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Abstract

We calculate the high-temperature expansion of the 2-point function up to

order 800 in �. We show that estimations of the critical exponent 
 based on

asymptotic analysis are not very accurate in presence of con
uent logarithmic

singularities. Using a direct comparison between the actual series and the

series obtained from a parametrization of the form (�c��)
�
(Ln(�c��))

p+r),

we show that the errors are minimized for 
 = 0:9997 and p = 0:3351, in very

good agreement with �eld-theoretical calculations. We brie
y discuss the

related questions of triviality and hyperscaling.
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I. INTRODUCTION

The dimension four plays a doubly important role in physics. First, it is the dimension

of space-time which is relevant for a relativistic description of a large class of phenomena,

from electricity and magnetism to scattering processes at the highest experimentally ac-

cessible energies. Second, it is the upper critical dimension for scalar �eld theory. If one

analytically continues the renormalization group equations [1] (usually derived within some

approximation) to non-integer dimensions, it appears that when the dimension tends to

four from below, the non-trivial �xed point merges with the Gaussian one. This justi�es the

�-expansion.

It is thus commonly accepted that in four dimensions, the critical exponents are the

trivial ones (i.e. those obtained from mean �eld). Unfortunately, it often di�cult to �nd

clear evidence for or against trivial exponents, for instance, from high-temperature (HT)

series [2,3] or a �nite volume calculation [4]. The root of the problem is the existence of

a marginal direction which makes the approach to the �xed point more intricated than in

three dimensions. The corrections to the power laws can in principle be obtained from the

Callan-Symanzik equations, provided we know the exact form of the various functions (beta,

gamma, ... ) entering into them. Using the lowest order in perturbation theory, Brezin,

Le Guillou, and Zinn-Justin [5] found that the trivial power divergences get multiplied by

rational powers of Ln(�c��). It is important to check this result with methods independent

of perturbation theory. In particular, it is conceivable that there exist non-trivial �xed points

which cannot be revealed by perturbation theory.

The technical challenge which appears in any kind of calculation is to distinguish between

a small change (with respect to the trivial value) in the critical exponent and a slowly varying

(compared to the trivial singularity) multiplicative change. This di�culty appears clearly in

the asymptotic analysis of the high-temperature expansion of the susceptibility, where the

leading term of the extrapolated slope de�ned in Eq. (3.4) (
 � 1) can be small compared

to corrections proportional to the inverse of the logarithm of the order, unless one can reach

an astronomically large order.

Another interesting feature of the �eld-theoretical method is the so-called hyperscaling

relation among the power singularities of the 2- and 4-point (subtracted) Green's functions

at zero momentum. In three dimensions, the violations of hyperscaling [6] are hard to resolve

by high-temperature calculation. This is still a controversial [7] topic. In four dimensions,

con
icting [2,3] conclusions were drawn from the high-temperature series.

The con�rmation of the �eld-theoretical results would require that an unbiased estimate

of the main power singularity and the power of the logarithmic correction come close to their

predicted values, with errors compatible with (small) higher-order corrections. We propose

here to test the �eld-theoretical results using an expansion in the kinetic term (also called

high-temperature expansion), in a model which is obviously non-trivial in three dimensions,

but where calculations are easier than in nearest-neighbor lattice models.

The hierarchical model [8] is a non-trivial approximation of models with short range in-

teractions, which is well-studied [9,10], and for which we can calculate the high-temperature

expansion [11] to a very large order. The recursion relation which summarizes the renormal-

ization group transformation of this model is closely related to the approximate recursion

formula discussed by Wilson [1]. The qualitative and quantitative aspects of this relationship
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are discussed in Ref. [12].

In recent publications [13,14], we reported results concerning the high-temperature

expansion of Dyson's hierarchical model in three dimensions. We calculated the high-

temperature expansion of the magnetic susceptibility up to order 800 with Ising and Landau-

Ginzburg measures. This allowed us to obtain a value [14] of the critical exponent 
 of 1.300

in D = 3, with estimated errors of order 0.002. This result is consistent with the results

obtained with the �-expansion [9,10].

