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We use asymptotic Pade´ approximants to predict the four- and five-loopb functions in QCD andN51
supersymmetric QCD, as well as the quark mass anomalous dimensions in Abelian and non-Abelian gauge
theories. We show how the accuracy of our previousb-function predictions at the four-loop level may be
further improved by using estimators weighted over negative numbers of flavors~WAPAP’s!. The accuracy of
the improved four-loop results encourages confidence in the new five-loopb-function predictions that we
present. However, the WAPAP approach does not provide improved results for the anomalous mass dimen-
sion, or for Abelian theories.@S0556-2821~98!05105-4#
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I. INTRODUCTION

One of the greatest challenges in QCD is the calcula
of higher orders in perturbation theory. Phenomenologica
these are important because the relatively large value ofas at
accessible energies implies that many orders of perturba
theory are required in order to make precise quantita
tests. Theoretically, one expects the coefficients of the
turbative series for many QCD quantities to diverge facto
ally, and the rates of these divergences may cast light
issues in nonperturbative QCD, such as the existence
magnitudes of condensates and higher-twist effects@1#

On the other hand, while progress in the exact calcu
tions of higher-order terms in perturbative QCD series
been startling, with many new multiloop results having
cently become available@2#, existing perturbative technique
may not enable much further progress in exact calculati
to be made in the near future. Thus various approxim
techniques and numerical estimates may have a useful ro
play. Among these, one may mention exact calculations
certain perturbative coefficients in the large-NF limit, and the
emerging lore of renormalons@1#. Also of potential use in
QCD are Pade´ approximants~PA’s!, as described in Sec. I
of this paper, which have previously demonstrated their u
ity in applications to problems in condensed-matter phys
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and statistical mechanics@3#. In recent years, these have be
applied to obtain successful numerical predictions in vario
quantum field theories, including QCD, and justifications
some of these successes have been found in some m
ematical theorems @4# on the convergence an
renormalization-scale invariance of PA’s. These theore
apply, in particular, to perturbative QCD series dominated
renormalon singularities, and in the large-b0 limit.

Based on these theorems, a new method was introdu
@5# for estimating the next-order coefficients in perturbati
quantum field theory series on the basis of the known low
order results and plausible conjectures on the likely hi
order behavior of the series, as also reviewed in Sec. II. T
method ‘‘corrects’’ the conventional Pade´ approximant pre-
diction ~PAP! of the next term in the series by using a
asymptotic error formula, providing improved prediction
that we call asymptotic Pade´ approximant predictions
~APAP’s!.

APAP’s have already provided successful predictions
the perturbative coefficients in the subsequent calculation
the four-loopb function in QCD, as discussed in Sec. II
and have also provided interesting results inN51 supersym-
metric QCD ~SQCD! @6#. The purpose of this paper is t
provide a more complete account of these predictions
show how their accuracy may be improved in certain ca
by a judicious weighting over negative numbers of flavo
NF , and to extend these predictions to five loops in QCD
Sec. V, and to SQCD in Sec. VI. We also discuss analog
predictions for the QCD anomalous quark mass dimensio
Sec. VII where the ‘‘regular’’ APAP gives very good result
but the new weighting method does not improve matters
2665 © 1998 The American Physical Society
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Sec. VIII we consider Abelian gauge theories, with less s
cessful results.

Before deriving these predictions, there is a technical
sue which should be clarified, that may also illuminate
interesting physics point. As a general rule,b functions are
scheme-dependent beyond one loop, and a theory wi
single perturbative coupling constantg, such as QCD, is
scheme-dependent beyond two loops, if one considers
lytic redefinitions ofg. In particular, the QCDb function can
be transformed to zero beyond two loops, by making a s
able choice of renormalization scheme.1 In our analysis of
QCD, we use the modified minimal subtraction sche
(MS!, and inN51 SQCD we favor the dimensional redu
tion ~DRED! scheme.2 The successes of the APAP procedu
indicate that asymptotia and the convergence of PAP’s
remarkably precocious in these schemes. In the SQCD c
there exists an alternative scheme@Novikov-Shifman-
Vainshtein-Zakharov~NSVZ!# @7#, associated with the Wil-
sonian action, in which there is an all-orders relation b
tween bg and the quark anomalous dimensiongq . The
NSVZ scheme differs perturbatively from DRED@8#, and
therefore provides a distinct test for the APAP method. W
compare predictions forbg in both DRED and NSVZ, find-
ing that they are less compelling in the latter case: perh
minimal subtraction schemes are more amenable to P´
techniques? If so, it would be interesting to fathom the r
son. As already noted, these techniques are not so succe
for the quark mass anomalous dimension, or for Abel
theories. Perhaps these instances also provide clues w
and why the Pade´ magic works.

II. FORMALISM

We start by recalling relevant aspects of the formalism
PA’s and APAP’s, and establishing our notation. For a
neric perturbative series

S~x!5 (
n50

Nmax

Snxn, ~2.1!

the Pade´ approximant@N/M #(x) is given by@3#

@N/M #5
a01a1x1•••aNxN

b01b1x1•••bMxM , ~2.2!

with b051, and the other coefficients chosen so that

@N/M #5S1O~xN1M11!. ~2.3!

