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Generalized gauge transformations: Pure Yang-Mills case
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Gauge transformations with Dirac point splitting are systematically discussed for the case of a pure Yang-
Mills theory. These generalized gauge transformations are based on two ingredients: a fixed four-vector, which
defines the point splitting, and a weight function, which gives an average over the amount of point splitting and
which provides a cutoff in momentum space in the direction of the point splitting four-vector. From the
requirement that the group property must be satisfied, it is found, starting from a simple ansatz, that an
infinitesimal generalized gauge transformation takes the form of an infinite series in the coupling constant.
Using induction on the order of the coupling constant, it is shown that all higher-order terms indeed exist and
that they can be expressed in terms of the lower-order formulas. That there are such generalized gauge
transformations suggests the possibility of a Yang-Mills field theory with mitigated divergences.
[S0556-282197)03524-9

PACS numbeps): 11.15—q

I. INTRODUCTION 5AA,L(X):_&MA(X)_lg[A(X)aAM(X)]- 2)

Point splitting, as a remedy for avoiding divergences inln momentum space, this takes the form
relativistic quantum field theory, has a long history. Over 60
years ago, Dira¢l] pointed out that by introducing a fixed
four-vectore, and by replacing products of field operators
A(X) B(x) by A(x—e€) B(x+¢€), the divergence problem
could be circumvented. This suggests that all calculations
should be performed for finite values ef , and that, only at
the end, one should take the limif,—0. Various attempts
have been present¢d,3], in which one tries to make use of
this attractive idea.

It is the purpose of this paper to provide the first system- S,A (k) =1k, A(k)— Igf d4k1J d*k, 8 (k— ki —k)
atic discussion of gauge transformations for the case of the K K
pure Yang-Mills theory with point splitting. Gauge transfor- X[A(Ky),A ,(Ky)] (4)
mations incorporating the idea of point splitting will be re- a
ferred to as generalized gauge transformations, and will b@henk is in K, the regionK being defined by Eq(1). In

SxAL(K) =1k, A(K)—1g f d*k, f d*k, 8@ (k—k; — ko)
X[A(ky),AL(K2)]. ©)

When the momentum cutoffl) is introduced, Eq.(3) is
reinterpreted as

given explicitly. other words,k, k;, andk, are all required to satisfy the
The starting point of the present investigation consists ofnequality (1).
(1) in the Dirac point splitting, a direction, that af,, is In order for Eq.(4) to define a gauge transformation, it

picked out as the direction of the splitting, af®l in orderto  must satisfy
mitigate divergences, a momentum cutoff needs to be intro-

duced. With these observations, it is natural to choose the [5A1,5A2]Aﬂ(k)=5LAﬂ(k) (5)
momentum cutoff in the direction af, . In other words, we
choose the momentum cutoff at exactly, whered, is a gauge transformation that, of course,
depends omA; and A,. Unlike Eq. (3), Eq. (4) does not
k- el<1. 1) satisfy Eq.(5) exactly, and, therefore, higher-order terms in

g must be added to it. For the same readomust also take
on the form of an infinite series. The main part of this paper
In the limit €,— 0, this momentum cutoff is taken to infinity, is precisely devoted to the derivation of explicit formulas for

i.e., there is no cutoff. drA,(K) andL to all orders ing. Because we do not make
In Yang-Mills theory, the infinitesimal gauge transforma- use of any specific properties of the structure constants, the
tion is results we shall obtain are valid for an arbitrary Yang-Mills
symmetry.

This paper is organized as follows. In Sec. Il, we intro-
*Electronic address: raymond.gastmans@fys.kuleuven.ac.be  duce our notation. In Sec. Ill, we work out explicitly the first
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and second order in the generalized gauge transformation, SsA,(k)=0 for |k-e|=1. (12
and, in Sec. IV, we work out the general formula for arbi-

trary order. We present explicit formulas which express the Since we have to deal with arbitrary powers gfit is
gauge transformation and the combined gauge parameter toeasential to simplify the notation. Using Ed.1) as the ex-
given order in terms of lower-order expressions. Our proceample, the first step is to drop alk since there is no con-
dure to arbitrary order requires the use of two identitiesfusion:

which are proven in the Appendixes. In Sec. V, the relation

to some previous papers are discussed briefly. Finally, Sec. _ _ 4 4

VI presents the conclusions. oahu k) =Rkl AK) R(k)lgf d klf dkz

X 8 (k—k;—ka)R(kp)R(k2)[A(Kp), A, (k)]

II. NOTATION
2
A. Lie algebra +0(9%). (13
A Lie algebra is characterized by a set of generafys Thus the arguments &, and A are the four-vector, ky,
which satisfy the commutation relations or k,, while the arguments of the functions are the scalars
k, ki, or k,, meaningk- €, k;- €, ork,-e.
[Ta. Tol=1f5,Te, (6) To simplify the notation further, we drop the integral

signs and the function. Moreover, the argumenits will be
where the quantitie;;, are the structure constants of the Lie denoted byi, except for the argumerkt which remains un-
algebra. In the standard case, without point splitting, thechanged. With these conventions, E4j3) becomes

transformation of the gauge fields is given by
OpALK) =R(K)1k,A(K) —R(K)IGR(1)R(2)[A(1),AL(2)]

S A% (X)=—39,A%X)+gf2 AP(X)AS(x), 7
AAL)= =3, A% ) + TR APOALX), (D) o). 149
whereA?(x) are the infinitesimal gauge parameters.

Introducing the group elementa ,(x)=T, AZ(X) and We also find it convenient to introduce the functi¢k)

A(X)=T, A¥(x), Eq. (7) is the same as Eq2). The only defined by
property of the Lie algebra that we shall use is the Jacobi S(k)=1—R(K). (15)
identity
Obviously, for all values ok,
[A[B,C]]+[B,[C,A]]+[C,[A,B]]=0. (8)

R?(k)=R(k), S(k)=S(k), R(k)S(k)=0. (16)
Throughout the rest of the paper, we shall only consider
group elements, and, to alleviate the formulas, we shall drofhe arguments of th& functions are treated on the same
the boldface notation for these quantities. This meansAhat footing as theR functions.
and A now stand for the group elements themselves.
lll. FIRST AND SECOND ORDER

B. Momentum space In Sec. Il, it has been shown that the ideas of point split-

In Eq. (4), the Fourier transforms are defined by ting in position space translate into the appearance of the
function R(k) in momentum space, which provides a cutoff
for large values of the momentuln The purpose of this

— 4., Alk-X
Auk)= (Zw)zf d*xe™ AL (X), paper is to show the way to satisfy the group property
[0a,: 0, ALK) =LA, (K), a7
A(k)= f d*x e’k *A (x). 9) , _
(2m)? whereL (k) is the combined gauge parameter. In Etj),
the gauge parameters;, i=1,2 are taken to be infinitesi-
It is convenient to introduce the functidr defined by mal.
Anticipating on the result, we expand the gauge transfor-
R(k. €)= 1 for [k-€[<1, 10 mation and the combined gauge parameter in powers of the
(k-e)= 0 for |k-€|=1. (10 coupling constang:

Then Eq.(4) can be rewritten as = -
SrAu)= 2 g A, (), L(k)= 2, g"LM (k).