We found clear evidence for oscillations in the quantity, called the extrapolated slope

[15] (see section below), used to estimate the critical exponent 
. When using a log scale

for the order in the high-temperature expansion, these oscillations become regularly spaced.

Our interpretation of the data was consistent with the hypothesis that the eigenvalues of the

linearized renormalization group transformation are real, but that the constants appearing

in the conventional parametrization of the magnetic susceptibility should be replaced by

functions of �c � � invariant under the rescaling of �c � � by �1, the largest eigenvalue of

the linearized renormalization group transformation. This possibility has been mentioned in

the past by K. Wilson [1] and developed systematically by Niemeijer and van Leeuwen [16].

Our analysis provided good evidence that the oscillations appear with a universal frequency

in good agreement with theoretical expectations, but with a measure-dependent phase and

amplitude.

Subsequently, more e�cient methods of calculation, based on �nite dimensional projec-

tions of the Fourier transform of the recursion formula, were developed. As explained in

detail in Ref. [17], the e�ects of such truncations can be controlled with a precision which

is better than exponential when the dimension of the truncated space increases.

In this paper, we study the high-temperature expansion of Dyson's hierarchical model

in dimension 4. For the sake of completeness, we brie
y review the method of calculation in

section II. The conventional methods [15,18] used to estimate the critical temperature and

a critical exponent from a high-temperature series are reviewed in section III. We show that

in the presence of logarithmic corrections to the scaling laws, the asymptotic behavior of the

corrections is modi�ed. The extrapolated ratio de�ned in Eq. (3.3) provides an estimate of

the critical temperature with corrections of order m�1� (Ln(m))�2, where m is the order in

the high-temperature expansion. In the following, we continue to use the notation m with

the same meaning. Using the expansion of the susceptibility up to order 800, we obtained a

value of the critical temperature which agreed with the high-precision determination of Ref.

[17] with errors of less than one part in 10,000. On the other hand, the extrapolated slope

de�ned in Eq. (2) estimates the critical exponent minus one with corrections which are only

suppressed by (Ln(m))�1. If this weak suppression is not recognized, one may conclude that

the critical exponent 
 takes a value larger than the trivial one. More generally, asymptotic

analysis is not adequate to distinguish between a value of 
 close to 1 and a correction to

the scaling laws which is less singular than a power.

In section IV, we analyze the high-temperature expansion of the susceptibility without

relying on the asymptotic behavior of the coe�cients. We use h(m) � (rm�c � 1)m, a

function which represents the di�erence between the ratio of successive coe�cients rm and

its asymptotic value ��1c . The function h(m) can be calculated exactly using either the

empirical series or the series corresponding to a given assumption on the analytical form of

the susceptibility. Taking the sum over a large range of m of the square of the di�erences
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between these two values of (h(m))�1, one can get an error function which indicates how

good the analytical assumption is. We found that the parametrization

� = (�c � �)�
(A0(���1Ln(1�
�

�c
))p + A1) (1.1)

provides very good �ts of the data for 
 ' 1 and p ' 1
3
, which is the �eld-theoretical [5]

result. In order to decide how accurate the agreement is, we have considered �xed values

of 
 in the vicinity of 1 and equally spaced by 10�4 steps. For each of these values, we

have determined the values of p and A1=A0 which minimize the error function. This error

function behaves like a paraboloid near its minimum at 
 = 0:9997 and p = 0:3351, in good

agreement with the �eld-theoretical calculation. The errors on this estimate are mostly

systematic. To get more accurate results, one needs to replace the constant A1 by a slowly

varying function.

Another quantity which can be studied using the high-temperature expansion is the

dimensionless renormalized coupling constant [19], denoted �4 hereafter, obtained by multi-

plying the connected four-point function at zero momentum by the eighth (D+4 in general)

power of the renormalized mass. For D < 4, this quantity is designed to have a �nite and

non-zero limit when � ! �c. In the case D = 4, we have checked with good accuracy [17]

that �4 goes to zero like (Ln(�c � �))�1 for the model studied here. The calculation of the

HT coe�cients of �4 involves the subtraction of the disconnected part and su�ers the same

type of numerical problems as the direct calculation of �4, as discussed in Ref. [17]. For this

reason, we were only able to extract a series of 30 coe�cients. The analysis of this series is

consistent with the fact that �4 goes to zero when � ! �c (triviality), but it is not possible

to distinguish a (Ln(�c � �))�1 approach to zero from a (�c � �)1=2 approach, which would

be necessary to establish whether or not hyperscaling holds. This question has been settled

in Ref. [17], and this section illustrates the inconclusiveness of results obtained from short

series.

