
ar
X

iv
:h

ep
-p

h/
97

10
30

0v
1 

 9
 O

ct
 1

99
7

CERN-TH/97-270

DO-TH 97/21

TPR-97-18

October 1997

Soffer’s inequality and the transversely

polarized Drell-Yan process at

next-to-leading order
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Abstract

We check numerically if Soffer’s inequality for quark distributions is preserved

by next-to-leading order QCD evolution. Assuming that the inequality is sat-

urated at a low hadronic scale we estimate the maximal transverse double spin

asymmetry for Drell-Yan muon pair production to next-to-leading order accuracy.
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1 Introduction

The transversity distribution δq(x, Q2) is the only completely unknown twist-2

parton distribution function of the nucleon. In a transversely polarized nucleon

it counts the number of quarks with spin parallel to the nucleon spin minus the

number of quarks with antialigned spin [1]. In field theory the transversity dis-

tribution is defined by the expectation value of a chiral-odd operator between

nucleon states which is the reason why it is not experimentally accessible in

inclusive deep inelastic lepton-nucleon scattering (DIS) [2, 3]. The most promis-

ing hard process allowed by this chirality selection rule seems to be Drell-Yan

dimuon production, and exactly this reaction will be utilized for attempting a

first measurement of δq(x, Q2) at RHIC [4]. What actually will be measured is

not the transversity distribution itself, but the transverse double spin asymmetry

ATT = dδσ/dσ where the polarized and unpolarized hadronic cross sections are

defined as

dδσ ≡ 1

2

(

dσ↑↑ − dσ↑↓
)

, dσ ≡ 1

2

(

dσ↑↑ + dσ↑↓
)

. (1)

In perturbative QCD (pQCD) ATT can be expressed in terms of unpolarized

parton distributions, the yet unknown transversity distributions and the relevant

partonic cross sections. Although the latter have been known to next-to-leading

order (NLO) accuracy in the strong coupling for several years by now [5, 6, 7],

consistent NLO calculations were not possible because of the lack of the two-loop

transversity splitting functions. This situation changed only very recently [8, 9,

10], allowing for the first time for a consistent calculation of pQCD corrections

to the transverse double spin asymmetry for the Drell-Yan process.

The unpolarized, longitudinally and transversely polarized quark distributions

(q, ∆q, δq) of the nucleon are expected to obey the rather interesting relation

2|δq(x)| ≤ q(x) + ∆q(x) (2)

derived by Soffer [11]. It has been recently clarified that Soffer’s inequation is

preserved by leading order (LO) QCD evolution, i.e. if (2) is valid at some scale
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Q0 it will also be valid at Q > Q0 [12]. To NLO the situation is not as simple.

The parton distributions are now subject to the choice of the factorization scheme

which one may fix independently for q, ∆q and δq. One can therefore always find

“sufficiently incompatible” schemes in which a violation of (2) occurs. However, in

[8] it was shown with analytical methods that the inequation for valence densities

is preserved by NLO QCD evolution in a certain “Drell-Yan scheme” in which

the NLO cross sections for dimuon production maintain their LO forms, and

also in the MS scheme. An analytical check of the sea part is difficult since

the singlet mixing between quarks and gluons has to be taken into account for

the unpolarized and longitudinally polarized quantities on the right-hand-side

(r.h.s.) of (2). In Section 2 of this article we shall show numerically that Soffer’s

inequation for sea quarks is also preserved under NLO evolution.

Estimates of ATT suffer of course from the fact that no experimental informa-

tion on the transversity distribution is available at the moment. Therefore one

has to rely on ansätze or model calculations of δq(x, Q2) at some reference scale

Q0 [13]. For example, a popular assumption is δq(x, Q2
0) = ∆q(x, Q2

0) which,

however, is in general incompatible with Soffer’s inequality (2), in particular in

a situation in which ∆q(x, Q2
0) ≈ −q(x, Q2

0). Our aim in Sections 3 and 4 will

be to estimate within LO and NLO an upper bound on the transverse double

spin asymmetry for the Drell-Yan process. To do so, we will first of all assume

validity of Soffer’s inequality which seems reasonable and is corroborated by our

finding of Section 2 that the NLO evolution to Q2 > Q2
0 preserves the inequation

once it is satisfied at the input scale. The maximal asymmetry ATT can then

be estimated by further assuming saturation of the Soffer bound (2). The result

obtained for ATT under this assumption obviously strongly depends on the value

chosen for Q0. If Q0 is taken to be large, i.e. of the order of the invariant mass M

