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Abstract

By imposing axial and vector Ward identities for flavour-non-singlet
currents, we estimate in the quenched approximation the non-per-
turbative values of combinations of improvement coefficients, which
appear in the expansion around the massless case of the renormaliza-
tion constants of axial, pseudoscalar, vector, scalar non-singlet cur-
rents and of the renormalized mass. These coefficients are relevant
for the completion of the improvement programme to O(a) of such
operators. The simulations are performed with a clover Wilson action
non-perturbatively improved.
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1 Introduction

The programme of the improvement [1] of the Wilson action has been actively
developed at the non-perturbative level over the last years [2, 3, 4, 5]. At first,
in the framework of the Schrödinger functional it was possible to determine
non perturbatively the dependence upon the bare coupling constant of the
coefficient cSW [3] of the clover term in the improved action [6].

Besides improving the action, the programme includes the improvement
of the operators appearing in the correlation functions related to phenomeno-
logical interesting quantities such as pseudoscalar meson decay constants and
the matrix element of the four-fermion operators of the weak effective Hamil-
tonian.

In general the operator improvement consists of two parts: the mix-
ing with higher-dimensional operators with the same quantum numbers (in
the literature the mixing coefficients are called c) and the multiplication by
a suitable renormalization constant. The ultraviolet-finite renormalization
constants can be expanded around the massless case:

ZO(m 6= 0) = ZO · (1 + bOma+ ...), (1)

where we have omitted corrections due to lattice artefacts of order a2 and
higher.

Some of these quantities have been calculated at the perturbative level
for axial (A), vector (V ), pseudoscalar (P ) and scalar(S) currents as well
as for the renormalized mass (m) [7, 8, 9]: non perturbative estimates are
available for ZA, ZV , bV [5] and for cA [3] and cV [10].

In this letter, we present a non-perturbative determination of the quan-
tities:

bA − bP , bV − bS, bm (2)

and of the ratios:
ZmZP/ZA, ZmZS/ZV (3)

from a set of axial and vector Ward identities.

2 The method

The extraction of the b coefficients and of the Z ratios is based on the fol-
lowing Ward identities:

∂µ〈A
I
µ(x)Ω

†(0)〉 = 2mjk 〈P(x)Ω†(0)〉+O(a2)

∂µ〈V
I
µ(x)Ω

†(0)〉 = ∆mjk 〈S(x)Ω†(0)〉+O(a2), (4)

which, after ~x integration, become:

∂t〈A
I
0(t)Ω

†(0)〉 = 2mjk 〈P (t)Ω†(0)〉+O(a2)

∂t〈V
I

0 (t)Ω†(0)〉 = ∆mjk 〈S(t)Ω†(0)〉+O(a2). (5)
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The suffix I for the axial current indicates that the current is improved by
the appropriate mixing with the pseudoscalar density multiplied by the coef-
ficient cA. The value for cA is taken from its non-perturbative determination
in ref.[3]. For the vector current, the contribution of the mixing with the
tensor current (see ref.[10] for non-perturbative determination of the mixing
coefficient cV ) vanishes because of the antisymmetry of tensor indices.

The indices j, k refer to the flavour content of the bilinear operators,
which can be written as

O(t) =
∑
~x

O(x) =
∑
~x

ψ̄j(x)ΓOψk(x). (6)

Equations (4) hold for any operator Ω at any time different from t,
reflecting the fact that the W.I. are identities among operators. For the axial
W.I. we use Ω = P (0) and Ω = A0(0) while for the vector W.I. we use
Ω = S(0) and Ω = V0(0); in both cases the latter operator leads to much
noisier results.

The quantities mjk and ∆mjk are related respectively to the average
and the difference of the renormalized mass, according to

mjk = mR
jk

ZP
ZA

1 + bPmqa

1 + bAmqa

∆mjk = ∆mR
jk

ZS

ZV

1 + bSmqa

1 + bVmqa
(7)

mR
jk =

1

2
(mR

j +mR
k ), ∆mR

jk = mR
j −m

R
k ,

where mqa is the average of the bare masses j and k:

mqa =
1

2
(mqja+mqka)

amqj =

(
1

2κj
−

1

2κc

)
(8)

with κc the critical value of the Wilson hopping parameter. The parameter
κc is determined from the chiral extrapolation of the mass defined through
the axial Ward identities themselves.

The renormalization constants can be determined by replacing the “un-
renormalized current masses” mjk and ∆mjk with the renormalized ones
through the above equation, and then the renormalized masses in terms of
the bare masses:

mR = Zmmq(1 + bmmqa). (9)

Indeed, by including the lattice artefacts up to O(a):

mjka =
ZPZm

ZA

(
mqa− (bA − bP )(mqa)

2 + bm(mqa)2
)

∆mjka =
ZSZm

ZV
(mqja−mqka) (1 + (2bm − (bV − bS))mqa) (10)
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From a fit of the bare mass dependence of these results we can determine
non-perturbatively the combinations in eqs. (2,3).