In conclusion, we have shown that by using su�ciently long series and methods of analysis

not relying on an asymptotic expansion, it is possible to obtain very good agreement between

calculations based on �eld theory and those based on high-temperature expansion in the

upper critical dimension. We emphasize that the main interest of the high-temperature

expansion is to allow us to probe global features of the renormalization group 
ows which

cannot be approached using renormalized perturbation theory or an analysis of the linearized

behavior near the �xed point. An example of such a global feature is the existence of log-

periodic oscillations [13,14], which play an important role in D = 3, but have an almost

negligible e�ect in D = 4, as shown in section III. Another example of a global feature

could be the existence of a non-trivial �xed point. The good agreement found in section IV

makes this possibility very implausible for the model studied here.

II. CALCULATIONS OF THE HT COEFFICIENTS

The calculation of the high-temperature expansion of the unsubtracted 2k-point functions

of Dyson's hierarchical model can be performed iteratively using the basic recursion formula

in its Fourier form [11]. This method has been discussed extensively in Refs. [13,14]. For
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the sake of being self-contained, we brie
y explain the basic method of calculation. More

details, justi�cations, and motivations can be found in Refs. [4,13,14].

The recursion formula for the rescaled Fourier transform Rn(k) of the local measure for

blocks of 2n sites reads

Rn+1(k) = Cn+1 exp(�
1

2
�(

c

4
s2)n+1

@2

@k2
)(Rn(

k

s
))2 ; (2.1)

where c is an adjustable parameter which takes the value 21�
1

D , in order to approximate

D-dimensional models. In the following, we will only consider the case D = 4, which means

c =
p
2. The rescaling operation commutes with iterative integrations, and the rescaling

factor s can be �xed at our convenience. In order to obtain stabilized expressions in the

high-temperature phase, we will take s =
p
2 in the following. We �x the normalization

constant Cn in such way that Rn(0) = 1. Rn(k) then has a direct probabilistic interpretation.

If we callMn the total �eld
P
�x inside blocks of side 2

n, and < ::: >n the average calculated

without taking into account the interactions among these blocks, we can write

Rn(k) =
1X
q=0

(�ik)2q
2q!

< (Mn)
2q >n

2qn
: (2.2)

We see that the Fourier transform of the local measure obtained after n iterations generates

the zero-momentum Green's functions calculated with 2n sites. All the calculations done

here use an initial Ising measure, which means that R0(k) = cos(k). Since we are interested

in the leading singularity, this choice should play no role [19] in the discussion.

The high-temperature expansion of the zero-momentum Green's function can be obtained

from an expansion of Eq. (2.1) in powers of �. The most important sources of errors are

the round-o� errors. After 100 iterations, the relative errors on the mth coe�cient [14] are

of the order of m � 10�15. With the choice s =
p
2, the coe�cients reach a �nite value in

the in�nite volume limit. Actual computations are made at large but �nite volume (i. e. at

�nite n). The relative di�erence between the coe�cients at �nite and in�nite n goes to zero

[11] like ( c
2
)n. For D = 4, the choice n = 100 means that ( c

2
)n = 2�50, which is smaller than

the numerical errors.

Such a calculation is in general time-consuming when one wants to calculate more than

100 coe�cients. It is, however, possible to save time by using �nite dimensional approxima-

tions [17] of degree l for the generating function:

Rn(k) = 1 + an;1k
2 + an;2k

4 + :::::+ an;lk
2l ; (2.3)

with l much smaller than the required dimensionm+1 necessary for an exact [11] calculation.