of the lepton pair which sets the typical hard scale for the Drell-Yan process, the

largest possible values for ATT will be reached. However, for several reasons it

does not seem convincing to assume saturation of (2) by the input distributions

employing such a high Q2
0 ∼ M2: Firstly, evolving backwards to Q2 < Q2

0 – which
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should be a completely legitimate procedure if Q0 is not small – will under such

circumstances immediately yield a violation of Soffer’s inequality. Secondly, the

r.h.s. of (2) will almost certainly lead to an overestimation for the δq if satu-

ration is assumed at a large Q0. For instance, for sea quarks the first moment

(x-integral) of the r.h.s. in (2) will diverge, which is not expected for the integral

over δq̄ at any Q2. Therefore, to obtain a realistic estimate for an upper bound on

ATT by assuming saturation of Soffer’s inequation, two requirements have to be

met: (i) The saturation should be adopted only at a rather low “hadronic” input

scale where (ii) the integral over the r.h.s. of (2) is finite. Both demands are

automatically fulfilled if we choose the unpolarized and longitudinally polarized

input parton distributions of the radiative parton model analyses [14, 15, 16] and

set1

2δq(x, Q2
0) = q(x, Q2

0) + ∆q(x, Q2
0) , (3)

where Q0 now is identified with the input scale µ ∼ O(0.6 GeV) of the radiative

parton model [14] and is considered the smallest scale from which perturbative

evolution can be performed, such that no backward evolution from µ makes sense.

While we are aware that our approach with its rather small Q0 may lead to an

underestimation of the maximally possible ATT , we still believe our results to

be built on a firm basis, given the large phenomenological success [15, 16] of the

radiative parton model for the q, ∆q. In any case, our results for ATT under

the assumption of (3) are the largest the radiative parton model can predict

and will provide a useful target for future experiments. We emphasize that our

NLO results presented in Section 4 are the first ones to be obtained to true and

consistent NLO accuracy. Section 4 will also provide a discussion of other possible

uncertainties of our results.

In Section 5 we will present our conclusions.

1The possibility of choosing a different sign in front of the r.h.s. of (3) will be discussed
later.
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2 Preservation of Soffer’s inequation by NLO

evolution

Unlike the case of the more familiar unpolarized and longitudinally polarized

densities, all transversity distributions obey simple non-singlet type evolution

equations because there is no corresponding gluonic quantity due to angular mo-

mentum conservation [17, 3]. Introducing

δq±(x, Q2) ≡ δq(x, Q2) ± δq̄(x, Q2) (4)

and Mellin moments δqn
±(Q2) ≡

∫ 1

0
dxxn−1δq±(x, Q2) the evolution equations are

given by [5]

Q2 d

dQ2
δqn

±(Q2) = δP n
qq,±(αs(Q

2))δqn
±(Q2) . (5)

The Mellin moments of the transverse splitting functions δP n
qq,± are taken to have

the following perturbative expansion

δP n
qq,±(αs) =

(αs

2π

)

δP (0),n
qq +

(αs

2π

)2

δP
(1),n
qq,± + . . . , (6)

i.e. both are equal to LO. We use the following NLO expression for the strong

coupling constant,

αs(Q
2)

2π
=

2

β0 ln Q2/Λ2

(

1 − β1

β2
0

ln ln Q2/Λ2

ln Q2/Λ2

)

, (7)

where Λ is the QCD scale parameter and β0 = 11 − 2nf/3, β1 = 102 − 38nf/3

with nf being the number of active flavors. The solution of (5) is then simply

given by [5]

δqn
±(Q2) =

[

1 +
αs(Q

2
0) − αs(Q

2)

πβ0

(

δP
(1),n
qq,± − β1

2β0

δP (0),n
qq

)]

×
(

αs(Q
2)

αs(Q2
0)

)−2δP
(0),n
qq /β0

δqn
±(Q2

0) . (8)

Needless to say that the LO evolutions are entailed in the above equations when

we put the NLO quantities, δP
(1),n
qq,± , β1, to zero.

Eq. (8) can be very conveniently employed for a numerical calculation of the

NLO evolution of the transversity distributions. As discussed in the introduction,
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we will assume saturation of Soffer’s inequality at the input scale, see Eq. (3).