Within the approximation used in the above formulae, we can derive
an expression for (bA − bP ):

mjka−
(mjja+mkka)

2
=
ZPZm

ZA

1

4
(bA − bP )(mqi −mqj )

2a2 (11)

which can be used to determine a value for the combination independently
from the knowledge of the critical value of κ. We have compared such a
determination of bA− bP with the one coming from a global fit to expression
eq.(10) and used it as a sensitive check of our estimate of κc.

The presence of flavour-non-diagonal currents is important for the fit
of the axial W.I. and essential for the vector ones. We want to point out that
mjka depends either upon (mqa)

2 or upon (mqa)2, which are different vari-
ables if the flavours are not degenerate, making then possible to disentangle
the coefficient bm from the combination bA − bP .

Our fits are to the dependence upon the quark mass, and order a2

corrections linear in the quark mass can in general fake the extraction of
the coefficients. The simple lattice discretization of the time derivative
1
2a

(f(t+a)−f(t−a)) has an error of the order of f (3)a2, which becomes f (1)M2a2

when a single state of mass M dominates the correlation function f . In the
pseudoscalar channel, chiral symmetry makes this term proportional to the
quark mass. In other channels, the mass M acquires a non-zero value when
the quark masses vanish. The quantity (Ma)2 still contains a term that is
linear in the quark mass but not in the lattice spacing. In order to minimize
such effects we have used the lattice discretization of the time derivative a∂t
correct up to term f (5)a5. While for the pseudoscalar case with spontaneous
symmetry breaking the improvement to the fifth order of the derivative re-
moves these fake linear terms in the quark mass, for the vector current a
linear term survives at any finite order n, although suppressed by a coeffi-
cient of order 1/(n− 1)!. We have checked that improving the derivative to
the next order does not change our results beyond their accuracy.

We cannot exclude the presence of other lattice artefacts in the ratio
of matrix elements formally of order a2 but linear in the quark mass. We
have checked in the case of the axial current that the results are stable with
respect to the choice of the operators and we interpret this as a sign for the
absence of large extra terms of order mΛa2.

This method of computing the combinations in eqs. (2,3) is valid in
the quenched approximation. The presence of dynamical quark loops would
introduce an additional sea quark mass dependence, which would involve
flavours different from those in the currents.

3 The numerical results

We have performed several simulations at different values of β, in order to
derive the coupling constant dependence of the quantities in eqs. (2,3). The
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L3 T 16348 16332 16332 16332
β 6.2 6.8 8.0 12.0
# confs 50 50 80 80

κ 0.124 0.124967 0.129382 0.126299
0.1275 0.127517 0.130055 0.126941
0.1295 0.128831 0.130736 0.127589
0.132 0.131198 0.131078 0.127915
0.13326 0.132589 0.131423 0.128243
0.13362 0.132942 0.131700 0.128507
0.134 0.133296 0.131908 0.128705
0.1345 0.133796 0.132222 0.129004
0.135 0.134371 0.132467 0.129237
0.13535 0.134660 0.132749 0.129505

κc 0.13578(2) 0.13511(1) 0.13318(1) 0.129915(8)

Table 1: The values of κ used in our simulations at various β

values of β used in the simulations and the corresponding volumes are col-
lected in Table 1, with a list of the values of κ and of our best estimate of
the critical κ obtained from the W.I. themselves. The values of κc are well
compatible within errors with those of ref. [3]. The variation of our results
under a change of κc within the quoted error is smaller than the accuracy by
which we can extract the non-perturbative quantities from our fit.

Simulations are performed with an updating sequence made by a stan-
dard heat-bath followed by 3 over-relaxation steps. The improved fermion
propagator is calculated every 1000 gauge update using a stabilized bicon-
jugate algorithm. For our runs we have used the 25 Gflops machine of the
APE series, made of 512 nodes working in SIMD (Single Instruction Multiple
Data) mode.

Each propagator was summed over the space volume distributed to the
single node (3 × 3 × 2) and stored on disk. The use of these propagators
leads to correlation functions that contain the correct local-gauge-invariant
terms and other non-local, gauge-non-invariant terms that go to zero after
summing over the gauge configurations. We have explicitly checked that
with our statistics the residual noise due to imperfect cancellation of the
gauge-non-invariant terms is much below the statistical fluctuations. Storing
fermion propagators allows for an off-line calculation of all flavour-non-singlet
correlations.