After each iteration, non-zero coe�cients of higher order (an+1;l+1 etc. ) are obtained, but

set to zero in the next iteration. The l-dependence of the high-temperature coe�cients of

the susceptibility is discussed in Ref. [17]. If b(l)m denotes the value of bm in a truncated space

of dimension l, we found that

b(l)m = bm(1� l�jsjl+q); (2.4)

where s and i are, respectively, the slope and intercept of the corresponding �tted line,

as shown in Fig. 1. The intercepts are approximately 2.3, while the slopes depend on m.
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Eq. (2.4) represents suppressions which are better than exponential. From this �gure, we

can check, for instance, that for m = 400 (which is the maximal value used in section IV),

the extrapolated errors at l = 40 are signi�cantly lower than the numerical errors. Using

extrapolation in m, it was estimated in Ref. [17] that in the case D = 4, l = 38 was su�cient

to calculate b1000.

In summary, the following calculations will be performed with l = 50 and n = 100. The

above discussion shows that this choice guarantees that the systematic errors are smaller

than the numerical errors.

III. THE LIMITATION OF THE ASYMPTOTIC ANALYSIS IN PRESENCE OF

CONFLUENT LOGARITHMIC SINGULARITIES

In this section, we study the singularities of the susceptibility using its high-temperature

expansion

�(�) =
1X
m=0

bm�
m: (3.1)

We de�ne rm = bm=bm�1, the ratio of two successive coe�cients. When D < 4, one expects

[19] that

� = (�c � �)�
(A0 + A1(�c � �)� + ::::) ; (3.2)

and it is convenient to introduce quantities [15] called the extrapolated ratio ( bRm) and the

extrapolated slope ( bSm) in order to estimate �c and 
. These quantities are de�ned as

bRm = mrm � (m� 1)rm�1 ; (3.3)

and

bSm = mSm � (m� 1)Sm�1 ; (3.4)

where

Sm = �m(m� 1)(rm � rm�1)=(mrm � (m� 1)rm�1) (3.5)

is called the normalized slope. When A0 and A1 are constant, one �nds [15] that the 1=m

corrections disappear:

bSm = 
 � 1�Bm�� +O(m�2): (3.6)

However, for the hierarchical model in D = 3, large oscillations were observed [13] inbSm and it was recognized [13,14] that A0 and A1 should be considered as functions of

�c � � invariant under the rescaling of �c � � by �1, the largest eigenvalue of the linearized

renormalization group transformation. The asymptotic analysis (when m becomes large) of

the extrapolated slope in this modi�ed situation is given in section 3 of Ref. [14]. It was

found that 1=m corrections with rather large coe�cients reappeared. Nevertheless, it was

possible to extract the critical exponent 
 with estimated errors of 0.2 percent.
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The situation is very di�erent in D = 4, as shown in Fig. 2. The oscillations are barely

visible for low values of m, and not visible at all for larger m, where bSm appears to decay

smoothly. If the parametrization of Eq. (3.2) and its corollary Eq. (3.6) applied, one might

conclude that 
 is close to 1.05. However, if we plot the inverse of ( bSm)�1 versus Ln(m),

we �nd the linear behavior shown in Fig. 3. This shows that bSm decays like 1=Ln(m), so

Eq. (3.6) does not provide an adequate description of the situation. The deviation from the

linear behavior shows an interesting �ne structure shown in Fig. 4. For m near 400 (Ln(m)

near 6), ones sees that the amplitude of oscillation is almost four orders of magnitude smaller

than ( bSm)�1 itself. For such a values of m, the numerical errors become comparable with

the oscillations. For larger values of m, the numerical errors become larger and wash out the

oscillations. The numerical errors on ( bSm)�1 in D = 4 are of the same order of magnitude as

what we would estimate in D = 3 from the error analysis of Ref. [14] . The main di�erence

is that the oscillations have a much smaller amplitude in D = 4. In the following, we will

treat the oscillations on the same footing as the numerical errors, which is justi�ed for m

su�ciently large.