Our choice for the r.h.s. of (3) will then be the NLO MS radiative parton model

inputs for q(x, Q2
0) of [15] and for the longitudinally polarized ∆q(x, Q2

0) of the

“standard” scenario of [16] at2 Q2
0 = µ2

NLO = 0.34 GeV2. For simplicity we

will slightly deviate from the actual q(x, Q2
0) of [15] in so far as we will neglect

the breaking of SU(2) in the input sea quark distributions originally present

in this set. This seems reasonable as SU(2)-symmetry was also assumed for the

∆q̄(x, Q2
0) of [16], which in that case was due to the fact that in the longitudinally

polarized case there are no data yet that could discriminate between ∆ū and ∆d̄.

We therefore prefer to assume δū(x, Q2
0) = δd̄(x, Q2

0) also for the transversity

input. We will examine the possible effects of SU(2)-breaking later. The moments

of the resulting input distributions δq(x, Q2
0) are easily taken, and the δqn

±(Q2
0)

are then evolved to higher scales Q2 > Q2
0 with the help of (8). A standard

inverse Mellin transformation finally gives the desired transversity distribution

in x-space. In order to perform this inverse Mellin transformation, Eq. (8) has

to be analytically continued to complex n [14]. The evolutions of the q(x, Q2
0)

(neglecting the SU(2)-breaking) and the ∆q(x, Q2
0), which both involve the singlet

mixing between quarks and gluons, proceed as explained in [14, 15, 16].

In order to numerically check the preservation of (2), Fig. 1 shows the ratio

Rq(x, Q2) =
2|δq(x, Q2)|

q(x, Q2) + ∆q(x, Q2)
(9)

as a function of x for several different Q2 values for q = uv = u−, ū = (u+−u−)/2,

dv = d−, d̄ = (d+ − d−)/2 (cf. Eq. (4)). If NLO evolution preserves Soffer’s

inequality then Rq(x, Q2) should not become larger than 1 for any Q2 ≥ Q2
0. As

we already know from [8] this is the case for the two valence distributions. Fig. 1

confirms that Soffer’s inequality is indeed also preserved for sea distributions.

Furthermore, in Fig. 1 we see that evolution leads to a strong suppression of

Rq(x, Q2) at small values of x, in particular for the sea quarks. This can be

understood by the fact that δPqq,±(x) has a very mild behaviour for x → 0 [8],

2Note that for the purpose of checking the preservation of Soffer’s inequality by evolution
the choice of the initial scale Q2

0
is actually irrelevant.
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and by the well-known sharp small-x rise of the unpolarized sea distributions in

the denominator of Rq due to Q2-evolution. We note that our numerical results

for the sea quarks became somewhat unstable at large x, probably caused by the

fact that the sea distributions are obtained here as differences of two much larger

quantities.

As is obvious from (2), Soffer’s inequality only restricts the absolute value of

the transversity distribution. Therefore, we are free to choose a different sign

in front of the r.h.s. of (3) and have to check the results for the two distinct

possibilities δqv(x, Q2
0) > 0, δq̄(x, Q2

0) > 0 and δqv(x, Q2
0) > 0, δq̄(x, Q2

0) < 0. Our

results do not noticeably depend on the actual choice.

As we have neglected any possible SU(2)-breaking in all the sea input dis-

tributions q̄(x, Q2
0), ∆q̄(x, Q2

0), δq̄(x, Q2
0), any difference between the curves for

Rū, Rd̄ can necessarily only result from the dynamical breaking of SU(2) first

induced by NLO evolution. The occurrence of a small breaking from this source

is well-known from the unpolarized [18] and longitudinally polarized [19] cases.

For the transversity densities it is given by

2
(

δū − δd̄
)n

(Q2) =
(αs(Q

2) − αs(Q
2
0))

πβ0

(

δP
(1),n
qq,− − δP

(1),n
qq,+

)

×
(

αs(Q
2)

αs(Q
2
0)

)−2δP
(0),n
qq /β0

(δuv − δdv)
n (Q2

0) . (10)

Fig. 2 displays the resulting effect via the ratio

δD(x, Q2) =
δū(x, Q2) − δd̄(x, Q2)

δū(x, Q2) + δd̄(x, Q2)
(11)

for various Q2. One can see that – apart from the region of very large x – the

dynamical breaking of SU(2) is rather small and could in reality well be entirely

masked by the explicit breaking in the non-perturbative sea input.
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3 Upper bounds on ATT : Framework

Now that we have shown that NLO evolution preserves Soffer’s inequation, we

want to utilize it to derive upper bounds on the transverse double spin asymmetry

to be measured in polarized Drell-Yan muon pair production. For this purpose we

choose again the maximally allowed value (3) for the transversity distributions,

which should yield the maximal double spin asymmetry. We employ the same

unpolarized and longitudinally polarized input distributions as in the previous

section, along with the same value for the initial scale Q0.

