> 0.24) 0.72(0.56) 10.4(5.4) 2.5(4.0) 0.043(—)

1+ a1 f1 f ′1 χc1 χb1

3P1 0.90(—) 2.5(2.4) 0.10(—) 0.50(—) 0.92/102(—)

2+ a2 f2 f ′2 χc2 χb2

3P2 1.0(1.0) 3.0(2.4) 0.12(0.097) 0.28(0.37) 0.74/102(—)

2− π2 ηD η′D ηcD ηbD

1D2 1.3(1.35) 0.43(—) 5.0(—) 0.95/102(—) 0.74/104(—)

0− π(2S) η(2S) η′(2S) ηc(2S) ηb(2S)

2 1S0 6.9(—) 2.3(—) 23.0(—) 3.5(—) 0.20(—)

Table 2: The γγ widths of the resonances in keV (reduced width Γ̃γγ in the case of 3P1).
Central values of the experimental measurements (in parentheses) from PDG [16], except
for the 3P1, which is from TPC/2γ [14].

symmetry:

〈e2
q〉 = 1

3
√

2
π, a0, a1, a2, π2

1
3
√

6

(
cos θ − 2

√
2 sin θ

)
η, f0, f

′
1, f
′
2, ηD

2
3
√

3

(
cos θ + 1

2
√

2
sin θ

)
η′, f ′0, f1, f2, η

′
D . (5)

The incorporation of SU(3) breaking outlined above can be refined by including the
effect of the centrifugal barrier. Parity allows the orbital angular momentum of the
photons to be 0 for the J+ states, but requires at least 1 for the cases of 0− and 2−.
In our calculation this suppression shows up3 as the factor εαβµν k

α
1 k

β
2 ε

µ
1 ε

ν
2 ∝

√
X and

therefore implies an additional factor r2
M (r4

M) for the 0− and 2− helicity amplitudes (decay
widths). Effectively this changes the power of rM in (4) into n(JP ), where n(JP ) = 5, 3, 9
for JP = 0−, J+, 2−. Hence the two-photon widths scale with the meson mass as M3 for 0−

and 2− states, and as 1/M for J+ states. This can be compared with the “conventional”
approach, where also the J+ mesons are assumed to scale as M3 [17, 18].

Numerical results for the two-photon widths of the n = 1 (n the radial quantum
number) mesons with JP = 0−, J+, and 2− are given in Table 2 for charmonia and
bottomonia as well as for the light mesons with isospin I = 0, 1. The masses of the mesons
are taken from the PDG, where known, and the others from a potential-model calculation

3The additional factor X/M2 visible in Table 1 for the 1D2 state arises from kµ1 k
ν
2 εµν(2, Jz) and is

not counted as a threshold factor.
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[18]. The latter are the ηb(9400), and the D-wave states ηD(1680), η′D(1890), ηcD(3840),
and ηbD(10150) (particle masses in parentheses). We have boldly taken a0(983.5), f0(980),
and f0(1370) as the lowest-lying isoscalar despite their questionable status. Values for
the first radial excitation are given as well, where we took π[2S](1300), η[2S](1295),
η′[2S](1400), ηc[2S](3594), ηb[2S](9980).

The only free parameters are the scale µ0 and the mixing angles. We do not try to
fit these. Rather we adjust µ0 by the π0 decay width to µ0 = 0.96 GeV. We determine
the mixing angles of the pseudo-scalars and the tensor mesons from the quadratic mass
formula θ[0−] = −11.5◦, θ[2+] = 32◦. Lacking further information, we simply take θ = 32◦

for the other P -wave states as well and θ = 0 for the D-wave and n = 2 S-wave states. A
look at Table 2 shows that we find surprisingly good agreement with the measured decay
widths for practically all measured mesons4! This gives us confidence that the approach
provides sensible results for the two-photon production of these mesons as well.