We will now revisit the asymptotic analysis of bRm and bSm in a more general case than

Eq. (3.2) with A0 and A1 constant. Our main assumption will be that

�(�) = (1� �

�c
)�
G(1� �

�c
) ; (3.7)

where G is such that

limm!1

G0( 

m
)

mG( 

m
)
= 0 : (3.8)

This restriction includes the case where G(1� �

�c
) grows like a positive power of a logarithm

when � goes to �c. We then proceed as in ref. [18] and explain the principle of the asymptotic

expansion. We use the residue theorem in the complex � plane to get an integral representa-

tion of the coe�cients. Next we treat the integral with the steepest descent method. Using

an exponential parametrization for the integrand of the mth coe�cient, one �nds that the

phase has a maximum for a value of y = �

�c
such that

y(



1� y
� G0(1� y)

G(1� y)
) = m + 1 : (3.9)

The basic principle of calculation is that the second term of the l. h. s. of this equation can

be treated as a perturbation, for m su�ciently large. Neglecting this second term, we get

y = 1� 


m
+ O(

1

m2
) : (3.10)

Eq. (3.8) is then seen as the condition which allows us to treat the second term of the l.

h. s. of Eq. (3.10) as a perturbation. Finally, one �nds [18] that for large m, the leading

contribution to the mth coe�cient has the form

bm / ��mc m
�1G(



m
) : (3.11)
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Before going further, we introduce a parametrization of the ratio of successive coe�cients:

rm = (
1

�c
)(1 +

1

m
h(m)) : (3.12)

This de�nition is independent of any kind of expansion. From Eq. 3.11, we found the

asymptotic estimate

h(m) = (
 � 1� 


m

G0( 

m
)

G( 

m
)
) + ::: (3.13)

If we consider the case

G(x) / (�Ln(x))p ; (3.14)

we obtain

bRm = (
1

�c
)(1 +O(

1

m(Ln(m))2
)) ; (3.15)

and

bSm = 
 � 1 +O(
1

Ln(m)
) : (3.16)

From this, we can conclude that under the assumption of Eq. (3.14), asymptotic analysis

justi�es using bRm as an estimator for 1
�c
, with estimated errors on the order of 10�4. This

quantity is displayed in Fig. 5. As expected, no oscillations are visible. The change between

m = 200 and m = 800 is less than 10�4, which is consistent with 1
m(Ln(m))2

corrections. If

we use bR800 as our best estimate, we obtain �c = 0:665548, which is in good agreement with

our accurate calculation [17], where we found �c = 0:6654955715318593. The discrepancy

has the same order of magnitude as the small variations noted above.

On the other hand, for bSm, the corrections to 
 � 1 are not very small. For instance,

for m = 800, (Ln(m))�1 ' 0:15, and it seems implausible that one could establish that

j
 � 1j < 10�3 on the grounds of an expansion in this not-very small parameter. More

generally, it takes exponentially large m for the \corrections" in (Ln(m))�1 to become

smaller than the \leading" 
 � 1 when this quantity is small. Thus it seems desirable

to use non-asymptotic methods, the subject of the next section.

IV. A DIRECT ESTIMATION OF THE CRITICAL EXPONENTS

In this section, we propose to use direct calculations of h(m), de�ned as

h(m) = (rm�c � 1)m : (4.1)

This quantity can be calculated exactly under some assumption regarding the susceptibility,

and calculated exactly from the empirical series. We emphasize that h(m) is de�ned from

Eq. (3.12) and its calculation does not require any kind of expansion. However, we need to
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provide an estimate of �c. In the following, we will take the most accurate value [17] of �c
quoted in the previous section rather than the approximate values obtained from bRm.

A simple assumption on the leading singularity of the susceptibility in D = 4 is given by

the result of a �eld-theoretical calculation [5]

� = (�c � �)�1(A0(jln(�c � �)j) 13 ) : (4.2)

This lowest-order result would also be obtained for Dyson's model, because at this order,

numerical factors (integrations over the angles), which are model-dependent, cancel. Given

that rm is the ratio of two successive coe�cients, it is independent of A0 and it transform

as rm ! rms
�1 under a rescaling � ! s�. Consequently, rm�c is independent of the choice

of A0 and �c. We have thus calculated h(m) from the expansion of

f(x) = (1� x)�1(� ln(1� x)

x
)
1

3 (4.3)

in x, about x = 0. The variable x stands for �=�c. The division by x does not change

the leading singularity [3] when x ! 1 while providing a regular expansion around x = 0.