The coefficient of thexN1M11 term in Eq.~2.3! is the PAP
estimateSN1M11

PAP of SN1M11 . If the perturbative coefficients
Sn diverge asn! for large n, it is possible to show@4# that
the relative error

1In fact, it can even be transformed to zero beyondone loop by a
nonanalytic redefinition ofg involving ln g: such redefinitions are
associated with the Wilsonian action in supersymmetric theorie

2We recall that DRED corresponds to minimal subtraction in c
junction with regularization by dimensional reduction.
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SN1M11

PAP 2SN1M11

SN1M11
~2.4!

has the asymptotic form

dN1M11.2
M !AM

L @N/M #
M ~2.5!

asN→`, for fixed M , where

L @N/M #5N1M1aM1b, ~2.6!

andA, a, andb are constants. This theorem not only gua
antees the convergence of the PAP’s, but also specifies
asymptotic form of the corrections.

The idea of APAP’s is to fit the magnitude of th
asymptotic correction using the known low-order perturb
tive coefficients, and apply the resulting numerical correct
to the naı¨ve PAP’s. In the applications discussed in this p
per, we work with@0/1#, @1/1#, and @2/1# PA’s, so thatM
51 throughout. For example, four-loop predictions are o
tained as follows. In the caseNmax52, the@1/1# Padéleads to
the naı¨ve PAPS3

PAP5S2
2/S1 . The improved APAP estimate

is then given by

S3
APAP5

S3
PAP

11d3 ,
, ~2.7!

where, motivated by its appropriateness inf4 field theory,
we choosea1b50 in the QCD application discussed i
Sec. III, andA is then determined by comparingS2 to
S2

PAP5S1
2/S0 . Alternatively, we could have chosen a value

A and determineda1b from d2 . However, as we shall see
when we go to five loops, knowledge ofd2 andd3 enables us
to fit bothA anda1b simultaneously.

III. APPLICATION TO THE FOUR-LOOP b FUNCTION
IN QCD

The APAP method was applied in Ref.@5# to estimate the
four-loop QCDb-function coefficientb3 , on the basis of the
lower-order terms

b05 11
3 CA2 4

3 TFNF ,

b15 34
3 CA

224CFTFNF2 20
3 CATFNF , ~3.1!

b25 2857
54 CA

31NF@2CF
2TF2 205

9 CFCATF2 1415
27 CA

2TF#

1NF
2@ 44

9 CFTF
21 158

27 CATF
2 #,

known before the appearance of the explicit four-loop cal
lation @9#. The quadratic Casimir coefficientsCA andCF for
the adjoint and fundamental representations are given for
case ofSU(NC) by

CA5NC , CF5
NC

2 21

2NC
, ~3.2!

and we assume the standard normalisation so thatTF5 1
2 .

We denote byNA the number of group generators, so that f
SU(NC) we haveNA5NC

2 21.
-
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We recall thatb3 is a polynomial in the number of flavor
NF ,

b35A31B3NF1C3NF
21D3NF

3, ~3.3!

where D351.499 ~for NC53! was already known from
large-NF calculations. To justify applying the estimate~2.5!,
we assume that thebn;n! for large n, as discussed in Ref
@5#. The predictions forA3 , B3 , andC3 resulting from fitting
the APAP results for 0<NF<4 to a polynomial of form
~2.5! are compared to the exact results in the first column
Table I.

The exact four-loop coefficient of the QCDb function for
NC colors is taken from the calculation of Ref.@9#, which
was published after the APAP estimate,

b35CA
4~ 150 653

486 2 44
9 z3!1

dA
abcddA

abcd

NA
~2 80

9 1 704
3 z3!

1NFFCA
3TF~2 39 143

81 1 136
3 z3!1CA

2CFTF~ 7073
243 2 656

9 z3!

1CACF
2TF~2 4204

27 1 352
9 z3!146CF

3TF

1
dF

abcddA
abcd

NA
~ 512

9 2 1664
3 z3!G1NF

2FCA
2TF

2~ 7930
81 1 224

9 z3!

1CF
2TF

2~ 1352
27 2 704

9 z3!1CACFTF
2~ 17 152

243 1 448
9 z3!

1
dF

abcddF
abcd

NA
~2 704

9 1 512
3 z3!G1NF

3@ 424
243CATF

3

1 1232
243 CFTF

3 #, ~3.4!

wherez3[z(3)51.202 056 9.... The quartic Casimir coeffi
cients in Eq.~3.4! are given forSU(NC) by

dA
abcddA

abcd5
NC

2 ~NC
2 21!~NC

2 136!

24
,

dF
abcddA

abcd5
NC~NC

2 21!~NC
2 16!

48
, ~3.5!

dF
abcddF

abcd5
~NC

2 21!~NC
4 26NC

2 118!

96NC
2 .

For NC53, one obtains

TABLE I. Exact four-loop results for the QCDb function, com-
pared with the original APAP’s in the first column, and improv
APAP’s obtained from a weighted average over negativeNF ~WA-
PAP!, as discussed in the text. The numbers in parentheses ar
error estimates from Ref.@5#.

APAP EXACT % DIFF WAPAP % DIFF

A3 23,600~900! 24,633 24.20~3.70! 24,606 20.11
B3 26,400~200! 26,375 20.39~3.14! 26,374 20.02
C3 350~70! 398.5 212.2~17.6! 402.5 21.00
D3 input 1.499 – input –
f

b3'29 243.026946.30NF1405.089NF
211.499 31NF

3,
~3.6!

whereasb3 is given by the coefficients shown in Table
when one omits the quartic Casimir contributions.