The scaling variable for the Drell-Yan process is τ = M2/S, where M is the

invariant mass of the produced muon pair and
√

S is the center-of-mass energy

of the hadronic collision. Since in unpolarized reactions only the collision axis

is specified, the distribution of the produced muon pairs cannot depend on the

azimuth φ. If the colliding nucleons are transversely polarized then the collision

and spin axes specify a plane in space and consequently the polarized cross section

will depend on φ. Instead of working with τ -dependent cross sections we again

prefer Mellin moments defined by

d(δ)σn

dφ
≡

∫ 1

0

dττn−1 τd(δ)σ

dτdφ
. (12)

Including NLO corrections to these cross sections one obtains the generic expres-

sion [6, 7]

d(δ)σn

dφ
=

α2
em

9S
(δ)Φ(φ)

[

(δ)Hn
q (Q2

F )

(

1 +
αs(Q

2
R)

2π
(δ)CDY,n

q (Q2
F )

)

+ Hn
g (Q2

F )
αs(Q

2
R)

2π
(δ)CDY,n

g (Q2
F )

]

, (13)

where

(δ)Hn
q (Q2

F ) ≡
∑

q

e2
q

[

(δ)qn
A(Q2

F ) (δ)q̄n
B(Q2

F ) + (A ↔ B)
]

, (14)

Hn
g (Q2

F ) ≡
∑

q

e2
q

[

gn
A(Q2

F )
(

qn
B(Q2

F ) + q̄n
B(Q2

F )
)

+ (A ↔ B)
]

. (15)

The dependence on the azimuth is given by Φ(φ) = 1 and δΦ(φ) = cos 2φ.

Integration over φ thus isolates the unpolarized part and Φ(φ) is then replaced
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by 2π. On the other hand the integration [20]
(

∫ π/4

−π/4
−

∫ 3π/4

π/4
+

∫ 5π/4

3π/4
−

∫ 7π/4

5π/4

)

dφ

extracts the polarized cross section and δΦ(φ) can then be simply substituted

by 4. In the following we will always assume appropriate integration over the

azimuth.

The unpolarized NLO MS QCD coefficients in τ -space can be found, e.g., in

[5]. Their Mellin moments are

CDY,n
q (Q2

F ) = CF

(

4S2
1(n) − 4

n(n + 1)
S1(n) +

2

n2
+

2

(n + 1)2
− 8 +

4π2

3

)

+

CF

[

2

n(n + 1)
+ 3 − 4S1(n)

]

ln

(

M2

Q2
F

)

, (16)

CDY,n
g (Q2

F ) = TR

(

−2
n2 + n + 2

n(n + 1)(n + 2)
S1(n) +

n4 + 11n3 + 22n2 + 14n + 4

n2(n + 1)2(n + 2)2

)

+

TR
n2 + n + 2

n(n + 1)(n + 2)
ln

(

M2

Q2
F

)

, (17)

where CF = 4/3, TR = 1/2. The polarized ones can be found in [8] and read

δCDY,n
q (Q2

F ) = CF

[

4S2
1(n) + 12 (S3(n) − ζ(3)) +

4

n(n + 1)
− 8 +

4π2

3

]

+

CF [3 − 4S1(n)] ln

(

M2

Q2
F

)

, (18)

δCDY,n
g (Q2

F ) = 0 . (19)

In the above formulas we used the abbreviation Sk(n) =
∑n

j=1 j−k. Since there

is no gluon transversity distribution for the nucleon, the gluonic part of (13)

drops out for the polarized case. The indices A and B in (14) and (15) take into

account the possibility of having two different scattering hadrons, although only

pp collisions are planned at the moment. Finally, QF and QR in Eqs. (13)-(19)

are the factorization and renormalization scales, respectively, for which we will

choose QF = QR = M unless stated otherwise.