The W.I. are satisfied separately at each time: after some initial time,
up to which higher-order lattice artefacts still dominate, mjk and ∆mjk show
a plateau. At β = 6.2 we run two temporal extensions (32 and 48) in order to
monitor the stability of the plateau. We have used two methods of analysis:
either we first average the result over the time interval of the plateau and
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L3 T 16348 16332 16332 16332
β 6.2 6.8 8.0 12.0
# confs 50 50 80 80

ZmZP/ZA 1.09(1) 1.08(1) 1.08(1) 1.060(6)
ZmZS/ZV 1.24(2) 1.21(1) 1.142(4) 1.080(5)
bA − bP 0.15(2) 0.10(2) 0.06(2) 0.04(2)
bm −0.62(3) −0.58(3) −0.57(3) −0.53(2)
bm − (bV − bS)/2 −0.69(4) −0.63(4) −0.54(3) −0.52(2)

Table 2: The results of our calculations

then perform a fit, or we first perform a fit at each time value inside the
plateau and then average the results of the fit at different times. The two
procedures give very similar results.

The choice of the spectator operator Ω affects the statistical error of the
final results. We have found that the pseudoscalar and the scalar densities
give the best results for the axial and the vector case respectively.

We perform a fit of 2mjk with the function (here all masses are in lattice
spacing units):

a1(mqi+mqj)+a2(m
2
qi
+m2

qj
)+a3(mqi+mqj)

2+a4(m
3
qi
+m3

qj
)+a5mqimqj(mqi+mqj)

The first three coefficients of the fit are related to the renormalization con-
stants as follows: a1 = ZmZP/ZA; a2/a1 = bm; a3/a1 = −(bA − bP )/2.
The last two coefficients in the fit can be introduced to parametrize order-
a2 corrections compatible with the flavour exchange symmetry of the Ward
identity.

For the quantity ∆mjk we perform the fit with:

v1(mqi −mqj) + v2(m
2
qi
−m2

qj
) + v3(m

3
qi
−m3

qj
) + v4mqimqj(mqi −mqj )

where v1 = ZmZS/ZV ; v2/v1 = bm − (bV − bP )/2. As before, the extra
coefficients v3 and v4 parametrize the possible order-a2 corrections.

Our results normally refer to the fit with three parameters for the axial
case and two for the vector case. Increasing the number of parameters in
general does not improve the value of χ2 much while it considerably increases
the error. The results are compatible with the lower parameter fit, with the
exception of the determination of bV , which comes systematically higher with
the four-parameter fit. We have included this effect in the corresponding
error.

Table 2 contains the main results, the values for the various renormal-
ization parameters at different β and volumes. The β = 6.2 results on the
smaller temporal extension are fully compatible.
With the values of the fit we can check if the renormalized W.I. depend
only upon the sum (for the axial) or the difference (for the vector) of the
renormalized masses.
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Figure 1: The non-perturbative result for bA − bP . The perturbative result
of O(g2) is negligible on this scale.
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Figure 2: The non-perturbative estimate of bm is compared with the pertur-
bative result.
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Figure 3: The non-perturbative result for bV is compared, after using
Lüscher’s relation, with the one of ref. [6] (dotted curve) and with the per-
turbative result (dashed curve).
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Figure 4: The non-perturbative result for ZV is compared, after using
Lüscher’s relation, with the one of ref. [6].
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The renormalized masses and currents manage to bring on the same
straight line points that appear misaligned and on a curved line for the bare
quantities. For large values of the masses, higher-order terms enter the game
and produce again a misalignment of the corresponding points.

The fits in general do not include all κ values; we exclude the heavier
masses until the stability of the results is reached.

Our results, when compared with those available from perturbation
theory, show that higher-order terms seem to dominate for the differences
bA − bP , which is very small at one-loop order (see fig. 1), while for bm
the presence of sizeable terms of order g2 makes the effect of g4 terms less
prominent. Indeed, our results are not far from lowest-order perturbation
theory for this case (see fig. 2).
For bV − bS + 2bm, there is an argument due to Martin Lüscher [11] relating
bm with bS and ZS with Zm in the quenched approximation: 2bm − bS = 0
and ZSZm = 1, which implies that from the W.I. for the vector current
we actually obtain bV and ZV . The comparison with those of ref. [5] is
shown in figs. 3 and 4: while for ZV there is a perfect agreement, for bV we
are generally closer to the perturbative result. Our large errors are mainly
systematic and reflect the instability of a four-parameter fit. Running at
lower quark masses could reduce the discrepancy which might also be due to
residual order-a2 lattice artefacts.

The use of axial and vector Ward identities with flavour-non-singlet
currents allows the determination in the quenched approximation of various
non-perturbative renormalization constants. The calculation that we have
presented could be refined by using the Schrödinger functional method which
would allow a safe investigation of the very low quark mass region.
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[4] K. Jansen, C. Liu, M. Lüscher, H. Simma, S. Sint, R. Sommer,
P. Weisz and U. Wolff,
Phys. Lett. B372 (1996) 275
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