These quartic Casimir terms appear for the first time
four-loop order. They are analogous to the light-by-lig
scattering terms in (g22)m , and PA-based techniques ca
not estimate them on the basis of lower-order terms w
different group-theoretical factors. Such terms are known
be important in (g22)m , but were relatively unimportant in
previous perturbative QCD applications. In the case ofb3 ,
they turn out to be about 15–20 % for smallNF , but are
non-negligible for NF;5. Setting these terms aside, th
agreement between the predictions of Ref.@5# and the exact
results of Ref.@9# is remarkable. The predictions we prese
in the rest of this paper should all be understood as apply
to perturbative coefficients without the higher-order analo
of such quartic Casimir terms.

Following Ref. @5#, the same APAP method was applie
in @6# to estimate the four-loopb function in SQCD. The
agreement with known results was again encouraging,
the APAP provided a predictiona'2.4 for the unknown
constant@8# in the four-loop SQCDb function, as also dis-
cussed in Sec. V.

IV. WEIGHTED APAP’S IN QCD

Before going on to make new predictions for QCD a
SQCD at the five-loop level, we first draw attention to
refinement that offers an improvement on APAP’s in t
four-loop QCD case. As can be seen in Table I, the signs
the coefficientsA3 , B3 , andC3 alternate. A corollary of this
is that the APAP predictions forNF;5 are sensitive to can
cellations, and relatively inaccurate. Moreover,S3

APAP has a
pole atNF58.05 becauseb1 vanishes there. Conversely, th
numerical analysis is relatively stable for~fictitious!
NF,0—there are no poles at negativeNF andS3

APAP is quite
smooth atNF50, thanks to the pure gluon contribution. W
have observed empirically that more accurate predictions
the coefficientsA3 , B3 , andC3 are obtained if one make
polynomial fits for some range ofnegativevalues ofNF .
This does not of course imply the existence of a physi
theory for negativeNF . At any finite order, the Pade´ approx-
imant prediction is trivially an analytic function ofNF ~ex-
cept for isolated poles!, and our goal is simply to find the
best match to a polynomial. Is there some systematic pro
dure that we can adopt to determine the appropriate rang
NF to use in the fit? The following is one method we ha
explored.

We choose a range2NF
max<NF<0 over which we fit val-

ues ofA using the APAP formulas of Sec. III, and we d
termine the arithmetic mean of the corresponding values
A. We use this mean value ofA to estimateb3 for each of
the chosen values ofNF , and fit to the polynomial form
~3.3!. We hypothesize that the most accurate results for
coefficientsA3 , B3 , and C3 may be obtained when the
contribute with equal weights to the fit: certainly, one cann
expect that any coefficient that has a small weight in
fit will be estimated reliably. For a givenNF

max, the
overall weights in the fit are A3 , B3NF

max/2, and

the
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C3NF
max(2NF

max11)/6. We then estimateB3 as follows. We
take the two values ofB3 corresponding to the values o
NF

max for which theA3 andB3 weights are most nearly equa
Let us call these values ofB3 , B3

(1) , andB3
(2) , and the cor-

responding weightsB3
W(1) andB3

W(2) . Our prediction forB3

is then

B35
D2B3

~1!1D1B3
~2!

D11D2
, ~4.1!

whereD1,25uB3
W(1,2)2A3

W(1,2)u. We estimateC3 in a similar
fashion. Both theB3 and C3 calculations yield a result fo
A3 , obtained as in Eq.~4.1!: we take the mean of these tw
values as our prediction forA3 .

Table I, in the column labeled WAPAP, shows the resu
we obtain using this procedure. We see that the latter
significantly more accurate than the ones obtained using
APAP’s for 0<NF<4. The values ofNF

max selected by WA-
PAP are 7 and 8 forB3 , and 13 and 14 forC3 .

Table II compares the WAPAP predictions obtained
this way with the known exact results~omitting quartic Ca-
simir contributions! in QCD for various values ofNC . The
agreement is certainly impressive, even compared with
APAP results shown in Table I. Since the numerical value
the coefficientC3 is relatively small, corresponding~in the

TABLE II. Comparison of WAPAP and exact results for th
exact four-loop b function in QCD ~omitting quartic Casimir
terms!, for various values ofNC .

WAPAP exact % error

NC52
A3 4.883103 4866 0.42
B3 21.863103 21854 0.48
C3 174 170.5 2.0

NC53
A3 2.4673104 24 633 0.13
B3 26.3833103 26375 0.13
C3 405 398.5 1.6

NC54
A3 7.7903104 77 852 0.06
B3 21.5213104 215 210 0.03
C3 729 717.2 1.6

NC55
A3 1.9013105 190 068 0.04
B3 22.9763104 229 800 20.12
C3 1.143103 1127 1.6

NC56
A3 3.9433105 394,125 0.03
B3 25.1493104 251,580 20.17
C3 1.653103 1,627.5 1.6

NC510
A3 3.0433106 3,041,089 0.05
B3 22.3883105 2239,384 20.25
C3 4.623103 4,540 1.7
s
re
he

e
f

caseNC53! to the relatively large valueNF
max514 men-

tioned above, it is perhaps not surprising that the percen
error in the estimate of this coefficient is larger than f
eitherA3 or B3 .