SxA,(K)=R(k- €)1k, A (k) —R(k- e)lgf d“klf d*k, (18)

It follows from Eqgs.(14) and (18) that
X6(4)(k_k1_k2)R(klG)R(sz) q ( ) ( )

X[A(ky),AL (k) ]+0(g%), (11
provided that the condition is used where SUAL(K)=—1R(1+2)R(1R(2)[A(1),A,(2)]. (19

VAL (K) =1R(K)K,A(K),
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To first order ing, the group property requires combined gauge parameteft)(k) in Eq. (22), reduce to the
© 1) «(0) (D) w standard expressions without point splitting, because, in that
[ 84, 0%, = O, Ox, JAL(K) = 1K, L7 (K). (200 limit, all the arguments of th& functions tend to zero, and
. . _ R(0)=1.
The left-hand sidéLHS) of this equation reads To orderg?, the formulas become somewhat more com-

plicated. We therefore introduce some more notation in order
R(1+2)R(R(2){[A1(1).kz,A2(2)] to limit the size of the formulas and to improve their read-
—[A2(1),kz,A1(2)]} ability. The group propert3(17) always refgars to commuta-
tors of two successive gauge transformations. To avoid writ-
=k,R(1+2)R(1)R(2)[A1(1),A2(2)], (21  ing down this type of commutators, we propose to write only
o , . ) the first term of the commutator, the second term with the
because of the implicit integrations aifunction in this interchange being always understood. With this
formula. It follows that the conditiorf20) is satisfied pro- colnven%[ion the expression fafD(k), e.g becom.es
vided we take ' T

LD(k)=—=1R(1+2)R(1R(2)[A1(1),A5(2)]. (22 LD(k)=— IER(1+2)R(1)R(2)[A1(1),A2(2)]. (23)
Note that in the limite— 0, both the zeroth order and the
first order gauge transformation in Eq49), as well as the To orderg?, the group property17) now reads
[ 85+ 8 610 1A,L (0 =1k, L@ (K) — IR(1+2)R(DR(2)[LD(1),A,(2)]. (24)

We thus have to find ®)(k) and 55\2)Aﬂ(k) such that Eq(24) is satisfied. Let us rewrite Eq24) in such a way that the terms
which are known from the ordey calculation appear on the LHS:

SUSYA,(K) +IR(1+2)RDR)[LI(1),A,(2)]=1k, L (k) — 50 52A,,(K). (25)

In Eq. (25), the LHS is explicitly given by
1
—R(1+ 2+3)R(1)R(2+3)R(2)R(3)[[Al(l),[Az(Z),A,L(3)]]+ E[Aﬂ(l).[Al(Z),AzB)]]]

1
= R(1+2+3)R(1)S(2+3)R(2)R(3)[ [A1(1),[A2(2),AL(3)]]+ E[Aﬂ(l).[A1(2)1A2(3)]]]- (26)

Note that in rewriting the expressid26) we used the fact and
that, without a factoR(2+3), the expression would have
vanished by virtue of the Jacobi identity. Hence, we could
replaceR(2+3) by —S(2+3).

A simple calculation shows that E€R4) is satisfied if we
take

L@(k)=—1R(1+ 2+3)R(1)S(2+3)R(2)R(3)ﬁ
"Rl

X[e-A(1),[A1(2),A2(3)]]. (28)

SPA,(K)=—1R(1+2+3)R(1)S(2+3)R(2)R(3)
A few comments should be made about the form(2ss
[e-A(L),[A(2),A,(3)]] and (28). In the limit e—~0, the expressions for both
1 L /_L

ek 5A (k) andL (k) vanish because the argument of e
K function tends to zero an8(0)=0. This has to be so, be-
$[6'A(1),[A(2),E'A(3)]J cause, in the standard case without point splitting, there is no
€-kye-(kotks) second-order term neither in the gauge transformation nor in
the combined gauge parameter.

(1),[A(2),e-A(3)]]¢, Also, we could have chosen different expressions for
8A (k) and L@(k) and still satisfy the group property.
(27) We imposed, however, the requirement that the expressions

T e (kotky A
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be free of singularities. One can verify that the potential 2 1 ~)
singularity fore-k,=0 is not present, because the numerator SPAL)=R(1+2) k_l[A(l)'éA Au2)]
has a factoR(1+2+3)S(2+ 3). In the limite-k;—0, this .

factor tends to R(2+3)S(2+3)=0. Similarly, for L e [A(l)”‘é‘g\l)A(z)]

€ (ko +k3)—0, the factorS(2+3) tends toS(0)=0. Still, kikz

the requirement of absence of singularities does not uniquely 1

determine the expressions f6§’A ,(k) andL®(k). In our - k—[AM(l),E(Al)A(Z)]], (29)

experience, however, the choices in E@) and (28) lead 2

to the simplest results in higher orders. For that reason, wend

do not examine the other possibilities here. R(1+2)
Again, we introduce more simplifications in the notation. L@ (k)= <

All denominators which we encounter, apart from numerical 1

factors, are of the forne-k; (or sums of such expressions where, in Eqs(29) and (30),

Hence, without creating confusion, we can simply denote

them byk; . Also, the expressions: A(k;) will be denoted in

what follows by A(i). Also, it will appear that the factors

[A(1),LM(2)], (30)

BUA LK =—1[A(1),A,(2)],

- I
A(i) always have a factoR(i) associated with them. We L®(k)=— 5[A1(1),A2(2)]. (3D
therefore can drop the factoRgi) in the simplified notation.
Finally, we want to develop some recursive procedure to IV. ARBITRARY ORDER

prove the existence of the generalized gauge transformation

to all orders. For that reason, it is advantageous to expresg

higher-order formulas fos{"A (k) andL(™(k) in terms of

lower-order formulas. It turns out that the expressions &\VA,(K)=R(k)S\{ A, (k), LM(k)=R(K)L™(k),

8A, (k) andL)(k;) have a factorR(i), S(i), or unity (32

associated with them. Most of the time, it is the facB§r)  \ith

which is present. Whenever this is the case, we shall also _ _

drop these factor§(i). When theR(i) factor is present, we o)A, (K)=1k,A(k), B3YA,(k)=—1[A(1),A,(2)],

shall explicitly write it, and when the unit factor appears, we

shall write A (i) or L)(i). 'I:(l)(k)=—;—[A1(1),A2(2)], (33)
In the simplified notation, the formuld27) and(28) now

read and, forn=2,

We shall prove that the group property can be satisfied to
bitrary order. Let

n—-1 1
S(n) - _ _1\a
B N

K [AL).[ ... [A@), 5V A (a+1)]...]]

(ki+---+Ka),
(kl+ to +ka)"'kaka+l

1

[AD).] ... [A®@),8V PA(@+1)]...]]

RO +ka)'"kaka+1[A”(1)’[A(2)’[ o [A@), 30 PA@+ D] T (34)
and
n—-1 (_1)&1
Em)(k):—gl kot Fky-- -ka[A(l)’[ c[A@), L@+ 1)] .. ]
n-3n-a-2 (—1)A(L),[ ... [A@),[5{A@+1),5" "3 YAa+2)]]...]]
-1y Y - : : (35
i=o =1 2(kyt -t Kka) - KaKar1Kaso

In Egs.(34), (35), and throughout the rest of the paper, we use the standard summation convention that

b
> =0 for b=a-1 (36)

a

and that
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1 1
(ka+"'+kb)'"kb:ka"'(ka+"'+kb):l for b=a-1. (37)

We also point out that, in Eq$34) and(35), the quantitiess{VA(i) andL(™(i) have factorsS(i) implicitly associated with
them, while all other quantities have impli¢& factors.
We want to prove the group property, which reads to order

n—-1
/2 (&) 80 = 80 ALK =0. (39)
To this end, we shall first prove the somewhat simpler relation which reads
n-1
~(n—/)_ %/
ZO (838 =80 ALK =0. (39

We intend to prove that Eq39) is valid using the induction method, i.e., we shall assume thafot,2, ... n—1,

n—-a—-1

/Y Z(h—a—/ <=
2 ()= )AL =0. (40

From the discussion in Sec. Il, we already know that B§) is satisfied fom=1,2.
For the proof, it is useful to note that the expressionsﬁ‘&é\’AM(k) simplify when n is in the direction ofe. Forn=2,

n-1 —1)a _
WAK)=— >, s ( +|1a). TIAL - [A(a),8 PA(a+1)]...1]. (42)

a=1

It is not difficult to obtain the explicit expressions for the various terms in(B§), using the formulag34) and (35). We
simply list the results, which are somewhat lengthy:

n-1 _q)a _
8%, SN AL =1TAL(1),R() 8, VAL 2 (,+|1a),,,ka[A(1),[....[A(a),ﬁAofaxz‘a)Aﬂ(ﬁ1)]...]]
n—-1
DXkt - a) (0/F(n-a)
2 Gk K AL TA@, 8T AT
+2 S [ALD.L - .. [A@), 8030 A@+1)]...]]
(Kot -+ +Ky) - - -kgkg o #770b 10A, OA,
n—-1 (_1)a _
+ 2 G S TAAML AR DE A @) T