3 Form factors for two-photon production

The differential cross section for the reaction e+e− → e+e−X, where the (hadronic) final
state X is produced by γγ fusion, can (to lowest order in QED) be expressed in terms5

of the cross sections for γ?(q1) + γ?(q2)→ X via[20]

E1E2 d6σ

d3 p1 d3 p2

=
∑
A,B

LAB σAB . (6)

Here σAB(W,Q1, Q2) denote the cross sections of transverse (A,B = T ) and longitudi-
nal (A,B = S) photons with momenta qi, which depend merely on the hadronic mass

W =
√
m2
X and the virtualities of the two photons Qi =

√
−q2

i . Furthermore, pi = (Ei,pi)
are the momenta of the outgoing leptons, and LAB are (in QED fully) calculable virtual-
photon flux factors, related to the photon-density matrices ρλ1,λ2

i (λi = ±1, 0). For exam-
ple, in the standard notation[20]:

LTT =
α2

16 π4Q2
1Q

2
2

2
√
X

s
√

1− 4m2
e/s

4 ρ++
1 ρ++

2 . (7)

Adapting the standard definition of the two-photon helicity cross sections

σTT = 1
4
√
X

[W (++,++) +W (+−,+−)] , σSS =
1

2
√
X
W (00, 00) ,

σTS = 1
2
√
X
W (+0,+0) , σST =

1

2
√
X
W (0+, 0+) , (8)

we find
W (λ1, λ2;λ1, λ2) = π δ

(
P 2 −M2

)
|M(λ1, λ2)|2 . (9)

The amplitudes M are the ones for the crossed reaction obtained by replacing Ki by iQi

in the helicity amplitudes A. Note that relation (2) is changed into

M(λ1, λ2) = (−1)J−λ1+λ2 M(λ2, λ1)|K1↔K2
. (10)

4For an (incomplete) list of previous estimates of two-photon widths see [17, 18, 19].
5We omit interference terms that integrate to zero over φ̃, where φ̃ is the azimuthal separation between

the two lepton planes in the γ?γ? cms.
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JP fTT fTS fSS

0− κ X
ν2 0 0

0+ κ
(
X+ν M2

3 ν2

)2
0 2 κ

(
M2
√
Q2

1Q
2
2

3 ν2

)2

1+ κ
(
Q2

2−Q
2
1

2 ν

)2
2 κ M2

2 ν

Q2
2

2 ν

(
ν+Q2

1

ν

)2
0

2+ κ
(
M2

2 ν

)2
{

1 +
[2Q2

1Q
2
2−ν (Q2

1+Q2
2)]

2

6M4 ν2

}
κ
M2 Q2

2 (ν−Q2
1)

2

4 ν4 κ
M4Q2

1Q
2
2

3 ν4

2− κ
[
X
ν2

]3
0 0

Table 3: Form factors fAB.

We quote the final expression for the cross section for the production of the C = +1
resonances in the form (A,B = T, S)

σAB[JP ] = δ
(
W 2 −M2

)
8 π2 (2 J + 1) Γγγ[J

P ]

M
fAB[JP ] . (11)

(For the 1+ state we obviously use Γ̃.) The form factors fAB are listed in Table 3, using
the notation

κ =
M2

2
√
X

→ 1 for both Q2
i → 0 ,

X = ν2 −Q2
1Q

2
2 , ν =

1

2

(
W 2 +Q2

1 +Q2
2

)
. (12)

Measurements of form factors for states other than the pseudo-scalar mesons are still
very rough [8, 9, 14]. It is important to realize that the Q2

i dependence of the form factors
is convention-dependent. What is unique is the Q2

i dependence of the e+e− cross section,
but one is free to attribute terms that approach 1 for Q2

i → 0 to either the luminosity
functions or the form factors governing the two-photon cross sections.

Conventions different from (11) are in use. Indeed, for the pseudo-scalar mesons P
it has become standard to define the meson–photon transition form factor by writing
the invariant amplitude as M [γ?γ? → P (0−)] = FPγγ(Qi) e

2 i εµνρσ q
µ
1 q

ν
2 ε

ρ
1 ε

σ
2 . In this

convention the (only non-vanishing) two-photon cross section becomes

σTT [JP ] = δ
(
W 2 −M2

)
8 π2 Γγγ [J

P ]

M

1

κ

[
FPγγ(Q1, Q2)

FPγγ(0, 0)

]2

. (13)

Hence FPγγ is related to our form factor by

FPγγ(Q1, Q2)