Figure 1 graphically displays our resulting predictions f
b3 , as a function ofNF for the most interesting caseNC
53. We plot the percentage relative errors obtained us
various APAP-based estimation schemes: naive APAP’s
ted with positiveNF<4 ~diamonds!, naive APAP’s fitted
with negativeNF>24, WAPAP’s compared to the exac
value ofb3 including quartic Casimir terms, and WAPAP’
compared tob3 without quartic Casimir terms~crosses!. We
see that the latter are the most accurate forb3 in QCD. In
Fig. 2 we show the error in the WAPAP prediction forb3 as
a function ofNF , and for NC53, 4, 5, 6, 7, and 10, once
again omitting quartic Casimir terms from the exact resu
The accuracy of these predictions is our best evidence
believing in the utility of the WAPAP method.

To anticipate the obvious question: we have explo
whether this WAPAP procedure gives significantly better
sults than the conventional APAP’s for the other perturbat
series considered in this paper, namely, the SQCDb function
and the anomalous dimension of the quark mass. As we
cuss in Secs. VII and VIII, the remarkable success of
method at four loops is not repeated for other cases, but t
is distinct evidence~provided by large-NF-expansion results!
that WAPAP leads to more reliable predictions at five loo
However, we feel that the results in Tables I and II alrea
provide ample motivation for the QCD WAPAP calculatio
of b4 described in Sec. V.

V. FIVE-LOOP PREDICTIONS IN QCD

We now outline the application of the APAP method
estimate the five-loopb function coefficientsb4 in QCD,
using our knowledge of the correspondingb0 to b3 . The
standard@2,1# Padéleads to the estimate

FIG. 1. Predictions forb3 , as function ofNF , for NC53. The
percentage relative errors are obtained using various APAP-b
estimation schemes: naive APAP’s fitted with positiveNF<4 ~dia-
monds!, naive APAP’s fitted with negativeNF>24, WAPAP’s
compared to the exact value ofb3 including quartic Casimir terms
and WAPAP’s compared tob3 without quartic Casimir terms
~crosses!.
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FIG. 2. The percentage relative errors in the WAPAP prediction forb3 ~compared to the exact result with quartic Casimir terms omitte!,
plotted vsNF for NC53, 4, 5, 6, 7, and 10.
2

tiv

wer

ro
b4
PAP5

b3

b2
. ~5.1!

This is then corrected in a similar fashion to Eq.~2.7!,

b4
APAP5

b4
PAP

11d4
, ~5.2!

where, according to Eqs.~2.5! and~2.6!, d4 is given asymp-
totically by

d452
A

L @2/1#
52

A
31a1b

. ~5.3!

To estimated4 , we therefore need to know bothA and
a1b. These can be deduced from the lower-order rela
errorsd2 andd3 , as defined in Eq.~2.4!, for which we use
the asymptotic estimates~2.5!:
e

A
d2

52~11a1b!,
A
d3

52~21a1b!, ~5.4!

from which we obtain3 A anda1b.
We now calculate the WAPAP for the five-loop QCDb

function, which we parametrize as

b45A41B4NF1C4NF
21D4NF

31E4NF
4. ~5.5!

Once again we can input the coefficient of the highest po
in NF , which is given in this case by@10#

E4524TF
4@„288z~3!1214…CF1„480z~3!2229…CA#/243,

~5.6!

3The fitted value ofa1b is not necessarily close to the value ze
assumed in the estimate ofb3 in QCD.
in

TABLE III. WAPAP’s for the five-loop QCDb function, calculated both with~with Q! and without

~without Q! the four-loop quartic Casimir terms inb3 . The values ofNF
max used range between 5 and 117

the with Q case, and between 4 and 108 in the withoutQ case, being largest for largeNC and forD4 .

NC 2 3 4 5 10

A4 ~with Q! 1.483105 7.593105 2.773106 7.923106 2.313108

A4 ~without Q! 6.413104 4.883105 2.063106 6.283106 2.013108

B4 ~with Q! 25.513104 22.193105 26.393105 21.503106 22.283107

B4 ~without Q! 23.043104 21.563105 24.973105 21.223106 21.953107

C4 ~with Q! 6.963103 2.053104 4.683104 9.003104 7.073105

C4 ~without Q! 4.693103 1.643104 3.933104 7.723104 6.233105

D4 ~with Q! 221.8 249.8 289.8 2142 2575
D4 ~without Q! 228.3 260.5 2105 2163 2640
E4 ~input! 21.15 21.84 22.51 23.17 26.43
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TABLE IV. WAPAP’s for the five-loop QCDb function, calculated with and without the four-loo
quartic Casimir terms, but without inputting the known exact values ofE4 . It is encouraging to compare th
output values with the last row in Table III. The values ofNF

max used range between 5 and 81 in the withQ
case, and between 4 and 104 in the withoutQ case.

NC 2 3 4 5 10

A4 ~with Q! 1.453105 7.513105 2.753106 7.873106 2.303108

A4 ~without Q! 6.383104 4.853105 2.053106 6.243106 2.003108

B4 ~with Q! 25.533104 22.203105 26.413105 21.513106 22.293107

B4 ~without Q! 23.053104 21.573105 24.993105 21.223106 21.963107

C4 ~with Q! 6.723103 1.973104 4.503104 8.663104 6.813105

C4 ~without Q! 4.523103 1.583104 3.793104 7.433104 5.993105

D4 ~with Q! 228.3 293.8 2226 2389 21,730
D4 ~without Q! 272.7 2163 2287 2446 21,750
E4 ~with Q! 20.974 22.03 23.07 24.06 28.73
E4 ~without Q! 21.61 22.56 23.45 24.33 28.64
ble
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using which we obtain the five-loop results shown in Ta
III.