AL [SA@-D), S0 VA @] .. 1T

o (DKt ke ),

t2 TS TR A

[SUAML)L ... [A@-1), 80 YA@)]. .. 1]+ -

+[AL)[ - [80AR-1), 5N YA@)] .. 11

"L (=D SVALL[AR)L .. [AGR-1), 30 PA@)]- - 111
a=2 (k2+ +ka 1) a lk

(-1)°
a=3 (k2+ e +ka—1)' : 'ka—

T AAUDLETAR)L - [AGR-1), 5 VA@)] . 1T+

+HALL[AQR)L ... [80A@-1), 8 PA@)] ... 111 (42

Also, from Eq.(35), we derive
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~3A,(K)

=—1k, L™ (k)

(D)2t

T (Kt K- KaKara

[AL)[ ... [A@), 35 oA@+D)] .. .]]

n—-1
(-1)° ~
+a§=‘,l o AL A, - aA(at+1)] ... 1]

n-3 n—-a-2

B (—1)%(ky+ - +Kas2)
a=0 /=1 2(k1+ to +ka)' . 'kaka+1ka+2

[A)[ ... [A@)[3()A@+1), 30 " YA@+2)]]...1]. (43

Adding the results of Eq442) and (43), we obtain
(805~ 5mALK)
=1[A4(1),R(2) 8 VA,L(2)]

n—-1 (_1)a

_a=1 (k1+...+ka)..

AL [A(@), (8082 =35 A+ D] ... ]]

o (m DAkt k),

_a=1 (k1+ o +ka)' : 'kaka+1

[ADLL - [A@)( 0 =B h-a)A@+ D] .. ]]

n-1 a
+2 (_1)

(0)75(n-a)
2 oo AL TA@L B A D] ]

n-1 _4na
>y (-1

a=2 (k1+ T +kafl)' ' 'ka

71{[5&%(1),[ o [AG=1), 30 PA@)] T+

AL [85AR=1), 50 YA @)] ... 11

o (—D)A(Kgt ke 1),

+
2t ke kak

m:[ e ,[A(a—l),’sg\nz_a)A(a)] . ]]+ o

+[AL)[ ... ,[5(,\11)A(a— 1),35{‘2‘a)A(a)]. 11

(- DISALUDIAQR)L .. [A(a=1), 8, YA@)]--- 1]
a=2 (k2+"'+ka—1)"'ka—1ka

n—1

B (—1)°
a=3 (k2+ T +ka71)' :

-ka,lka{[AM(l)i[m,[ ca ,[A(a—l),sx‘z_a)A(a)]‘ T

+HALLL[AR) ... [8A@-1), 3% YA@)]--- 11T}

ITE (— 13Kyt HKay ~ ~
-2 2 2(k(1+_). -(+lka)‘ . -kakajl);m[A(l)’[ . [A@)[3{)A@+1), 30 YA@+2)]] . ).

(44)

From Eq.(34), we obtain

n—2
(/) 5(n=7)
2 A ALK
n-2n-/-1 (_1)a
=2, 2 G ROACADL - LA B A D] )
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+[AL),[ ... [R(a) 5<A/1>A(a),"5'<A”2—/‘a>Aﬂ(a+ DI N

n-2n-/-1 (_1)a

"2 2 Horrk .ka[A(l)’[ - [A@), 83T PA @]
n-2n-/-1 _1\a .

+Z (Tt - {[R( 1)5</>A(1)[...,[A(a) 5” TAa@+1)]. . ]+

=1 a=1 (kg+---+ky-- kka+
+[AD),[ ... ,[R(a)é(A/l)A(a)ﬁX‘Z—' A+ D)]. . D

2T (—1)A(Ky k) ~
23 G eI A@8 MA@ D)

-2 n /-1 (= 1)R(1)6{ )AL [AR)L .. [A@), 5 PA@+ 1] ... ]]]

/=1 a=1 (k2+"'+ka)"'kaka+1
n-2n-/-1 (_1)a
-2 2 oo oo A RSA@) L [A@. ST A@D] T+

+[AL(L) AR ... ,[R(a)5<A/>A(a),E<A”*/*a>A(a+ D]... 18

20 /o1 (= DAALD[AR)] - [AR), )N TPA@RTD] .
> (kT Ka) Kakars | 9

=1 a=1

while from Eq.(33), we easily derive that

S VEUALK=—1[A1(1),R(2) 8V, VA,L(2)]. (46)
Equations(33) and (35) yield
n-1 a
~ Bt A== 2 G (fk:)). T PADLA@LL - TA®@) BT aA@ D] 1]
n-3n-a-z (1

J’_
a§=:1 /=1 2(kpt - +Ka) - -KeKat1Kay2

X[ALDAR)[ ... [A@),[E)A@+1), 30 "* PA@+2)]] ... ]11. (47)

The last term in Eq(39) to be calculated reads

n-1/-1
(—1)° a
—E B A= aEl o AL TA@), T VAT

n-1/-1
(= 1)Ky + - +Kp) -y
22 Tt Tk ke AL [A@), 80 PA@+1)] .. 1]

El /=1 (_1)a
7=2a=1 (Kgt---+Ka) - -KaKays

[ALD[AQR)] ... [A@), 3P A@+D] ... 111
(48)

Finally, we add the results from Eqgl4), (45), (46), (47), and(48) to obtain the LHS of Eq(39):

n—-1
25 ~=(7
2 <5‘A/;6<A”1 D=8 ALK

- e
2 (-1

/=1 a= 2(k1+ +ka71)"’kaf

1{['S*A?Au)[...,[A(a 1,30 A @] 1+
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+[AD),[ ... ,['S<A/1>A(a— 1),"55{‘2_/_3”)Aﬂ(a)] D

n-2 n-/ (_ )a

(LA - [A@-1), 30 "2 DA @] .. .11+

_/=2 a=2 (k1+ e +kafl)' ' 'kafl

AL - [8)A@-1), 30 T YA @] .1

2N (—1)3(ky+ +ka ~
+ 21 a}‘,z (|£1 ) (:ka 3 1)1k {SAML - [A@-1), 30 "* PA®@)] .. ]]+- -

AL [3F)A@-1), 50 T VA@)] .1

"2 (—1)3(ky+ +ka —
-2, 2, (éﬁ.)fjka 5 ”k L80AML . [AG-1,30 7 DA@] .. 1+

+[AD),[ ... ,[5<A?A(a—1), 5%2‘/‘3“ A@)]...11}

20/ (DS ALDIAR)L .. [A@-1),3Y T VA@] . ]

/=1 a=2 (k2+ +ka 1) a 1k

20/ (=D SVALL[AR)L .. [Aa-1), 58 T VA®@)] .0
* 22 ;2 (kot -+ +Kao1)- - -Ka1Ka

n-3 n-/

(=1*

_/21 5 (gt +Kap)- - Kg_q

TALLIBAR)L - [AG=1),30  PA@] . 1+

HALDLAR)L .. [3Y)A@=1), 30 "2 PVA@)] ... 111}

n-3 n-/
(-1)° IV =(n—/—-a+1)
+ZZ azs T Tk _kailka{[AM(l),[éAlA(Z),[ . [A@-1),5 A@7... 100+