Under the assumption of Eq.(4.2), we �nd from Eq.(3.13) that asymptotically h(m) tends

to a small and possibly zero constant plus a correction which decays like 1
Ln(m)

. It is thus

natural to plot (h(m))�1 versus Ln(m). Such a plot is provided in Fig. 6, where we compare

with (h(m))�1 calculated directly from the D = 4 HT series, using the de�nition Eq. (4.1).

The two (approximate) lines are separated by an almost constant gap. We tried to modify

the assumption Eq. (4.3) in such way that the two lines coincide. The only satisfactory

solution we found was the modi�ed assumption

f(x) = (1� x)�1((� ln(1� x)

x
)
1

3 + r) ; (4.4)

where r has to be determined by an error-minimization procedure which we now proceed to

explain.

For notational purposes, we call t(m) the \true" value of (h(m))�1 obtained from the HT

series and a(m) the value of (h(m))�1 corresponding to an assumed series such as the one

obtained from Eq. (4.4). In practical calculations, we have used the instruction Series in

Mathematica to calculate a(m). It should be noted, that for large orders, rational values of

the exponents give better numerical results. In addition, if the denominator of this rational

exponent gets too large (typically 107 for a calculation up to order 400), one runs out of

memory. This procedure is quite time-consuming when one goes to large order. Since such

a calculation will have to be repeated many times in the rest of this section, we have used

the region 300 � m � 400 to evaluate the discrepancy between a(m) and t(m). As we can

see from the discussion of section III, in this range the oscillations are already small and

the numerical errors not too large yet (see Fig. 4). We have thus determined the parameter

r in Eq. (4.4) by minimizing

E =
m=400X
m=300

(t(m)� a(m))2 : (4.5)

The values of E for values of r separated by 0.001 are shown in Fig. 7. The curve can be

�tted very well by a parabola. The minimum of this parabola is then determined analytically
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from the three values de�ning the �tting parabola. This allows us to �nd the value of r

with a precision of 10�6, three orders of magnitude smaller than the original resolution. The

value of r minimizing E found with this procedure is -0.435622, corresponding to a value

of E of order 10�4. Subsequently, we checked this answer by repeating the calculation of E

with a resolution 10�6 in r and found the same answer. For this value of r, t(m) and a(m)

cannot be distinguished in a graph like Fig. 6. The di�erence between a(m) and t(m) is

shown in Fig. 8. In the region where the �t was performed (300 � m � 400), the di�erences

are 4 orders of magnitude smaller than the values themselves.

We conclude from this analysis that Eq. (4.4) is a very good guess concerning the leading

and subleading singularities of the susceptibility. However, we would like to see if it remains

the best guess if we allow the exponents to change. In other words, we would to see if

di�erent values of the exponents could also be acceptable from the point of view of the

high-temperature expansion. We have thus considered a more general assumption:

f(x) = (1� x)�
((� ln(1� x)

x
)p + r) (4.6)

and studied E as a function of 
, p, and r.

Near a minimum, E behaves generically as a three-dimensional paraboloid. In this

region, one can \eliminate" r by �xing its value in such a way that E is minimized with


 and p kept constant. The variable r is thus replaced by a linear combination of 
 and

p plus a constant and we can then work with a two-dimensional paraboloid. A section of

this paraboloid de�ned by the condition 
 = 1 is shown in Fig. 9. In a second step, one

can similarly eliminate p with 
 �xed by requiring that it takes the 
-dependent value that

minimizeE. In the case 
 = 1 illustrated in Fig. 9, this value of p is 0.32775, not far from the

expected [5] value 1
3
. This show incidentally that a biased estimate of p is in good agreement

with the �eld-theoretical result. Taking values of 
 separated by 10�4, we have similarly

calculated the value of p given by the minimization condition. The results are shown in Fig.