FPγγ(0, 0)
=
√
κ fTT [0−] =

M2

M2 +Q2
1 + Q2

2

=
M2

2 ν
,

FPγγ(0, 0) =
4

M

√
3 e4

Q |RnS(0)|2

πM3
=

2

M

√
Γγγ

π α2M
=

4 e2
Q fP

M2
, (14)

where fP is the pseudo-scalar decay constant, fP = |RS(0)|
√

3
πM

for heavy mesons. Equa-

tion (14) agrees with a recent calculation [3] where also transverse-momentum (kT ) effects
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of the quarks within the bound state were included. This effectively amounts to adding
2 〈k2

T 〉 to the denominator M2 +Q2
1 +Q2

2 in (14).
CLEO [21] has measured the single Q2 dependence (Q = Q1, Q2 ≈ 0) of the π0, η, and

η′ form factors very precisely. The data are consistent with a monopole behaviour with
a pole mass close to the ρ mass for π0 and η and a slightly larger mass for η′. Our result
(14) is indeed a monopole form factor, in agreement also with the power-counting rules
[22]. We obtain good normalizations for the three pseudo-scalars, but the pole masses
would be too small if we took the meson masses. On the other hand, these mesons being
Goldstone bosons are exceptionally light. Therefore we take mρ (≈ twice the light quark
mass) as pole mass for the three lightest pseudo-scalars, but identify the pole mass with
the meson mass for all other mesons.

It is important to realize that FPγγ does not factorize into the product of two form fac-
tors FR(Q2

1)FR(Q2
2) as suggested by vector-meson dominance. There FR(Q2) = M2

R/(M
2
R+

Q2) with, for example, MR = MJ/ψ for charmonia. In particular at large Q1 and Q2, the
form factor FPγγ is known to fall off only asM2/(Q2

1+Q2
2) [22, 23] rather thanM4/(Q2

1Q
2
2).

At first sight it might seem to be a coincidence that we obtain the correct asymptotic
behaviour, since our non-relativistic calculation becomes insufficient at asymptotic Qi

values where large logarithms lnQi/M become important. Calculations with massive
quarks in the non-relativistic approximation are well suited for Qi values not much larger
than the heavy-quark mass ∼M/2. At asymptotically large Q, it is more appropriate to
set up a scheme in which calculations are done with massless quarks, but incorporating
the Q2 evolution of the quark distribution amplitudes in the meson. Such an approach is
provided by the hard-scattering approach (HSA) [1].

In the HSA, the meson–photon–photon transition amplitude factorizes into a hard (i.e.
perturbatively calculable) scattering amplitude and a soft (i.e. long-distance) distribution
amplitude (DA) φ(x), so that asymptotically

FPγγ(Q1, Q2)→ 2 〈e2
q〉 fP

∫ 1

0
dx

φ(x)

xQ2
1 + (1− x)Q2

2

. (15)

Since all meson DAs approach the asymptotic form φas(x) = 6x(1 − x), the asymptotic
form of FPγγ is fully determined in QCD

FPγγ → 6 〈e2
q〉 fP

Q4
1 −Q

4
2 − 2Q2

1Q
2
2 ln(Q2

1/Q
2
2)

(Q2
1 −Q

2
2)3

→
6 〈e2

q〉 fP
Q2

for Q1 = Q, Q2 = 0

→
2 〈e2

q〉 fP
Q2

for Q1 = Q2 = Q . (16)

Although the full Qi dependence looks more complicated than (14), the two limit-
ing cases show that the asymptotic power behaviours for large Q1 and/or large Q2 are
identical. The reason is that in either calculation the hard vertex is QQ̄(1S0) → γγ and
asymptotically the HSA DA becomes Q-independent, as is the non-relativistic one. In
fact, owing to the normalization condition

∫
dxφ(x) = 1, the symmetric limit (Q1 = Q2)

is fully identical. The single asymptotic limit (Q1 →∞, Q2 = 0) differs by a factor 2/3,
reflecting the difference of the moment 〈1/x〉 =

∫
dxφ(x)/x for the asymptotic DA and

the non-relativistic DA, φnr = δ(x− 1/2).
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Q1 6= Q2 Q1 = Q2 = Q

JP FTT FTS FSS FTT FTS FSS

0− 1 0 0 1 0 0

0+ ∆
3

0 4
√

2M2Q1Q2

3 ∆(Q2
1+Q2

2)2
2M
3Q

0
√

2M
3Q

1+ 1
√

2M Q2 (3Q2
1+Q2

2)

∆(Q2
1+Q2

2)2 0 0
√

2 0

2+ ∆√
6

M Q2

Q2
1+Q2

2

4M2Q1Q2√
3 ∆(Q2

1+Q2
2)2

√
42M
12Q

M2

4Q2
M√
3Q

2− ∆2 0 0 M2

Q2 0 0

Table 4: Structure functions FAB. ∆ = |Q2
2 −Q

2
1|/(Q

2
2 +Q2

1).