+[ALUD[A@R)[ ... [8{)A@-1),50 " VA@]... 111}

2 (DAt Ky,

2 A R g R e A A2 B D B A@

n-3 n-/ (1)a

22

=1 a=3 2(Kot -+ +Ka o)+ Ka_oKa 1Ky

[AL(DIAR)L .. [A(a—2),[3{)A@-1), 5\ ~* PA@)]I] ... ]]].
(49

In obtaining the result of Eq49), we made use of the lower order relation of E40) to eliminate certain terms.
Expression (49) can be written in a more compact form by introducing an extra summation ingex

which labels the position 08{ A or 5{ A in the commutator. We then have

n-1

2 ()3 ALK
n-2n-/ a—-1 (_1)a
N B3 _ <(n—=/—a+1)
=2 2 2 G ADL LBAB)L L [AG-D), ST AL @] )T
n-2n-/ a-1 (_1)a
“2 2 2 Gk kAL LAG)L AR A @)
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n-2 n-/ a-1

+/2::1 azz bzl (kit+---+kap)--

(Z DKyt 1)7( [A@).[ ... [3AD)L ... [A@-1),30 " YA@)]...1]...]]

n-2n-/ a-1 —1)3(k, + - kg -
-2 22 (k(1+ ) (+lka 3 a) (AL S LSAD)L . [A@-1), 30 T VA@)] LT

20/ (= DABVALDLAR)L ... [A@-1), 80 T PA@)] D

/=1 a=2 (k2+ +ka 1) a 1k

20/ (=D AUD AR - [AR-D), 75&“*/*""“)A<a>] il

+
/=2 4=2 (Kot +Ka1) - -Ka1 Kg

n-3 n-/ a-1

33 (V-

/=1 a3 =2 (Kpt+ -+ +Kka_qp)--

ok ARDL - AWML [AR-1), 30 T YA@)] D]

n-3 n-/ a-1 (_1)a

T _ <(n—-/—a+1)
+/=2 a§=:3 b§=:2 (Kot -+ +Kap)-- ~ka—1ka[A”(l)’[ T ’[5(A1A(b)’[ - LA 1)’55\2 YA@]. .00

"2 (—)A(Kyt +ka>

(7 <(n—/—a+
B D e e e GO - [A@-2),[3)A@-1),50 " VA@)]]]]

n-3 n-/

Y2 2 a0t

(—1)a
+ka 2)

ok ok A DIAQRIL - [A@=2),[8)A-D/ 31, DA@I]-- 1),
(50

Our aim is to prove that the right-hand sitRHS) of Eq. (50) vanishes. There are three types of terms in expres5ion
depending on the position of the ind@x the index can appear in the combmat@(ﬁA (J), it can appear in the combination
A, (i) without a(S“) acting on thisA (i), or it can appear in the combinatiég), . The quantities andj can have any value.
For the expreSS|0m50) to vanish, the three types of terms have to vanish separately. The three types of terms will be
respectively denoted bX,, X,, and X3, and we now show that they indeed vanish.

A. Xy

We start by showing that the terms in E§0) with a 6ﬂ)AM(j) combination vanish. They are
n-2n-/a-1

(—1)®
X,=
! /21 azz bzl (kgt -+ +ka1) Ko
n-2n-/a-1 (_1)a

—Zz 322 bgl Kr Tk kgAML LO)AMD)L . [AG=1), 30 "* YA @)]...1]...]1]

[AD[ .- [B)AD)[ . [AG=1), 80T VA @)] ... 1] ... 1]

20/ (“ DAL)AL - [AG@=1),3Y, T PA@)] L]

/=1 4= (Kot +Ka1) .. . Ka—1Kq

20/ (= 1)PS)ALL)[AQR)L - [A@-1), 30 T PA@)] -]

Jr/’Zz 5\22 (ko+ - +Kao1)- - -Kae 1k ’ 6

where 5(A/1)Aﬂ denotes the term in its expansion of E&4) proportional toE(A/l’C)AM, ie.,

- /-1 1) _
A=~ 2 _(. +|2C) AL A, TOA e+ D] ) (52)

We shall treat the first two terms and the last two terms in expregsihrfor X, separately. We then have that
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X1=X1at X1B, (53
where
n-2n-/a-1 (— )a
_ <) 1\ R(n—/-a+1)
xlA_Z)l a}:‘,z bgl Kk _ka_l[A(l),[ AL [AGa-1), 8] Ag@]...0]...1]
n-2n-/a-1 (_ )a
_ (/) _ <(n—=/—a+1)
ZZ 2 2 kr ke .kail[A(l),[ o LSAM)L [AG@-1), 5 Ay @]...1]...10,
(54)
and
n2n (—1)a[75<A/3A,L(1),[A<2) [... [A@-1),30"*PA@]...]]]
Xig=— 2 2
/=1 4=> (Kot +Ka_1)- - -Ka_1Kg
20/ (= DASVAUD AR . [A@-1), 80 T PA@)] D
t2, 2 (Kot Ko 1) Ko iKa | 9
We first rewrite expressio, in Eq. (54) using the expansion fQﬁ(A?A(b) given by Eq.(41):
n-2n-/a-1 (_1)a ) e —as )
Xia= 2 2 2, o o AL BABLL A D) A@] )
n-2n-/a-1/-1 [A(1),[...,[[A(b),[...,[A(c+b—1),“5‘<A/l‘°>A(c+b)]...]],
* 21 ;2 b§:l CE_: (=1 (kit - +Keya1) - (kpt---+Kera1)
[A(c+b+1),[... ,[A(c+a—1), Tsm*/*a*l)A SCRE-) N || I
(56)

(kb+ +kc+b l) c+b 1(kc+b+l+ +kc+a 1) c+a 1

Note that, in the second term of E(6), we have extended the summation oveto include the termy’=1, because it
vanishes due to our summation conventigf) for the sum ovec. The two terms in Eg(56) can now be combined using Eq.

(37):

n-2n-/a-1/-1 [AD)[ .- [[AD),[ .. . [Ac+b=1), 5 "“A(c+b)] ... 1],
XlA 2 2 b2 CZ( 1) (k1+'"+kc+a71)'"(kb+"’+kc+a71)

[A(c+b+1),[... ,[A(c+ a—1),”5'<A“2‘/‘a+1)Aﬂ(c+a) .
. (57)

(Kpt -+ +Kesp-1) - Kerp-1(Kerprat - +Kera—1) - Keva—

Using the formulal/Al) in Appendix A, we can rewrite this expressi@i7) in the form of a nested commutator. To see how
this can be done, we rename a series of variables 5. Let

Ko=Ki1, Kerp=Ker1, Kera=Kerapiis (58

and

/—c=P, ¢+1=N-L-1, c+a—b+1=N-1, n—/—-a+1=Q, (59

and let us rearrange the quadruple sum in &@) in the following way:



57 GENERALIZED GAUGE TRANSFORMATIONS: PURE ... 1213

= . (60)

The preceding manipulations then lead to

n—-2 n-b-1 n-

XlA:E E szl

PN [ACD[ ... [A(b=1),[[AL),[ ... [ANN-L-2),37AN-L-1)]...]],

(kgt - +Ky—2) - (Kt + Ky o)

i —1)n-P-Q+1

[AN=L),[ ... [ANN=2),3A(N=-D]...]11] ...]]
(Kit - +Kno o) Ky oKyt Ky ) - Koo

b=1 P=1

(61)

where the notatior is used to indicate that th& has aK-type argument. The use of formulal) from Appendix A allows
one to perform the summation overand convertsX,, into a nested commutator:

n—-2 n-b—1 n-b-P

Xpa=2 > > (—pnPert
b=1 P=1 Q=1

[AL),[ ... [A(b—1),[A(1),
(ky+ - +Kyoo) - - (Kg+ - - +Ky22)

[... ,[Egi)K(N—z),Egg>E(N—1)] ...... n...1
(Ki+---+Kyog) - -Kyoz
n—-2 n-b—1 n-b-P
_ (= 1)n-P-Q+1 [AL)[ .-,
b=1 P=1 O=1 (kyt+ - +kypg) (Kot +Kyp_q)

[A(n—P—Q—l),[EE{?A(n— P—Q),75<AQZ>AM(n— P-Q+1)]...]]