Notice that in Table III we include results correspondi
to both the inclusion~with Q! and the omission~without Q!
of the quartic Casimir contributions to the four-loop coef
cients, obtained from Eq.~3.4!. The former~latter! results
should of course be compared with contributions includ
~excluding! such terms at five loops when~and if! such re-
sults become available. Of course, at five-loop order we m
expect to encounter new higher-order Casimir terms, wh
should in any event be omitted in the comparison. We
only hope that such contributions are relatively unimporta
which is the case for the quartic terms inb3 for small NF .
We anticipate that the percentage errors of the withouQ
estimates of the nonquartic terms in the coefficients
likely to be the smallest, whereas the best estimate of the
coefficients may be provided by the withQ estimates.

We show in Table IV the results obtained if we choo
not to input the value ofE4 , but rather predict that as wel
As can be seen, the results forA4 , B4 , andC4 , in particular,
are very stable. Moreover, the prediction forE4 is encourag-
ingly close to the true value, considering the extreme sm
ness ofE4 compared toA4 .

It is not possible to state precise errors for the type
prediction discussed in this paper. In Ref.@5# we gave certain
estimates of the uncertainties, which turned out to be in
right ballpark if quartic Casimir terms are omitted in th
comparison, as reported in Table I. The appearance of s
new quartic terms is characteristic of the type of theoret
‘‘systematic error’’ that cannot be foreseen. In the case
our b4 predictions in QCD, we draw the reader’s attention
the differences between the withQ and withoutQ entries in
Table III, and to the differences between these and the
responding entries in Table IV, obtained without using t
known values ofE4 as inputs. The most accurate estima
of the full coefficients are likely to be the withQ entries in
Table III, but the uncertainties are unlikely to be smaller th
these differences.

VI. FIVE-LOOP PREDICTIONS IN N51
SUPERSYMMETRIC QCD

We begin with the SQCDb function in the DRED regu-
larization scheme, where the first four coefficients are giv
by @8#
g

y
h
n
t,

e
ll

ll-

f

e

ch
l
f

r-
e
s

n

n

b053NC2NF , ~6.1a!

b156NC
2 2F4NC2

2

NC
GNF , ~6.1b!

b2521NC
3 2F21NC

2 2
2

NC
2 29GNF2F 3

Nc
24NCGNF

2 ,

~6.1c!

b35A31B3NF1C3NF
21C3NF

21D3NF
3,

~6.1d!

whereNC is the number of colors, and

A35~6136a!NC
4 ,

B35236~11a!NC
3 1~34112a!NC1

8

NC
1

4

NC
3 ,

C35S 62

3
12k18a DNC

2 2
100

3
24a2

6k220

3NC
2 ,

D35
2

3NC
. ~6.2!

Here k56z3 and a is a constant which has not yet bee
calculated exactly. Notice that there are no quartic Casi
contributions in the SQCD case.4 The APAP method was
used in an earlier paper@6# to obtain the estimatea'2.4.

Proceeding now to five loops, we write

b45A41B4NF1C4NF
21D4NF

31E4NF
4. ~6.3!

As in the QCD case, we can input the true value ofE4
provided by a recent large-NF calculation@11#, and given by

4Their absence may be understood as a consequence of the
that theb function vanishes beyond one loop for an arbitraryN
52 supersymmetric theory. We are unable, however, to comm
on the possible appearance of quartic and higher-order Cas
terms at the five-loop level.
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TABLE V. WAPAP’s for the five-loop SQCDb function, assuminga52.4. The values ofNF
max used

range between 3 and 37.

NC 2 3 4 5 10

A4 1.483104 1.133105 4.783105 1.463106 4.693107

B4 21.053104 25.853104 21.913105 24.723105 27.703106

C4 3.253103 1.293104 3.213104 6.423104 5.293105

D4 2109 2307 2583 2936 23.873103

E4 ~input! 23.96 26.64 29.19 211.7 223.9
ith
th
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e

AP

be

th
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e

e
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or

e

en-

e
es
E452@2NCz32~112z3!/~2NC!#. ~6.4!

We choose to calculate the WAPAP predictions both w
and without this input. This also enables us to explore
sensitivity of the resulting prediction forE4 to variations in
a. Assuminga52.4, we obtain the results shown in Tab
V, whereas the results with the known values ofE4 not input
are shown in Table VI. The qualitative agreement betwe
the predicted values ofE4 in the last row of Table VI and the
exact values in Table V is good. We note that the WAP
process is crucial for this agreement, in that the outputE4 is
quite sensitive to the value ofNF

max used, which is fixed by
the WAPAP criterion. We see that the output values ofA4 ,
B4 , C4 , and D4 are quite stable, which is perhaps to
expected in view of the small numerical values ofE4 . The
differences between the results obtained with and without
input exact value ofE4 provide some indication of the un
certainty in the predictions. We expect, naturally, the c
with input E4 to be the more accurate.