Such numerical differences between our results and the HSA may also exist for the
asymptotic behaviours of the other meson–photon transition form factors, which have not
yet6 been calculated in the HSA. However, we emphasize that the power fall-off is the
same in the two approaches. Moreover, it is not clear at which Qi values the asymptotic
regime is reached. Eventually, one would like to match the massive-quark calculation at
low Qi with the HSA calculation at large Qi.

The large-Qi behaviour of the form factors for the other JP mesons is different from
that of the pseudo-scalars. In analogy to FPγγ we define

FAB = lim
Qi→∞

[
Q2

1 +Q2
2

M2

√
κfAB

]
, (17)

and give the results in Table 4. It can be seen that the double-asymptotic limit Qi →∞
in the symmetric case is different from the asymmetric limit. For Qi �M , but Q1 6= Q2,
the FTT ’s are the dominant form factors; all other form factors are suppressed by powers
of 1/maxiQi. On the contrary, FSS[0+] possesses the same power counting ∝ 1/Q as
FTT [0+] in the symmetric case. The same holds for 2+ mesons, while FTT [2−] behaves as
1/Q2 and Bose symmetry leads to a vanishing of FTT [1+]. In fact, besides FTT [0−] only
FTS[1+] remains non-zero in the symmetric double-asymptotic limit. Therefore the cross
sections for 1+ mesons, which vanish at zero Qi, become the largest P -wave cross sections
at high Qi in the symmetric limit.

Ideally the aim is to measure the dependence on both Q1 and Q2, and to separate
the form factors fSS, fTS, and fTT (as well as the latter in helicity-two and helicity-
zero components). Obviously, such tasks require high statistics and excellent tagging
efficiencies. Experimentally much more feasible are single-tag measurements, dσ/dQ2

2.
Often an anti-tag is imposed on the other electron in order to ensure Q1 ≈ 0. Such
measurements are sensitive to only an effective form factor. We therefore generalize the
pseudo-scalar form factor FPγγ and define

(
Feff(Q2)

)2
= lim

Q2
1→0

κ[fTT + ε fTS]

∣∣∣∣∣
Q2

2=Q2

, (18)

6For a recent attempt to generalize the HSA to L 6= 0 mesons, see [24].
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where ε is the ratio of the average luminosities LTS to LTT . Experimentally, ε is often
close to 1. We find:

Feff [0−] =
M2

M2 +Q2

Feff [0+] =
1

3

M2

M2 + Q2

(
1 +

2M2

M2 +Q2

)
Q→0
→

M2

M2 +Q2

[
1−

2

3

Q2

M2

]

Feff [1+] =
√

2

(
M2

M2 +Q2

)2 [
Q2

M2

{
ε+

Q2

2M2

}]1/2
Q→0
→

M2

M2 +Q2

√
2 ε

Q

M

Feff [2+] =
M2

M2 +Q2

[
Q4 + 6M4 + 6 εM2Q2

6 (M2 +Q2)2

]1/2
Q→0
→

M2

M2 +Q2

[
1−

2− ε

2

Q2

M2

]

Feff [2−] =
M2

M2 +Q2
. (19)

Two features are evident. First, for Q small compared to M , all but the 1+ form factors
are similar to the one of pseudo-scalar mesons. Secondly, all form factors asymptotically
behave as 1/Q2, but the hierarchy changes, Q2 Feff/M

2 → 1, 1/3, 1, 1/
√

6, 1. Hence, at
large Q2 we predict

M σ[e+e−]

Γγγ
= 1 :

1

9
: 3 :

5

6
: 5 for JP = 0− : 0+ : 1+ : 2+ : 2− . (20)

