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Abstract

We compute the structure function g2 for a gluon target in perturbative

QCD at order �S. We show that its �rst moment vanishes, as predicted by the

Burkhardt-Cottingham sum rule.
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A computation of the structure function g2 for a target quark at order �S in

perturbative QCD has been performed in ref. [1]. The interest in that computation

was mainly driven by the possibility of performing a direct test of the validity of the

Burkhardt-Cottingham (BC) sum rule [2] in perturbative QCD. The BC sum rule

states that Z
1

0

dx g2(x;Q
2) = 0 (1)

on the basis of general arguments about the analytic structure in the complex � �

Q2=(2x) plane of the amplitude whose imaginary part gives g2 (a detailed discussion

on the derivation and the validity of the BC sum rule is given in ref. [3]). It is therefore

interesting to check whether eq. (1) is valid in perturbative QCD. The result of ref. [1]

(later con�rmed in ref. [4]) is that the �rst moment of g2 actually vanishes at order

�S for a massive target quark (at leading order, g2 itself vanishes for a target quark).

In this note we present an analogous calculation for a gluon target. We will show

that also in this case the BC moment vanishes in a wide class of regularization schemes

for the collinear singularities.

Structure functions are de�ned starting from the Fourier transform of the forward

matrix element of the product of two electromagnetic currents between polarized

states:

W ��(p; q; s) =
1

4�

Z
d4x eiqx hp; sjJ�(x)J�(0)jp; si; (2)

where p and s are the target momentum and spin four-vectors, respectively. In the

case of a target gluon, the tensor W �� is given by

W ��(p; q; s) = W ����(p; q)���
�

�; (3)

where the gluon polarization vector � carries the dependence on s. Only the antisym-

metric part of W �� is relevant for the computation of polarized structure functions;

we have

iW
��
A =

1

2
(W �� �W ��) =

1

2
(W ���� �W ����)���

�

� =W ���� 1

2
(���

�

� � ���
�

�); (4)

where in the last step we used the symmetry of W ���� under the simultaneous ex-

changes � $ �; � $ �. We are therefore interested in computing the antisymmetric

part of the gluon polarization density matrix ��� = ���
�

�. To do this, we assume that

the gluon in the initial state is o� the mass shell, p2 6= 0; this allows us to de�ne a

longitudinal spin vector for the gluon:

s� = �N

 
p� �

p2

pq
q�
!
; (5)
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which satis�es the transversity condition ps = 0; � is the gluon helicity, and the

normalization factor N (real and positive) is related to s2 by

N2 = �
s2

p2 ~�2
; (6)

where

~� =

vuut1�
p2q2

(pq)2
=

s
1 +

4p2x2

Q2
; (7)

with the usual de�nitions Q2 = �q2, x = Q2=(2pq). We see that we can choose

N so that js2j = 1, provided s2 and p2 have opposite signs. We can now write the

antisymmetric component of ���
�

� as a function of p and s:

1

2
(���

�

� � ���
�

�) = �
i

2
q
jp2j

�����p
�s�; (8)

the normalization is �xed by the condition that, for p2 ! 0+, the imaginary part of

�12 is equal to ��=2, where � is the gluon helicity.

The structure functions g1 and g2 are conventionally de�ned by means of the

following, general parametrization of iW
��
A :

iW
��
A =

i
q
jp2j

pq
�����q�

"
g1(x;Q

2)s� + g2(x;Q
2)

 
s� �

qs

pq
p�

!#
; (9)

where s is now a generic spin vector (not necessarily longitudinal, since the gluon is

o� the mass shell). One can de�ne projectors P i
��, i = 1; 2 such that

P i
��W

��
A = gi (i = 1; 2): (10)

One possible choice is the following:

P 1

�� = P�1����� q
�

 
p� +

qs

s2
p2

pq
s�
!

(11)

P 2

�� = P�1����� p
�

�
q� �

qs

s2
s�
�
; (12)

with

P = 2
q
jp2jqs

"
1�

p2q2

(pq)2

 
1�

(qs)2

q2s2

!#
: (13)

Notice that P = 0 even for p2 6= 0 if s is purely longitudinal, as one can see using

eqs. (5) and (6); we must assume that s has a transverse component until we have
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projected out the structure functions, which are by construction independent of s.