The value a52.4 used above was itself based on
APAP calculation@6#. It behoves us, therefore, to explore th
sensitivity of our results to the precise value ofa. In Fig. 3
we plot the WAPAP result for E4 against a, for
23,a,3. We see that for this range there are two valu
of a corresponding toE45E4

exact, namely, a'20.9 and
a'1.4. Given the fact that in general we would expectE4 to
be the least-well-determined coefficient, we consider this
sult to be reasonably consistent with our previous predic
that a'2.4. It should be noted that our predictions f
A4 ,...,D4 are also sensitive to the precise value ofa.

We turn now to the alternative NSVZ prescription for th
SQCDb function, given by the following exact formula@7#
which relatesbg to the quark anomalous dimensiongq

bg
NSVZ52

g3

16p2 FNF23NC22NFgq
NSVZ

122NCg2~16p2!21 G . ~6.5!
e

n

e

e

s

-
n

Note the overall minus sign, in accordance with our conv
tions here. Using Eq.~6.5! and the result forgq

NSVZ given in
Ref. @8#, we obtain

b053NC2NF , ~6.6a!

b156NC
2 2F4NC2

2

NC
GNF , ~6.6b!

b2512NC
3 2F12NC

2 2
2

NC
2 26GNF2F 2

NC
22NCGNF

2,

~6.6c!

b35A31B3NF1C3NF
21D3NF

3, ~6.6d!

where

A3524NC
4 ,

B35240NC
3 130NC2

2

NC
1

4

NC
3 ,

C35~2k114!NC
2 2242

2k210

NC
2 ,

D352NC2
2

NC
. ~6.7!

In this case there is no undetermined parametera: we know
@8# gq

NSVZ through three loops, and hencebq
NSVZ through four

loops.
It is possible to argue@12# on the basis of the nature of th

coupling-constant redefinition connecting the two schem
that gq

DRED andgq
NSVZ are the same at leading order inNF .

Hence, if as before we write

b45A41B4NF1C4NF
21D4NF

31E4NF
4, ~6.8!
TABLE VI. WAPAP’s for the five-loop SQCDb function, again assuminga52.4, but without the exact
values ofE4 as input. The values ofNF

max used range between 4 and 61.

NC 2 3 4 5 10

A4 1.463104 1.123105 4.733105 1.453106 4.643107

B4 21.043104 25.873104 21.913105 24.743105 27.733106

C4 3.163103 1.253104 3.113104 6.213104 5.123105

D4 2134 2400 2767 21.243103 25.123103

E4 22.44 24.53 26.33 28.03 216.1
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we can findE4 , as we did in the DRED case, from the larg
NF results in Ref.@11#. The result is

E452@122z~3!#~NC21/NC!. ~6.9!

We also have, as is evident from Eq.~6.5!, that A4548NC
5 ,

providing an additional check on our calculation.5 Our WA-
PAP results are shown in the Tables VII and VIII, for th
cases with and withoutE4 input. Also shown in the secon
row of Table VIII are the exact results forA4 .

We see that the WAPAP’s are in general in good agr
ment with the exact result forA4 in the NSVZ scheme, at the
10% level. Although encouraging, these results are not q
as compelling as the ones for the DRED scheme. This i
first sight surprising, given the form of Eq.~6.5!, which ap-
pears at first sight to be close to the rational function form
the PA’s. However, as mentioned in Sec. I, perhaps mini
subtraction schemes are more amenable to Pade´ techniques.
The anomalously poor result forA4 in Table VII is caused by
the fact that the errord4 is close to21 in this case, for the
NF

max values corresponding to the determination ofD4 . The
reason the result forD4 is not also anomalously large is th
the two values from which the weighted average is taken
both numerically large but with opposite signs. Thus we c
not rely on either theA4 or D4 prediction forNC55. With
this exception,A4 comes out reasonably close to the ex
result. This means, of course that the predictions
B4 ,...,D4 will not change much if we inputA4 as well as

5We could, of course, inputboth A4 and E4 , but we choose in-
stead to compare the WAPAP results for all the five-loop coe
cients with the corresponding ones withE4 input.

FIG. 3. The WAPAP result forE4 plotted againsta, for
23,a,3.
-

te
at

f
al

re
-

t
r

E4 . Analogously to the five-loop QCD case discussed
Sec. V, we take the differences between the entries in Ta
VII and VIII as lower limits on the possible uncertainties
our five-loop NSVZ predictions.

VII. QUARK MASS ANOMALOUS DIMENSION IN QCD

We now consider the quark mass anomalous dimensiog
in QCD, defined as

g5
d ln mq

d ln m2 52g0a2g1a22g2a32g3a42g4a51O~a6!,

~7.1!

wherea5as /p. The four-loop coefficientg3 was recently
computed in Refs.@13, 14#, and the full exact results for the
coefficientsgn for n50, 1, 2, and 3 are given by

g05 1
4 @3CF#,

g15 1
16 @ 3

2 CF
21 97

6 CFCA2 10
3 CFTFNF#,

~7.2!

g25 1
64 @ 129

2 CF
32 129

4 CF
2CA1 11 413

108 CFCA
21CF

2TFNF~246

148z3!1CFCATFNF~2 556
27 248z3!2 140

27 CFTF
2NF

2 #,

g35 1
256FCF

4~2 1261
8 2336z3!1CF

3CA~ 15 349
12 1316z3!

1CF
2CA

2~2 34 045
36 2152z31440z5!1CFCA

3~ 70 055
72

1 1418
9 z32440z5!1CF

3TFNF~2 280
3 1552z32480z5!

1CF
2CATFNF~2 8819

27 1368z32264z4180z5!