We close this section by comparing our results with previous calculations. We have
already commented upon the pseudo-scalar case. Our covariant P -wave amplitudes agree
with the J = 1 amplitude of [7], the J = 2 amplitude of [6], the amplitudes of [12] for all
J , but disagree with the J = 0 expression of [6]. For k2

i = 0 we reproduce the D-wave
result of [25]. Concerning the form factors, we are not aware of calculations of the 0+ and
2− form factors. An effective form factor for the 2+ state is given in [6] without quoting
the value of ε. We reproduce their result for (the unusual value) ε = −1/2. The 1+ form
factors were calculated in [7]. We find identical intermediate results, (4.4) and (4.5) in
[7], but the final form factors were given in the single-tag limit only, multiplied by ad hoc
vector-meson-dominance form factors (Fρ(Q

2) = m2
ρ/(m

2
ρ +Q2)); for example

fTS = 2
2
√
X

M2

Q2
2

M2
F 2(Q2

1)F 2(Q2
2) . (21)

This result was then used by TPC/2γ to define a form factor F̃ for single-tag 1+ events

F̃ 2 = F 2
ρ (Q2

1)F 2
ρ (Q2

2)
Q2

2

M2

{
1 + ε−1 Q2

2

2M2

}
. (22)

Our result for this form factor is

F̃ 2 ≡
ε

2
κ
(
fST + ε−1 fTT

)
=

(
M2

2 ν

)4
 Q2

2

M2

(
ν +Q2

1√
X

)2

+ ε−1 (Q2
1 −Q

2
2)2

2M4

ν2

X


Q1�Q2→

(
M2

2 ν

)4
Q2

2

M2

{
1 + ε−1 Q2

2

2M2

}
. (23)

The (M2/ν)4 factor is in fact crucial to obtain a sensible behaviour at large Q2
2, in contrast

to (22), which approaches a constant as Q2 →∞.
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i\j I = 1 I = 0 (I = 0)′ cc̄ bb̄ cc̄ [Q2
2 < 0.1 GeV2]

0−(1S) 2.9 1.7 3.9 0.12 0.13/103 0.10

0+ 2.9 0.42 2.0 0.024 0.99/105 0.020

1+ 0.060 0.14 0.35/102 0.96/103 0.43/106 0.38/103

2+ 1.1 3.7 0.085 0.012 0.85/105 0.98/102

2− 0.69 0.23 1.8 0.31/103 0.81/107 0.26/103

0−(2S) 1.7 0.56 4.4 0.029 0.47/104 0.024

Table 5: Cross sections for e+e− → R[JP ] in nb for Eb = 91.25 GeV; no-tag columns 2–5,
single anti-tag last column.

4 Cross-section results

Numerical results for a representative LEP energy are given in Table 5, appropriate
for a no-tag setup, i.e. no cuts have been applied to the scattered leptons. Most event
rates are sizeable, although experimental acceptance and tagging efficiency will somewhat
lower the total rates [26]. In particular we find rates of about 1 pb for the χc1, 0.1 pb for
the ηb, and 0.03 nb for the ηc(2S).

The single-Q2 distribution of charmonium production is shown in Fig. 1, dσ/dQ2
1. Here

we have integrated over all Q2. All distributions are steeply falling with Q2
1, even for the

χc1. Hence the modulation of the Qi dependence of the luminosity functions (mainly due
to the 1/Q2

i photon propagator) by the form factors is rather weak. This is more clearly
seen in Fig. 2, where we show ratios of e+e− cross sections as functions of Q2

1, taking as
reference the ηc distribution. This behaviour was anticipated in (19): for Q � M , the
effective single-tag form factors all resemble that of the pseudo-scalar meson.

The situation is quite different for Q�M , accessible through studies of light mesons
(Fig. 2). In fact, the cross-section ratios approach the asymptotic values (20) already at
Q2

1 ≈ 5 GeV2, for example, dσ[f1]/dσ[η] ∼ 10 and dσ[f0]/dσ[η] ∼ 0.1.
In Fig. 3 we compare χc1 production with χc2 production. Tensor mesons are dom-

inated by phase-space regions where both photon virtualities Qi are small. On the
other hand, this region is suppressed for axial-vector mesons. However, this difference
is pronounced only at very low Q2, visible on logarithmic scales d2 σ/d log10Q

2
1 d log10Q

2
2

(Fig. 3). For example, Q2
1 = 10−1 GeV2 is large enough to reach very small Q2 values.