Z0 production and γZ0-interference can be easily included by the substitution

(see also [7])

e2
q → e2

q − 8eqVlVqκ
M2(M2 − M2

Z)

(M2 − M2
Z)2 + Γ2

ZM2
Z

+16(V 2
l + A2

l )(V
2
q ± A2

q)κ
2 M4

(M2 − M2
Z)2 + Γ2

ZM2
Z

, (20)
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where

κ ≡
√

2GF M2
Z

16παem
, Vf ≡ T 3

f − 2ef sin2 ΘW , Af ≡ T 3
f . (21)

The positive sign in front of the A2
q term is appropriate for the unpolarized cross

section, the negative sign for the polarized one. As usual, GF denotes the Fermi

constant, ΘW the Weinberg angle (sin2 ΘW = 0.224) and T 3
f the third component

of the weak isospin.

For examining the perturbative stability of our results we will also calculate

the cross section at LO. In this case one simply needs to set the QCD coefficients

to zero in the above formulas and to replace the NLO parton distributions by

ones evolved in LO. As LO input distributions for (3) we will use the unpolarized

LO parametrizations of [15] (neglecting again the SU(2) breaking in the quark

sea) and the polarized ones of [16] at the LO input scale Q2
0 = 0.23 GeV2.

4 Results

Fig. 3 shows the transversely polarized pp cross section and the “maximal” double

spin asymmetry ATT for
√

S = 40 GeV, corresponding to the proposed [21]

HERA-~N fixed target experiment which would utilize the possibly forthcoming

polarized 820 GeV proton beam at HERA on a transversely polarized target. We

show results at both LO and NLO. For illustration we have also included the

expected statistical errors for a measurement of ATT by HERA-~N which can be

estimated from

δATT =
1

PBPT

√
Lσǫ

, (22)

where PB and PT are the beam and target polarizations for which we will use

PB = PT = 0.7. L is the anticipated integrated luminosity of L = 240 pb−1, σ the

unpolarized cross section integrated over bins of M , and ǫ the detection efficiency

for which we will take for simplicity ǫ = 100%. Note that full 4π coverage of the

detector is assumed. Fig. 3 shows that the maximal asymmetry for HERA- ~N is

actually fairly large and would be accessible in that experiment.
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In Fig. 4 we present results similar to Fig. 3, but now for
√

S = 150 GeV,

corresponding to the RHIC collider. We note that the region 9 GeV . M . 11

GeV will presumably not be accessible experimentally since it will be dominated

by muon pairs from bottomonium decays. Again the predicted maximal asym-

metry is of the order of a few per cents. From the expected error bars calculated

again for 70% beam polarization, L = 240 pb−1 and ǫ = 100% one concludes that

asymmetries of this size should be also well measurable at RHIC.

Fig. 5 shows similar results for the high-energy end of RHIC,
√

S = 500 GeV,

where the integrated luminosity is expected to be L = 800 pb−1. It turns out that

the asymmetries become smaller as compared to the lower energies, but thanks to

the higher luminosity the error bars become relatively smaller as well, at least in

the region 5 GeV . M . 25 GeV where the errors are approximately 1/10 of the

maximal asymmetry. One can also clearly see in Fig. 5 the effect of Z-exchange

and the Z resonance.

We have already mentioned before that Soffer’s inequation does not determine

the sign of δq(x, Q2), so that in principle we have to check all different combina-

tions in order to find the “true” maximal value for ATT . It turns out, e.g., that

keeping a positive sign only for δuv(x, Q2) leads to a reduction of |ATT | at small

M but an enhancement at the experimentally not accessible region of large M .

We have checked that for small M the asymmetry takes its largest values if all

signs are chosen to be positive, as was done in Eq. (3) and in the above plots.

A comparison of the LO and NLO results in Figs. 3-5 answers one key ques-

tion concerning the transversely polarized Drell-Yan process: Our predictions for

the maximal ATT show good perturbative stability, i.e. the NLO corrections to

the cross sections and ATT are of moderate size, albeit not negligible. There

seems to be a general tendency towards smaller corrections when the energy is

increasing, which should be mainly due to the larger invariant masses probed and

to a resulting smaller αs(M
2).
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Let us finally address some of the the main uncertainties in our predictions

for the maximal asymmetry ATT . The first issue is the scale dependence of

the results. This is examined in Fig. 6 for the case
√

S = 150 GeV. We plot

here the maximal asymmetry in LO and NLO, varying the renormalization and

factorization scales in the range M/2 ≤ QF = QR ≤ 2M . One can see that

already the LO asymmetry is fairly stable with respect to scale changes, which is

in accordance with the finding of generally moderate NLO corrections. The NLO

asymmetry even shows a significant improvement, so that ATT becomes largely

insensitive to the choice of scale.