10. The linear behavior was expected: since near the minimum E is a quadratic form, the

minimization condition is linear. Using this linear relation to eliminate p, E(
) becomes a

parabola. The minimum value taken by this function is then the minimum of the initial

function E(
; p; r). This function is shown in Fig. 11. E is minimized for 
 = 0:9997, which

according to Fig. 10 corresponds to a value of p of 0.3351.

In practical calculations, it is convenient to replace parabolic �ts by successive appli-

cations of Newton's method. This method has an adjustable resolution and it allows one

to start in regions away from the minimum, and where the parabolic behavior does not

necessarily hold.

It is di�cult to estimate the errors on our result. Since the parabolas shown above are

reasonably smooth, it seems unlikely that the numerical errors or the oscillations, which

should have about the same size, play any signi�cant role. Most likely, the main source

of error is that r has been considered as a constant. If instead we allow r to be a slowly

varying function of �, we expect in a model independent way, that these slow variations in

� will induce slow variations in m of the quantity (h(m))�1. In the interval of m considered

for the calculation of E, the slow variations can be approximated with polynomials. In

order to get an idea about how low E could become under such a circumstances, we have

�tted the di�erences between t(m) and a(m) displayed in Fig. 8 and calculated the value
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of E obtained after subtracting these �ts from the original di�erences. For a linear �t, we

obtained E = 6 � 10�8 and for a quadratic �t E = 8 � 10�10. This shows that by keeping


 = 1 and p = 1=3 and allowing r to to be a slowly changing function written in terms

of parameters which are adjusted to minimize E, we can obtain values of E comparable to

those obtained by keeping r as a constant and allowing 
, p and r to be adjusted in order

to minimize E. For de�niteness, with 
 = 1 and p and r varied to minimize E, we obtain

E = 6 � 10�9. Varying 
; p and r, we obtain E = 4 � 10�10. In conclusion, if we want a

more precise estimation of the critical exponents, we also need more information regarding

the �-dependence of the subleading singularities.

V. TRIVIALITY AND HYPERSCALING

Another quantity which can be studied using the high-temperature expansion is the

dimensionless renormalized coupling constant [19]

�4 = �Gc
4m

D+4
R ; (5.1)

where Gc
4 is the the zero-momentum connected Green's function and mR the renormalized

mass. For D < 4, this quantity is designed to have a �nite limit when � ! �c. In the case

D = 3, we have checked [17] by a direct calcualtion that �4 reaches the value 1.92786 when

� ! �c. In the case D = 4, we have checked with a good accuracy that, in the same limit,

�4 goes to zero like (Ln(�c � �))�1. Thus we have direct evidence that in these two cases

the power singularities cancel in Eq. (5.1) | in other words, that hyperscaling holds.

Bearing in mind that there is no wave function renormalization (� = 0) in the hierarchical

model, we will de�ne as in Ref. [17] that �4 is the limit where n!1 of

�4;n =
< M4

n >n �3(< M2
n >n)

2

2n(<M
2
n>n

2n
)
D

2
+2

; (5.2)

with the same notation as in Eq. (2.2). Equivalently, with the rescaling factor �xed to

s =
p
2 in Eq. (2.1) and the convention of Eq. (2.3),

�4;n = 12
a2n;1 � 2an;2

(�2an;1)
D

2
+2
2n : (5.3)

The calculation of the HT coe�cients of �4 involves the subtraction of the disconnected

part and it su�ers the same type of numerical problems as the direct calculation of �4, as

discussed in Ref. [17]. For this reason, we were only able to extract a series of 30 coe�cients.

The quantity h(m) de�ned in Eq. (4.1) corresponding to this series is displayed in Fig. 12.

The �gure indicates that this quantity has damped oscillations. The average value of h(m)

in the displayed interval is -1.4. From Eq. (3.13), this is consistent with the fact that �4 has

a �nite limit when � ! �c, but it not possible to distinguish a (Ln(�c � �))�1 approach to

zero from a (�c��)1=2 approach. For comparison, we have displayed in Fig. 12 the function

h(m) corresponding to the series generated by �x=Ln(1�x) and (1�x)
1

2 , x being short for
�

�c
. It is clear that the oscillations make the discrimination between these two asumptions

impossible.
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Another way of seeing that the series is too short to describe the details of the behavior

near �c is to plot the truncated expansion of �4 up to order 30. This is done in Fig. 13.