, 62
(kp+ - +Kn_p-g-1)""Kn—p-q-1 (62
where, in the last equality, we returned to the original integration varidbles
In expression62), the sum oveb can also be performed. To this end, we introduce the variable
a=n—P-Q, (63
and rearrange the triple sum as follows:
n—-2 n-b—1 n-b-—P n-2 n-P-1n-b-P n-2 n-P-1n-P-Q n-2n-P-1 «
> =2 > > 2 > > (64)
b=1 P=1 Q=1 P=1 b=1 Q=1 = Q=1 b=1 = Q=1 b=1
Then
20 Pl o« [AQ)L ... [A(a=1),[61)A(@), 52 A(a+D]] ... ]]
Xia= —1)e*t : 2 . 65
w2 & 2 Y R R e ke TR 0 K (©9
Formula(B1) of Appendix B can now be applied to perform to summation dwveand, finally,
n-znpP-l [AD).[ ... [A(n= P—Q—l),[3(P)A(n— P—Q).3(Q)A (n=P=-Q+1)]]...]1]
Xia= 2, 2 (—1nPrert .
P=1 O=1 (kyt+- - +Kyp_g-1)kKn-p-g-1Kh-p-0
(66)

The treatment ofX;g is very analogous to the one fot;,. We also rewrite expressiofb5) using the expansion for
8 )A(b) given by Eq.(41), which again allows us to combine the two termsXip :
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n-2n-/ /-1 [[AQ)[ ... [A(0), 35 YA (c+D)] .. .11,
XlB:_/E:l aZZ ;o(_l) (ky+ - +ke)- - -k

[Ac+2),[ ... [Acta—1), 30 "*"PA(c+a)]...]]

(kc+2+ o +kc+a—1) o 'kc+a71kc+a

(67)

Comparing Eq.67) for X5 with Eq. (57) for X,4, one sees thaX,z is the opposite of thd=1 term in X;, with the
interchange of6 A« §,A,, . Therefore, Eq(62) tells us that

n-2n-P-1 [AD),[ ... [A(n—P-Q—1), [”5'<'°)AM(n—P—Q) SWWAMN-P-Q+1)]]...]]
Xip=— 2 2 (—1)nPert .
P=1 Q=1 (ki+ - +Kyp_g-1) - "Kn-p-o-1Kn-p-q+1
(68)
Through some simple manipulations, we can cast(E8§). in a form which allows us to combin¥;z with X4 :
n-2n-P-1 A1) ... [A(N-P-Q-1),[$QA(N-P-Q), s A,(n—-P-Q+1)]]. ..
o S TS g AL TAC-P-Q-D[FTAN-P-Q) FA (P Q) . ]
P=1 Q=1 (ki+ - +kn—p_q-1) - "Kn—p-g-1Kn-p-q
n-2 n-Q-1 [ACD[ ... [A(N=P=Q-1),[3\A(n-P-Q),5(JA,(n-P-Q+1)]]...]]
— (_1)n7P7Q+l 1 2
g=1 F=1 (ky+ - +Kn-p-g-1)Kn-p-g-1Kn-p-q
20 Pl [A@).[ ... [A(N=P=Q-1),[3{A(n-P-Q),5[JA,(n-P-Q+1)]]...]]
= — (_1)n*P7Q+1 1 2 .
P=1 Q=1 (kyt+ - +ky-p-g-1) " Kn-p-g-1Kn-pP-0
(69)
Comparing Eq(66) for X;, with Eq. (69) for X5, leads to the conclusion that
X1=X1a+X18=0, (70
which is the result we intended to prove in this subsection.
B. X,
The terms in Eq(50) with a factorA,,(i) without somes§? acting on them are
y 2 COASAUDLAR)L - [AGR-D), 50T P A@)] )
= (kat -+ +ka—1) - Ka—1 kg
n-3 n-/a-1 (_1)a
- Au(DL . [B)A®D 1), YA .
22 2 o T AL BAG L AR D), @1...71...1]
n-3 n-/ a-1 (_1)a
+ A D). [8OAD) ... [A(a—1), 80 2 YA@)]...]]. ..
2 2 2 Gor k) kAL LATABL L [AGR- 1), 3 @7...1]...1]
n-3 n-/ (_1)a
_ () _ 1\ R(h—/—a+1)
2 2 T Tk )k ko AHDIARIL - [AG@-2),[3) A1), 5], A@]] .. 111,

(71)
where, this timeﬁ(A/i)AM(k)denotes the term proportional £, in its expansion given by Eq34), i.e.,

EDIAUD AR A, T PAC+ D] . 1]

(/) —
5A1A#(k) 21 (Kot - - +ke)- - - KeKesq ' (72)

We want to show thak, vanishes.
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Let us respectively denote X6, , Xog, Xoc, andX,p the four terms in the order in which they appear in E&L) for X,.
Substituting Eq(72) into the first termX,, of Eq. (71) yields

n2ns/d AUDIA@)L - [[A0), 3 “Ac+1)] ... 1],
Xon= 2, 2, 2, (-1)° (k- ko) ko
[A(c+2),[ ... [A(cta—1),5% " "*"PA(c+a)]...]]]
(kc+2+ +kc+a 1) c+a 1kc+a . (73)
If we defineY, °(k) by
[AL),[ ... [A(c—1),5Y " °>A<c>] S
/,C
O Ty Kok, 74
then
[A(L),[ ... [A(@a=2), "5‘<“‘/‘a+1>A(a—1)] .
n—-/,a— _
Y 0= (kg +Kap) - KaoKa 1 ’ e
and
n-2n-/ /-1
Xoa= 2, 2 2 (=D LA YAF@)LYR, ™ H3)], (76)
Making the change of variables
L=n-/, C=a—-1, A=c+1, (77)
in Eqg. (76), we see thaK,, can also be written in the form
n-2 L-1n-L
Xoa= 2 2 2 (= DAMO[ALL), YR, A 2L YREB)], (79)
L=2 C=1 A=2
Taking half the sum of the expressiot¥6) and (78) yields
n 2n-/ /-1
Xon=> 22 2 2 (CDTHIALL), YL RLYR, T @) AL YR LY
1n 2n-/ /-1
=52 2 2 (“DMTAMLLYLR)YE, TR (79

In Eq. (79), we made use of the Jacobi identity to write the sum of two commutators as a single term. Substituting the
definition (74) for the expression¥ into Eq. (79), then leads to

[n-2n-/ /o1 [A#(l),[[A_(l),[...,[A_(c—l) 3 OA©].. .11,
Xon= 2z 22 czl( (Kit- - +Keop) - Ko1K
[A(c+1),[ ... [A(c+ta=2), 30 "*"VA(ct+a-1)]...]]]]
(Kerrt - +Kepa2) - Kepa2Keraa
1" L - C[A#(1>,[[A_<1>,[...,[A_(c>,?5%;°)A_<c+1>]...]].
:_52 E Z (Ki+ - +Kg) - KKorq

[A(c+2),[ ... [A(c+ta—-1),3( ""PA(c+a)].. .1

(Kc+2+ +Kc+a 1) c+a 1Kc+a

(80)

Upon comparing this expressigB0) with the formula(67) for X;5, one sees that
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1 - -
Xoa=5T Au(1).X1p(N—n—13)A,(c+1) =B A(C+ 1) Ke1)]: (8D

We can then make use of the evaluationXgg in Eq. (69) to write

n3nP2

Xon==5 2 & CUTTAAMLARL

[A(n=P-Q-1),[3{'A(N~P-Q),3AN-P-Q+1)]]...]]]