In order to get a rough idea about the uncertainty caused by our imperfect

knowledge of the longitudinally polarized parton densities ∆q(x, Q2), ∆g(x, Q2),

we have also calculated the asymmetries using the NLO “valence” scenario input

distributions of [16] instead of the “standard” ones in (3). As can be seen in

Fig. 7 for the case
√

S = 150 GeV, the difference for experimentally significant

M turns out to be quite small, with the predictions based on the “valence”

scenario distributions having slightly smaller asymmetries.

As we already mentioned in Sec. 2, neither the “standard” nor the “valence”

scenario parametrizations take into account a possible SU(2) breaking in the

polarized sea because only neutral current polarized DIS data are available at the

moment. This led us to neglecting also any SU(2) breaking in the transversity

input densities for our calculations, just keeping the dynamical SU(2) breaking

produced by NLO evolution (cf. Fig. 2). On the other hand, it seems rather

likely that a certain amount of SU(2) breaking – possibly much more than the

one generated by evolution – could be realized in nature. One possible way of

estimating the uncertainty entering our predictions for ATT through this source, is

to reintroduce the hitherto neglected amount of SU(2) breaking in the unpolarized

input densities as fixed in the original input distributions of [15]. The SU(2)

breaking will also influence the transversity input via Eq. (3). The resulting

asymmetry is also depicted in Fig. 7. As can be seen, the effect is sizeable only
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at rather large M .

5 Conclusions

We have shown numerically that Soffer’s inequation is preserved by NLO QCD

evolution provided it is satisfied by the input distributions.

For the first time, we have presented a complete and consistent NLO calcu-

lation of the transverse double spin asymmetry ATT for the Drell-Yan process,

employing the NLO corrections to the hard subprocess cross sections as well as

performing the Q2-evolutions in NLO. Here we have estimated the maximally

possible ATT in the framework of the radiative parton model by assuming that

Soffer’s inequality is saturated at a low hadronic scale. For
√

S = 40 GeV the

maximal value of ATT for pp collisions was found to be approximately 4% with

an expected statistical error for HERA-~N of about 1% at an invariant mass of

M = 4 GeV. The situation for RHIC with
√

S = 150 GeV turns out to be

rather similar. The prospects of measuring ATT somewhat improve when going

to
√

S = 500 GeV where the maximal asymmetry is of the order of 1% for small

M with an expected relative statistical error of approximately 1/10. We empha-

size again, however, that our results only represent an upper bound on ATT , so

that the “true” asymmetry may well be much smaller and even experimentally

not measurable.

Comparing to corresponding LO calculations, we find that the QCD correc-

tions turn out to be moderate but non-negligible, putting our predictions on a

firm basis. We have also examined the main uncertainties of our predictions,

such as the scale dependence of the asymmetry and our imperfect knowledge of

the longitudinally polarized parton densities to be utilized for the saturation of

Soffer’s inequality at the input scale. We found that these uncertainties seem

to have rather little impact on our results in the regions hopefully accessible in

future experiments with transversely polarized protons.
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Note added: After completing this work, we received the paper [22] in which

a mathematical proof of the preservation of Soffer’s inequality under NLO Q2-

evolution is given.
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Figure 1: The ratio Rq(x, Q2) as defined in (9) for q = uv, ū, dv, d̄ and several
fixed values of Q2.
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Figure 2: The dynamical SU(2)-breaking in the NLO transversity densities ex-
pressed by the ratio δD(x, Q2) as defined in (11) for several fixed values of Q2.
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Figure 3: NLO and LO maximal polarized Drell-Yan cross sections and asym-
metries for HERA-~N. The error bars have been calculated according to Eq. (22)
and are based on L = 240 pb−1, 70% polarisation of beam and target and 100%
detection efficiency.
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Figure 4: As in Fig. 3, but for RHIC at
√

S = 150 GeV assuming L = 240 pb−1,
70% polarisation of each beam and 100% detection efficiency.
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Figure 5: As in Fig. 4, but for
√

S = 500 GeV and L = 800 pb−1.
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Figure 6: Scale dependence of the LO and NLO asymmetries at
√

S = 150 GeV.
The renormalization and factorization scales in (13)-(15) were chosen to be QR =
QF = M/2, M, 2M . The solid line is as in Fig. 4.
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