The HT expansion indicates correctly that �4 goes to zero when � increases. However, the

behavior near �c is not accurate. For comparison, Fig. 13 also shows the leading critical

behavior estimated in Ref. [17], namely

�4 '
1

�1:955� 0:746� Ln(�c � �)
: (5.4)

The data interpolates nicely between the two types of behavior, but we see that there is no

region in the �gure where they overlap. The order 30 HT expansion gives accurate results

for �c � � > 3� 10�2, while Eq. (5.4) becomes accurate when �c � � < 10�3.

In summary, the truncated expansion makes clear that �4 goes to zero when � ! �c. In

other words, the theory is trivial. However, the series is too short to extract accurately the

precise way it approaches zero, and one cannot decide from this information whether or not

hyperscaling holds.

VI. CONCLUSIONS

There have been questions [6] in the past regarding possible discrepancies between �eld-

theoretical calculations based on the renormalization group approach and calculations based

on the high-temperature expansion. Using a scalar model in the upper critical dimension,

where all the conventional expansions can be compared with direct calculations, we claim

that the �eld-theoretical result concerning the leading singularity of the two-point function

at zero momentum given in Eq. (4.2) can be reproduced very well by the high-temperature

expansion.

Using a parametrization of the subleading singularities depending on a single constant

r, we obtained an optimal agreement for the choice 
 = 0:9997 and p = 0:3351. With this

choice, the error on (h(m))�1 de�ned in section IV, is less than one part in a million for

300 � m � 400. The small discrepancies between our estimate of the critical exponents and

the �eld-theoretical values 
 = 1 and p = 1=3 are not signi�cant because it is possible to

show that small changes in the exponents and allowing r to slowly vary have comparable

e�ects for the quality of the �t.

The present study shows that the use of asymptotic analysis or the use of a short series

can be misleading. Given the length of the series available, asymptotic analysis may be useful

for order of magnitude estimates but not for an accurate determination of the exponents.

There is still room for improvement. One could use calculations at �xed � to study the

corrections to the parametrization of Eq. (4.6). This procedure could be pursued up to the

point where the main source of errors would be the numerical errors on the coe�cient.

The use of the high-temperature expansion allows us to probe global features of the

renormalization group 
ows which cannot be approached using renormalized perturbation

theory or an analysis of the linearized behavior near the �xed point. In particular, our

analysis makes implausible, for the model considered here, unconventional possibilities such

as the existence in the upper critical dimension of a non-trivial �xed point characterized by

non-trivial exponents.
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FIGURES
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FIG. 1. l-dependence of the high-temperature coe�cients b
(l)
m calculated in truncated spaces of

dimension l.

15



.bb .bb

FIG. 2. The extrapolated slope bSm versus the order m in the HT expansion.

16



.bb .bb

FIG. 3. The inverse extrapolated slope bSm versus the order m in the HT.
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FIG. 4. Di�erence between bS�1m and a linear �t in Ln(m).
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FIG. 5. The extrapolated ratio bRm versus the order m in the HT expansion.
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FIG. 6. (h(m))�1 versus Ln(m) from Eq. (4.3) (large circles, above) and from the actual HT

series (small circles, below).
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FIG. 7. The function E de�ned in Eq. (4.5) versus r, with a(m) calculated from Eq. (4.4)
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FIG. 8. a(m)� t(m) versus m for a(m) calculated with r = �0:435622 in Eq.(4.4)
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FIG. 9. The function E versus p with 
 = 1 and r chosen to minimize E.
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FIG. 10. Values of p minimizing E at given 
 and optimum r.
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FIG. 11. The function E versus 
 with values of p and r chosen to minimize E.
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FIG. 12. The function h(m) corresponding to the HT expansion of lambda4 (dots) compared

to the same function for �x=Ln(1� x) (circles) and (1� x)
1

2 (squares).
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FIG. 13. �4 versus �, exact (dots), with the HT expansion up to order 30 (dashed) and in

leading singularity (line).
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