1CFCA
2TFNF~2 65 459

162 2 2684
3 z31264z41400z5!

1CF
2TF

2NF
2~ 304

27 2160z3196z4!1CFCATF
2NF

2~ 1342
81

1160z3296z4!1CFTF
3NF

3~2 664
81 1 128

9 z3!

1
dF

abcddA
abcd

dQ
~2321240z3!1NF

dF
abcddF

abcd

dQ
~64

2480z3!G ,
where forSU(NC) the quadratic and quartic Casimirs are
defined in Eqs.~3.2! and ~3.5!, andTF5 1

2 as before. In ad-
dition, dQ is the dimension of the quark representation,

-

TABLE VII. WAPAP’s for the five-loop NSVZb function, with the exact values ofE4 used as input. The
values ofNF

max used range between 3 and 26.

NC 2 3 4 5 10

A4 1.683103 1.043104 4.443104 4.993105 4.423106

B4 21.253103 27.873103 22.633104 26.563104 21.083106

C4 750 3.113103 7.873103 1.583104 1.323105

D4 26.0 290.1 2163 2516 2938
E4 ~input! 24.21 27.49 210.5 213.5 227.8



57 2673ASYMPTOTIC PADÉAPPROXIMANT PREDICTIONS . . .
TABLE VIII. WAPAP’s for the five-loop NSVZb function, withE4 not input. The values ofNF
max used

range between 4 and 25.

NC 2 3 4 5 10

A4 1.493103 1.053104 4.333104 1.423105 4.453106

A4 ~exact! 1.5363103 1.1663104 4.9153104 1.5003105 4.8003106

B4 21.133103 27.803103 22.653104 26.643104 21.093106

C4 612 2.873103 7.353103 1.483104 1.233105

D4 275.2 2241 2462 2742 23060
E4 213.0 213.3 215.8 227.9 250.6
so

h
-
at
P

i-

le
e

ve
that dQ5NC for SU(NC), and we have z4[z(4)
51.082 323 2 . . . and z5[z(5)51.036 927 7 . . . . For
NC53, we have

g051,

g15 1
16 @ 202

3 2 20
9 NF#,

g25 1
64 @12491~2 2216

27 2 160
3 z3!NF2 140

81 NF
2 #,

g35 1
256@ 4 603 055

162 1 135 680
27 z328800z51~2 91 723

27 2 34 192
9 z3

1880z41 18 400
9 z5!NF1~ 5242

243 1 800
9 z32 160

3 z4!NF
2

1~2 332
2431 64

27z3!NF
3 #, ~7.3!

which have the numerical values

g051,

g1'4.208 3320.138 889NF ,

g2'19.515622.284 12NF20.027 006 2NF
2,

g3'98.9434219.1075NF10.276 163NF
210.005 793 22NF

3.
~7.4!
Omitting the quartic Casimir contributions, one obtains

g3596.4386218.8292NF10.276 163NF
210.005 793 22NF

3,
~7.5!

and we shall now compare Eqs.~7.4! and~7.5! with APAP’s.
It transpires that the WAPAP procedure does not work

well here. The most accurate results for bothB3
g andC3

g are
obtained for smallNF

max. This is reasonably consistent wit
the WAPAP behavior in theC3

g case: here, the weight dif
ferenceC3

gW2A3
gW never changes sign, but is smallest

NF
max52 on the edge of the range. However, the WAPA

criterion for B3
g leads to values ofNF

max which start at 9 for
NC52 and increase withNC . Nevertheless, as in the prev
ous sections, it seems sensible to match at negativeNF , and
spectacular results are obtained if we simply takeNF

max54
~with 2NF

max,NF,0! throughout, as can be seen from Tab
IX, where numerical predictions for the coefficients in th
parametrization,

g35A3
g1B3

gNF1C3
gNF

21D3
gNF

3, ~7.6!

are given both without~without Q) and with~with Q) quar-
tic Casimir contributions. It should be noted that we ha
used as input the exact result forD3

g , which is contained in
Eq. ~7.2!.
TABLE IX. Four-loop quark mass anomalous dimension in QCD: APAP’s for fixedNF
max54 are com-

pared with the exact values both without and withQ, the quartic Casimir terms.

NC

2 3 4 5 20

A3
g

APAP 16.1 97.9 328 822 2.183105

without Q 15.4 96.4 327 825 2.233105

with Q 16.0 98.9 334 840 2.263105

B3
g

APAP 25.14 220.0 249.3 298.0 26.393103

without Q 24.70 218.8 247.1 294.2 26.273103

with Q 24.77 219.1 248.0 296.2 26.433103

C3
g

APAP 0.065 0.224 0.478 0.828 17.5
exact 0.111 0.276 0.504 0.796 13.0

D3
g

input 3.2631023 5.7931023 8.1531023 0.0104 0.0433
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TABLE X. APAP’s for the five-loop quark mass anomalous dimension in QCD, calculated with
without the four-loop quartic Casimir terms.