82

(kpt - +ky-p-g-1) " Kn-p-g-1Kn-pP-gKn-pP-0+1 ®2)

We now examine the next two term$;g andX,, in Eq.(71). They can be combined into one expression in analogy with
the manipulations foX, 4 :

o3 n-/acl ol (1AL [[AD)[ ... [Ab+c—1),3( “Ab+o)]...]],

Xog+ Xpc= —
2B 7 e /§=:l a§=:3 6=2 é=0 (Kot - +Kasc1) (Kot - +Kayco1)(Kpt -+ +Kpyc1) Kpico1

[A(b+c+1),[...,[A(a+c—1), 'S<“‘/‘a+1>A(a+c)] T

83
(kb+c+1+ -t ka+c 1) a+c 1ka+c (
Here, too, we could extend the summation o¥eo include the term with’=1. Letn=n’+ 1, and shift the summations over
a andb by one unit, then

N2 /At (= DAALL),[ L [[AGb+D)[ . [A(b+e), 5K T PAb+c+ )] ],

Xop+Xoc= 2, 2, 2 X

/=1 a=2 b=1 ¢=0 (Kot +Kare) - (Kpt - - +Kap o) (Kpr1t - T Kpio) - -Kpie

[A(b+c+2),[...,[A(a+c), ?s‘<“’*/*a*1>A(a+c+ D]
(84)

(kb+c+2+ +ka+c) a+cka+c+l

One recognizes that this expression is the commutatorApfl) with X;, with the replacementsi—n—1 and
‘5AAL(1)—8,A(i)/k; [see Eq(57)]. Hence, we can immediately derive from E@6) that

n-2n'-pP-1

x23+xzc=gl Qzl (=DM PRI A (1), [A2) .. .,

[A(n' — P—Q),[”5‘<AP>A(n'— P-Q+ 1),7>*<AQ>A(n'— P-Q+2)]]...11

(kat - +kn—p_q) - Kn—p-gKn'—p—q+1Kn'—p-q+2

-3 n-P-
SNBSS
[ALD).[A@2),[ ... [A(n—P-Q-1), [75<P>A(n—P—Q) 75<Q>A(n—P—Q+1)]] 1N
85
(ko+ - +Knp_g-1) - Kn_p_o-1Kn—p-oKn-p-0+1 @9
Finally, we examine the last teriX,p in Eq. (71). A simple change of variables
P=/, Q=n-/—a+1, (86)
yields
n-3 n—-P-2
Xop=—2 2 (=" PTAL D),
P=1 Q=1
[AQ)[ ... [A(=P-Q-1),[3{A(n—P-Q), 3\ YA(N-P-Q+1)]] ... -

2(kat -+ - +Kn-p-g-1)"Kn-p-qg-1Kn-p-qKn-p-q+1
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Adding the resultg82) for X,, Eg. (85) for X5+ Xy, and Eq.(87) for X,p, now shows that
X2:X2A+ X2B+ ch+ XZDZO. (88)
This is the result we set out to prove in this subsection.

C. X3
Finally, the terms in Eq(50) with the indexu in the combinatiork;,, are

2N (1)Kt +ka Da

Z‘l 2 2 Tkt ko) ko kg AL L LBAD)L L [A@-1), 50 T PA@)] LT

X3:

n-2n-/ a-1
(—1D)%Kky+-- k Du A n—/—a+
—ZZ azz bzl Kk 1) K [AD),[ ... [6} )A(b) [...[A(a—1), 5< Ya@7...11...1]

n2n/ (—1>a[5<A?AM(1>,[A(2> [... [A@-1),3% "*PA@)]...]]]

/=2 4= (ko -+ +Ka1)- - -Ka—1ky

n-2 n-/

+

—1)3(ky+ - +|<a s as
A& 2(k1+( )+(k: )k ika AL A28 AG@-1),30 T PA@ ] (89

where, this timeﬁ(A/l)AM(k) stands for the second term in its expansig#), i.e.,

——— Dkt ko) [AD)L [A(©), 8 PAc+1)]...1]
A== 2 (Kyt - ko) - -KeKea g ' 90

c=1

Let us respectively denote Xga, X3, X3¢, andXzp the four double sums in the order in which they appear in(B9).
In analogy with the manipulations fof,,, we can combinéz, and X5z into a single expression:

n-2n-/a-1/-1

x3A+x35—2 > > E (=12 (kg + - - - +Kera-1)

=1 a=2 b=1 ¢c=

[ACD[ . [[AD)[ ... [Actb=1),3{ "“A(ctb)] . ..]],

X
(k1+ e +kc+a—1)' : ‘(kb+ e +kc+a—1)

[A(c+b+1),[ ... [A(c+ta—1), 5<“ FTAUA (et a)] .l

(kb+ +kc+b 1) c+b 1(kc+b+l+ +kc+a 1) c+a lkc+a

(91)

Comparing the expressia@1) with Eq. (57) for X;,, we see that they only differ by the factde,(+ - - - + ke 4-1), in the
numerator and a factde. , in the denominator. Hence, we immediately obtain from @) that

n-2 n-P-1
x3A+x35=—F§1 QZ:I (—1)" P kg + - +knopo) [AD) [ ...,

[A(N=P-Q-1),[3\ A(n-P-Q),3(YA,(n-P-Q+1)]]...]]
(ki+ - +Knp_g-1) - Kn—p-_o-1Kn-p-oKn-p-0+1 . ©2

For the third double sunXsc in Eqg. (89), we can again extend the summation oveto include the vanishing term with
/=1 because 0f36). But then, we can also include tlee=0 term, becausekg+ - - - + k) ,=0 for c=0. Thus,



1218 R. GASTMANS AND TAI TSUN WU 57
n-2n-/ /-1

Xac=— 2 > 2 (—1)A(ky+ - HKe),

/=1 a=2 c=0

[[A(l)[ . [A(c), 5</ 9A(c+1)]...11L[A(c+2),[ ... [A(c+a—1), 7$<“*/*a+1>A(c+a)]...]]]

(kl "'+kc)'"kckc+1(kc+2+"'+kc+a 1) c+a lkc+a
n-2n-/ /-1
== 2 2 2 (CDYC ket HKare )

[[AD.[ ... [A@-2),30 " "*PA@-1)]...]L[A@)[ ... [A(a+c-1),3¢ "“A(a+c)] .. .]]]

X
(Kit -+ +Ka2) - KaoKa1(Kat -+ +Karc1) - ~Karc-1Kare

(93

where, in the last step, we merely anticommuted the two terms in the commutator and renamed the integration variables
accordingly. Introducing new summation variables defined by

C=a—-2, a=c+2, L=n-/-1, (99
we find thatX;c can be written as
n2nbiol [[AD),[ ... [AC), 8} “ACC+D)]...1],
a+C 1
X3C_ Z (1222 ( l) (kC+2+ +kC+afl),u. (k1+"'+kc)"'kckc+1
[A(C+2),[ ... ,[A(c+a—1),”5‘<A”2‘L‘a+1>A(c+a)] |
. 95
(Korat - Tkora 1)~ Kora tKora 9
Hence,X;c is one half the sum of the two expressiq88) and(95), i.e.,
n-2 n-/ /-1
Xae= =52 2 2 (“D¥ okt Hkotkeiot Hheva 1),
/=1 a=2 c=
[[AD[ ... [A®©), 3 “Ac+1)] ... ILIAC+2),[ ... [Alcta—1), 5 "> PA(c+a)].. ]I
96
(k1+'"+kc)'"kckc+1(kc+2+"'+kc+a 1) c+a lkc+a ( )
From the comparison of this expressi(@6) with formula (67) for X,5, we infer from Eq.(69) that
n-2 n-P-1
Xae=52 2 (ZD"T Okt bk po )l AL
[A(n—P-Q-1), ["5'<P>A(n—P—Q) SPAMN-P-Q+1)]]...]]
. 9
(ky+ - +kyp-g-1)Kn-p-g-1Kn-p-oKn-p-0+1 ®7)
For the last term of Eq89), denoted byX5p, a change of variables
a=n—-P-Q+1, /=P, n—-/—-a+1=Q, (98
suffices to write this term in the form
n-2 n—-P-1
Xap=2 2 (1) P ky+--- +Kn-p-o+) JAD)[ ...,
P=1 Q=1
[A(n-P-Q-1), [’S<P>A(n—P—Q) "5‘<Q>A(n—P—Q+1)]] 2
. (99