Hence the single-Q2 distribution is still peaked at low Q2.
In particular it follows that an anti-tag cut, say Q2

2 < 0.1 GeV2, is no means to enrich
1+ states in 2γ event samples. In fact, the upper Q2 cut has a stronger effect on the
1+ than on the 2+ mesons, see Fig. 4. This can be seen also in Table 5, where in the
last column we quote charmonium rates after applying an upper limit of 0.1 GeV2 on Q2

2.
Hence it appears sensible to search for 1+ mesons also in no-tag event samples and/or
single-tag samples where no anti-tag is applied to the other electron.

Since we feel that the Q2 behaviour of 1+ mesons is not yet fully appreciated, we want
to exhibit its Q2 dependence also analytically. For studies of the low-Qi behaviour of 2γ
processes in e+e− collisions it is convenient to consider the approximation of keeping only
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the leading Qi dependences (Weizsäcker–Williams or equivalent-photon approximation).
Then the luminosity functions simplify to7

LA,B

(∏
i

d3pi
Ei

)
=
(
α

2 π

)2 2
√
X

W 2

dQ2
1

Q2
1

dQ2
2

Q2
2

dx1

x1

dx2

x2
YA(x1)YB(x2) , (24)

where

YT (x) =
2 (1− x)(1−Q2

min/Q
2) + x2

x
, YS(x) =

2 (1− x)

x
. (25)

Hence the e+e− cross section must not vanish at low Qi even if the two-photon cross
section vanishes for Qi → 0: multiplying (24) by σTS and σST , the dominant behaviour
at low Qi of the 1+ cross section is

σee =
∫

dQ2
1

∫ dQ2
2

Q2
2

cST +
∫ dQ2

1

Q2
1

∫
dQ2

2 cTS + . . . (26)

In fact, dσee[1
+]/dQ1 is even peaked at low Q1.
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[5] G. Köpp, T.F. Walsh and P. Zerwas, Nucl. Phys. B70 (1974) 461

[6] H. Krasemann and J.A.M. Vermaseren, Nucl. Phys. B184 (1981) 269.

[7] R.N. Cahn, Phys. Rev. D35 (1987) 3342; ibid. D37 (1988) 833.

[8] M. Poppe, J. Mod. Phys. A1 (1986) 545.

[9] D. Morgan et al., J. Phys. G: Nucl. Part. Phys. 20 (1994) A1.

[10] G.A. Schuler, CERN-TH/96-313, hep-ph/9611249, Comput. Phys. Commun. in
press.

7We stress that for our numerical results we keep the full dependence on Qi, in which case the LAB
do not factor into products of Q1-dependent and Q2-dependent functions.

11



[11] G.T. Bodwin, E. Braaten and G.P. Lepage, Phys. Rev. D51 (1995) 1125.
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Figure 1: Top: Cross section dσ/dQ2
1[e+e− → e+e−M ] in nb/GeV at

√
s = 92.5 GeV for

ηc(1S) (dash-dotted), ηc(2S) (dashed), and χc0 (solid). Bottom: Ditto but for χc2 (upper
lines) and χc1 (lower lines); dashed lines for Q2

2 < 0.1 GeV2.
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Figure 2: Cross-section ratios dσ[JP ]/dQ2
1 over dσ[0−(1S)]/dQ2

1 in e+e− → e+e−M(JP )
at
√
s = 92.5 GeV for the η family (top) and the ηc family (bottom). The ηcD/ηc(1S)

ratio is multiplied by 10.
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Figure 3: Cross-section d2σ/d log10(Q2
1/GeV2) d log10(Q2

2/GeV2) in nb of e+e− → e+e− χcJ

at
√
s = 92.5 GeV for J = 1 (top) and J = 2 (bottom).
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Figure 4: Cross-section ratios in e+e− → e+e− χcJ at
√
s = 92.5 GeV. Top: χc1/χc2 with

Q2
2 < 0.1 GeV2 cut (lower line) and without Q2

2 cut (upper line). Bottom: χc2 [Q2
2 <

0.1 GeV2]/χc2 [no cut] (dashed) and χc1 [Q2
2 < 0.1 GeV2]/χc1 [no cut] (solid).
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