NC 2 3 4 5 20

A4 ~with Q! 56.0 530 2.413103 7.633103 8.373106

A4 ~without Q! 50.5 493 2.273103 7.223103 7.973106

B4 ~with Q! 223.3 2143 2483 21.223103 23.333105

B4 ~without Q! 221.7 2135 2457 21.153103 23.123105

C4 ~with Q! 1.70 6.67 16.8 33.7 2.293103

C4 ~without Q! 1.64 6.44 16.0 32.0 2.143103

D4 ~with Q! 8.1231023 0.037 0.0891 0.165 4.31
D4 ~without Q! 8.8831023 0.037 0.0831 0.148 3.48
E4 ~input! 24.8031025 28.5431025 21.231024 21.5431024 26.3931024
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It can be seen that in all cases the APAP estimate is q
accurate over a wide range ofNC . In most cases, the APAP
estimate is closer to the exact result without the quartic
simir contribution~without Q!, but in any case the quarti
Casimir contribution tog3 is smaller than in the case of th
QCD b function.

We now go on to discuss the five-loop APAP estimate
g. We parametrize the five-loop quark mass anomalous
mensiong4 in the form

g45A4
g1B4

gNF1C4
gNF

21D4
gNF

31E4
gNF

4, ~7.7!

where the value ofE4
g can be derived from@15#

E4
g5CFTF

4
„265/518425z~3!/3241p4/3240…. ~7.8!

We use the fullg3 as input, including the quartic Casim
contribution. As we argued in the case of the QCDb func-
tion, we expect our five-loop estimate to include the effe
of contributions involving such quartic Casimir terms, b
not the effect of new Casimir terms making a first appe
ance. Once again we chooseNF

max54 to derive the results
shown in Table X.

VIII. ABELIAN GAUGE THEORIES

All of the previous sections have dealt with APAP pred
tions for non-Abeliantheories. It is natural to ask whethe
similarly accurate results can be obtained for the Abel
case. We address this question in this section, choosin
our example the fermion mass anomalous dimension w
NF charged fermions, where good results were found in
non-Abelian case, as we saw in Sec. VII. A supplement
reason for choosing this example is that thenext-to-leading-
NF result is available, as well as the leading one.

The results forg1 ,...,g3 in the Abelian case follow from
Eq. ~7.2! by setting

CF5TF51, CA50,
dF

abcddA
abcd

dQ
50,

dF
abcddF

abcd

dQ
51,

~8.1!

so that

g050.75, ~8.2a!

g1'0.093 7520.2083NF , ~8.2b!
te

-

f
i-

s
t
-

n
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e
y

g2'1.007810.182 79NF20.081 02NF
2, ~8.2c!

g3'22.193421.7207NF20.301 43NF
210.034 76NF

3.
~8.2d!

Omitting the quartic Casimir term, we would instead hav

g3'22.193410.2831NF20.301 43NF
210.034 76NF

3.
~8.3!

We can see at once that the miraculous success of the p
ous APAP prediction forg3 will not be reproduced here. Fo
NF50, the quenched case, thesign of g3 differs from the
sign of g2

2/g1 . Moreover,g1 has a zero, and henceg3
APAP

has a pole, forNF'0.45. Hence, we cannot hope to repr
duceg3 for small values ofuNFu. For largeuNFu the sign of
g3 is still wrong, so the method fails in this region also.

One easily verifies that this pessimism is confirmed by
results, and things do not improve at five loops. Then,
well asE4

g as given in Eq.~7.8!, it is possible to derive from
@16# the result forD4 :

D4
g5

11

96
z31

1

6
z52

p4

288
1

4483

41 472
'0.0804. ~8.4!

We notice now, however, thatg2 has zeros, and henceg3
APAP

has poles, forNF522.6 and 4.8. Consequently, we ma
expect that the results will be rather sensitive to the range
NF , if we match in a region including the origin. Of cours
in the Abelian theory we cannot expect smooth behavior
we pass throughNF50—perhaps the occurrence of pole
near toNF50 on both sides is simply a confirmation of this
On the other hand, for largeNF we have g3

2/g2'
20.014NF

4, whereasE4
g'20.001, so we also cannot expe

good results at increasinguNFu.
We leave it to the reader to convince her~him!self that we

cannot expect to extract reliable predictions forA4 ,...,C4 .
We also record that the QED and SQED gaugeb functions
yield similarly unattractive results. Evidently, Abelian the
ries are less amenable to the APAP approach, for some
known reason.

IX. CONCLUSIONS

We have presented results obtained from our AP
method for the four-loop and five-loop QCDb-function co-
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efficients, for the five-loop SQCDb-function coefficients,
and for the four- and five-loop quark mass anomalous dim
sions in QCD. Particularly in the case of the QCDb func-
tion, and to some extent also for SQCD, particularly in t
DRED scheme, a modified procedure for extracting the p
dictions for the various coefficients of powers ofNF ~WA-
PAP! gave improved results. In general, the four-loop resu
agree very well with the known results, giving us confiden
in our predictions of the five-loop terms.

Our four-loop QCDb-function predictions@5# were con-
firmed very rapidly by an exact calculation@9#. Unfortu-
nately, in view of the current limitations on the technology
exact perturbative calculations in QCD and SQCD, it may
some time before our five-loop predictions can also be te
directly. It would therefore be interesting to find alternati
techniques that could be confronted or combined w
APAP’s. One possible complementary technique may be
of the large-NF expansion. Unfortunately, it is the leadin
t t
n

. I
e

b-

, S

d-
als

l,

,

n-

-

s
e

f
e
d

h
at

term in NF which is least well determined by the APA
approach, which is related to the poor results obtained in
Abelian case. It would be very interesting if the large-NF

methods could be extended to next-to-leading terms in
expansion for the non-Abelian case, in which case m
comparisons and cross-checks could be made.
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