2(kyt - +Knp_g-1)"Kn—p-g-1Kn-p-oKn-p-q+1
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The various contributions t§; are thus seen to have the same integrand, except fdg fterms in the numerators. From
Egs.(92), (97), and(99), we learn that the various contributions are proportional to

XzatXgg— —(kit - +Kknp o-1)u=(Knp-Q)us

1
X30—>§ (kit+ - +Kyp_g-1)u>

1
XBD_)E(kl_'—'"+kn—P—Q—l),u+(kﬂ—P—Q).u' (100

The different contributions are thus seen to add up to zero, hence, the entire expkession

D. Group property field ¢(x) to generate interactions. Fax,, we used the
We have established that the three type of tepfis X,,  Standard transformation
and X3, separately vanish. This implies that
ONAL(X)=—3,A(X); (105

X=X+ X5+ X3=0, (101
for /(x), we made the ansatz

and thus that the relatiof89)
SAp(X)=—1eA(Xx+e€)y(x+2€e)+0(e?), (106

n-1
> (5<A/>’55{1—/>_’5(EQ_/))AM(|<):0 (102  and determined the higher order terms in ED6) by re-
/=0 z quiring that the Abelian character of the gauge transforma-
tion be preserved, i.e.,
is satisfied for all values of.
Note that, from the definitiori32) of 5{’A,,(k), it fol-

lows that, for all values ofi and/, [54,:84,]4(x)=0. (107

What is shown in Ref[6] is that a solution of Eq(107)
SOAL(K=R(K)S{A,(K), exists to all orders i, meaning that the higher-order terms
in Eg. (106 can indeed be derived. This proof consists of
_ showing that, order by order, although the number of condi-
5(Lf,2,/>AM(k)= R(k) ({(r)],/)AM(k). (103 tions far exceeds the number of parameters to be determined,
these conditions are such that solutions do exist.
With this unexpected success, it was natural to study next
the Yang-Mills SU2) gauge symmetry4]. Instead of Eq.

(107, we require that, for the gauge fiel&,

Hence, multiplying the LHS of Eq.102) with R(k) proves
the group property38)

n—1
2 (3080 = sl AL =0. (109 ) )
a (80,80, 1A,00 = 6.A,(%), (108

This is the result we wanted to establish in this section. . . .
wherelL is the combined gauge parameter. In order to satisfy

the requirement of Eq(108), it was found that it is not
V. DISCUSSIONS possible to use the original form of point splitting of Dirac

It remains to comment on the relation of the present work 1] or some version of Eq(106). Instead, it is essential to
with the earlier approaches. At first sight, this idea of pointPerform an average over the amount of point splitting using
splitting seems inconsistent with local gauge symmetries? Suitable weight function. More precisely, the simplest an-
which play such a crucial role in our present understandingatz consistent with Eq108) is [7]
of fundamental interactionp4,5]. In order to pinpoint this
possible incompatibility, we first examined four years ago 07 -
the simplest case of an Abelian(1) symmetry[6]. To our 8y Au(X)==3,A(X),
great surprise, there is no inconsistency in this case, a most
encouraging result which is responsible for the later devel- .
opments, including the present paper. (1) R :J Y R (v

Since the Abelian gauge fieldh,(x) has no self- On A —o dEp(A(XT Ee) XA (x—Ee).
interaction, it is necessary to couple it to a charged matter (109
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Up to third order in the gauge coupling constant, the generfind that it is essential to average over the separatjpwith
alized gauge transformation and the combined gauge param- weight functionp(£). The conditions which the weight
eter were explicitly constructed. function has to satisfy lead, in momentum space, to the in-
This weight functionp (&) has to satisfy three conditions: troduction of a cutoff for the large momentum components
(1) It has to be a real function of the real variakile(2) it o_f the fields in the direction o€, . We_are thus led to con-
must be an even function &f (3) it has to satisfy the con- Sider, in momentum space, generalized gauge transforma-

volution property tions which only act on the small momentum components of
the fields. Such generalized gauge transformations can be
+o expected to lead to regulating theories, an exciting possibility
f_x dnp(&—n)p(n)=p(§). (110 which still needs to be examined carefully.

We find that it is possible to satisfy the group property

It may be noted that the the inverse Fourier transform 0@8)

R(k) indeed satisfies Eq110). [S4., 05 JA(X)=8.A(X), (111
While the treatment of the Abelian ca] is quite satis- Vot s .

factory, that of the Yang-Mills S(2) case[7] leaves muchto  for the group elementa ,(x), if we take the gauge transfor-

be desired. Specifically, the shortcomings incléaethe in-  mations

finitesimal genegralized gauge transformations are constructed o

only to orderg®; and (b) the procedure cannot be easily _ n =(n)

generalized to other non-Abelian groups. Since neither of 5AA”(k)_nZo g"Re-k) oy ALK, (112

these shortcomings are present for the present approach,

there is no question that the present one is superior to that gfith

7], BYA LK) =1k,AKk),
VI. CONCLUSIONS

We have shown that, for any Lie algebra, it is possible to SWUA(k)=— lf d*kyd*k, 0 (k—kq —ky)
construct generalized gauge transformation for which the
fields and the gauge parameters are taken at different space- XR(€-K)R(€-Kk)[A(Ky),A,(Kp)T,
time points. The separation between the different space-time (113
points is characterized by a fixed four-vectgr, and, for the
construction of the generalized gauge transformations, wand, forn=2,

n—-1
ALK == 2, (—1)af d*ky: - d%Ka 18 (k—ky— - —Ka 1 )R(€ ky) - -R(€ Ka) S(€ Kar 1)

JLeAk L L€ AKy), 8V YA (Kas1)] ... 1]
€ (Kit - +Ky)e (Kot +Ky)-- €Ky

Lkt ke e Al [ - L€ A(ky), € 88 PA(Kas1)] - - .1
€ (kyt---+kye (Kot ---+ky)---€-Kpe-Koyg

[Aulky),[e-Alka),[ - - - Le-Aky) e 3 PA(Kar1)] - 1]]

e(kpt - tky) e (kat - Tky) - ekeekars |’ (114
together with the combined gauge paraméték) given by
L(k)=él g"R(e-K)LM(k), (115
with
LDk =1 f d*k;d*ko 6" (k—k; —k)R(e- k) R(e-ko)[Ag(ky), Az(kp)], (116

and, forn=2,
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n-1

E(n)(k): - 2 1)aJ' d4kl d4ka+15(4)(k Ki—++—Kar1)R(€-Ky)- - -R(€-Ka)S(€-Kqap 1)

[e-Aky),[ ... [eAKy), L™ ¥ (Kayp)] ... 1]
€ (Kg+ - TKy)e (Kot +Kg)---€-Kg

n-2n—-a—-1

YD (—1)6‘]d4k1~--d“kaﬂa“)(k—kl—-~-—ka+1>

a=1 /=1
XR(e-K)R(e-Ky)- - -R(€-Ka—1)S(€-Ka)S(€-Kat1)

[ A(ko).[ - .. [€ Alka-1).[85)A(ka), BN, ¥ Akas )] - .. 1]
€ (Kt - +kag)e(Kpt - -+Kq1) - € Ka1€-Ka€-Kqyq

(117

We also recall the definition€0) and (15) of the weight function®R and S, which appear in Eq4112) through(117):

1 for |e-k|<1,

REEK=10 for |e-k|=1,

S(e-k)=1—R(e-k). (118

Note that, in this section, we no longer use our simplified notation, which means among other things that the interchange
A1 A, should not be performed in Eq€l16) and (117).

As explained in Sec. lll, the formula413 and(114) for 5(A”)Aﬂ(k) as well as Eqs(116) and(117) for L(M(k) are free of
singularities in the limite,— 0. This is not immediately obvious from the way these formulas are presented. To see this, one
needs to express the higher order gauge variations in terms of first order gauge variations, and to examine the singularity
structure for the different integration variables separately. This can be done, however, without much difficulty.

Also note that, in the limit,—0, all 5§‘)Aﬂ(k) andL(Mk , for n=2, vanish, becaus8(0)=0, and that alR functions
tend to unity becaus(0)=1. It follows that, in this limit, our generalized gauge transformations reduce to the standard ones,
i.e., without point splitting.
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APPENDIX A

One of the ingredients in our procedure to show that the group property can be satisfied, consists of rewriting commutators
in terms of nested commutators only. In this appendix, we derive the formula we need for that purpose, i.e.,

2 [[AL).[ ... [A(hn—/=2),B(n— 1)] JLIAN=/),[. [A(H—Z),C(n—l)]---]]]
/= (kl+ +kn /- 2) n /= Z(kn st +kn 2) n 2
_[AQ@),[ ... [A(N-3),[B(n-2), C(n—l)]] 1
(kyt+ - +kooz) .. . Kn_s '

(A1)

In formula (Al), the arguments of the functioms(m), B(m), and C(m) stand for the integration variablds,, and the
integration over all the variablds,, is implicitly assumed. The quantitigd andC can be anything, e.g., they can stand for
BEIA (M) or TOAM) Ky

The proof of Eq(A1l) requires two other identities: one that allows us to rewrite an arbitrary commutator in terms of a sum
over nested commutators, and a more elementary relation which allows us to perform this summation. The first required
identity reads
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[[A(D),[A2),[ ....[A(N),B(n+1)]...]]],C(n+2)]
(k1+"'+kn)"'kn

n+1 _ie .
B (=" YA ... [B@(),[ ... [A(N+1),C(n+2)]...]]...1]
_21 (Kyt - tkiog) - KimaKiv g (K g+ K g) ' (A2)
We use the induction method to prove E42). Forn=2, we have that
[[A(1),[A(2),B(3)]],C(4)] _ [A(1).[[A(2),B(3)].C(4)] [[A(1).B(2)].[A(3),C(H]]
(ky+ka)ks (ky+ka)ka (ky+ka)ky
_ [A(1),[A(2),[B(3),C(4)]]] [A(1),[B(2),[A(3),C(H]]]
(kg +ka)ksa (kq+ka)ks
~ [AD),[B(2),[A(3),C(H]]] N [B(1),[A(2),[A(3),C(4)]]]
(ky+ka)ky (ka+ka)ks
_[A(1),[A2),[B(3),C(4)]1] [A(1),[B(2),[A(3),C(4)]]]
(ky+ka)ks kiks
[B(1),[A(2),[A(3),C(H]]]
" Ka(ka+k3) ' (A3)

where, in the derivation, we repeatedly used the Jacobi identity. The (A8JIshows that relatiofA2) is indeed satisfied for
n=2.
We now assume that E¢A2) can be used fon—n—1 to prove the desired result of ordeyi.e.,

[[AL),] ... [A(Nn),B(n+1)]...]],C(n+2)]
(k1+...+kn)...kn
B [A(D),[TA2),] ... [A(N),B(n+1)]...]],C(n+2)]]
- (Kyt---+ky)- - K,

3 [[AD),] ... [A(n=21),B(n)]...]].[A(n+1),C(n+2)]]
(kit - +kogt ko) (Kg+ -+ k1) Ky

n+1

B (=) YA ... [B(G),[...[AN+1),C(n+2)]...7]...1]
S (kg KTt Ko ) (Kot e K g) ki gKig e (Kt Kn )

é (=)™ HA@)[ ... [B(i),[ ... [A(N+1),C(n+2)]...]]...]1]

+
(a1 K Ky ) (Kt bR ) KKy (Kt Kg)

n+1

.S (=D YA@),[ ... [BG),[ ... [A(N+1),C(n+2)]...]]...]]
=1 (k1+"'+ki—1)"'ki—lki+1'"(ki+1+"'+kn+1) ,

(A4)

which proves Eq(A2). In these manipulations, we used the Jacobi identity in the first step, followed by an application of the
lower order formula on the resulting expressions.

The application of formuldA2) to the LHS of Eq.(Al) introduces a double sum, whereas the RHS of that equation is a
single term. The formula which is needed to carry out the summations is given by the elementary identity

. =
2k TR TR

Sn,o- (A5)

Because of our summation conventi@Y), the relation is trivially satisfied fon=0 andn=1. Clearly, forn=2, relation
(A5) is also satisfied, because

1 1 N 1 B
(kitkaky  kiky  ki(kytky)

0. (A6)

Once more, we use the induction method to prove(B§) for n=3. Replacing,— k,+ k1 in Eq. (A5) and dividing by
K.+, Yields, forn=3,
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O:E (_l)i 4 (_1)n
i=0 Ky (kg k) (Kt A Kapg) o Kppr o Ky (Kg e ko) (KgAK ) Ko
S (~1) (-1)" G
T Sb kg (KpF Ak (Kt Ko Kngr Kpoo (Koo FR)Kner Koo (kg +Kog)
N (-n°
1 (Kt ko) (Kt Ko )Kng
n+1 i
~ (1)
B Y (e SR [ AVE e ey e (A7
which establishes relatiofA5) for n—n+1, hence, by induction, for all values of.
Finally, to prove the identitfAl), we first use the formuléA2) on the LHS of Eq.(A1). This yields
i [[AL).[ ... [A(h=/=2),B(n=/=1)]...]L[A(h=7).[. [A(n—2),C(n—1)] il
/= (kl+"'+kn7/72)"' n,/,z(kn,/-l- +kn 2) n 2
_ i é (=D)AL [BG)[ ... JA(N=2),C(n—=1)]...]]...]]
A (et kD Kotk (Kiea b ko DKt kg o) Ko
_ 2_: [AD),[ ... [B@i),[...[A(n=2),C(h=1)]...1]...1]
= (kgt - +ki—g) - ki—g
n-i-1 n—/-i-1
(1)
A R R ke TR R (A8

In the last factor, the sum ovef can be performed using identi¢p5). The change of variable=n—/—i—1 transforms
this sum into

(-1t
Kivp o (Kipat - K ) (Kipae T FKpo2) K-

n—i—2
> =On-i-20- (A9)
L=0

This & symbol tells us that the sum ovein Eq. (A8) is reduced to the term=n—2, which establishes the reskl).

APPENDIX B

In this appendix, we prove the following elementary relation:

3 : - 1 &
p=1 (kg + Ka) -+ (Kot FKa) (Kt K1) Kaog (Kyt o FKamp) o KooK

which was used in Sec. IV to simplify the result & 4 .
We use again the induction method to prove EBfl). We, therefore, suppose that

a—1

1 1
= B2
2l T D etk (et Tk ks (et Tk ko ®?
is valid. Let us rename the variablks—k, ., in Eq. (B2), then
a—1
1 1
> = : (B3)
b=1 (Kpt+---+ky) - - (Kppat - +K)(Kpsat - +Kep) - Kyog (Kot +Kpo1)- - Ko1Ky
or, withB=b+1,
“ 1 1
o Tk ket Tkket kD Ky (T Tk Kk B4
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Divide Eq.(B4) by k;+ - - - +k,, then

a

1 1
& (kat ko) (ke - T K)(Kat - TRy 1) Koy (Kat o Tkt Ky DKo ka0
Substituting Eq(B5) into the LHS of Eq.(B1) yields
1 1
(kgt - k) (kgt -+ Keo1) - Koo i (kyt -tk (kot oo ko) - Ky—1Kg
~ K,+(ky+ - +k, 1)
B (kl+ e +ka)(kl+ e +ka—1)' : 'ka—lka
1
(B6)

N (kl+ e +ka*l)' : 'kaflka,

which is equal to the RHS of E¢B1). Because EqB1) is trivially satisfied fora=1 anda=2, it is thus shown to be valid
for all values ofa.
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