Collecting everything together, we �nally obtain

g1(x;Q
2) = �P�1���
� q


 
p� +

qs

s2
p2

pq
s�

!
1

2
q
jp2j

�����p�s�W����(p; q) (14)

g2(x;Q
2) = �P�1���
� p


�
q� �

qs

s2
s�

�
1

2
q
jp2j

�����p�s�W����(p; q): (15)

Even before explicitly computingW����, we can check that g1 and g2 given by eqs. (14)

and (15) are indeed independent of s, as they should. In fact, it is easy to prove that

only a term proportional to g��p�q� gives a non-zero contribution to g1, while in the

case of g2 the only surviving term is proportional to g��q�q�. Inserting these terms in

eqs. (14) and (15), the s-dependence is seen to cancel against the factor P�1.

We now proceed to compute W����(p; q). The calculation in this case is much

simpler than in the quark case, because at order �S there are no loop diagrams that

contribute to the relevant amplitude. For this reason, no ultraviolet or soft divergences

are involved. We have

W���� =
1

4�

1

N2

c � 1

X
colour

Z
d�(2)

�
A(1)

�� + A(2)

��

� �
A(1)

�� + A(2)

��

�
�

; (16)

where Nc = 3 is the number of colours, and d�(2) is the two-body phase space. The

amplitudes A(1); A(2) correspond to the diagrams of �g. 1. The singularities that arise

when an on-shell gluon radiates massless quarks in the collinear con�guration may

be regularized either by a non-zero gluon virtuality p2, or by a non-vanishing quark

mass m. We will keep both p2 and m di�erent from zero at this level, and we will

discuss later the behaviour of our results in the limit p2; m2 ! 0. In the photon-gluon

centre-of-mass frame, the momentum k of the produced quark is

k =
E

2
(1; 0; � sin �; � cos �); (17)

where

E2 = (p+ q)2 = p2 +Q2
1� x

x
(18)

and

� =

s
1�

4m2

E2
: (19)

The two-body phase space d�(2) takes the form

d�(2) =
�

16�
d cos �: (20)
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Figure 1: Diagrams contributing to W �� for a gluon target.

The denominators of the virtual quark propagators appearing in the amplitude are

given by

(k � q)2 �m2 = �pq
�
1 + � ~� cos �

�
(21)

(k � p)2 �m2 = �pq
�
1� � ~� cos �

�
: (22)

The phase-space integration is therefore singular for cos � ! �1 when � = ~� = 1, or

equivalently p2 = m2 = 0. The calculation is straightforward (we have performed it

with the help of the algebraic manipulation program MACSYMA); the cos � integra-

tion can easily be performed by observing that, after inserting eq. (16) in eqs. (14)

and (15), the numerator of the integrand expression is a degree-2 polynomial in the

invariants kq, kp and ks. Terms proportional to powers of kq and kp can be integrated

immediately, since their dependence on cos � is given explicitly by eqs. (21) and (22).

Terms containing powers of ks can also be expressed in terms of integrals containing

only kq and kp. Consider for example

I� =

Z
d�(2) f(kp; kq) k�; (23)

where f(kp; kq) is a generic scalar function. The result must be a linear combination

of q� and p�:

I� = Aq� +B p�; (24)

and the scalar coe�cients A and B can be obtained by solving the system

Aq2 +B pq = q�I
� (25)



{5{

Apq +B p2 = p�I
�; (26)

so that, �nally,

s�I
� =

Z
d�(2) f(kp; kq) ks = Aqs: (27)

Terms proportional to (ks)2 can be treated in a similar way. Therefore, all phase-space

integrals are of the type

Z
1

�1

d cos � (1 + � ~� cos �)a(1� � ~� cos �)b; (28)

with a and b integers between �2 and 2. We obtain the following results:

g1 = �
e2�S

8�

1

~�4x

"
�

1� �2 ~�2
(4 ~�4x2 � 8�2 ~�2x2 � 8~�2x2 + 12x2 � 2�2 ~�4x

�6~�4x + 8�2 ~�2x+ 12~�2x� 12x� ~�6 + 2�2 ~�4 + 3~�4 � 2�2 ~�2 � 5~�2 + 3)

�
L

2~�
(4 ~�4x2 � 8~�2x2 + 12x2 � 4~�4x+ 12~�2x� 12x� ~�6 + 3~�4 � 5~�2 + 3)

#

(29)

g2 = �
e2�S

8�

1

~�4x

"
�

1� �2 ~�2
(8�2 ~�2x2 + 4~�2x2 � 12x2 + 2�2 ~�4x

+2~�4x� 8�2 ~�2x� 8~�2x+ 12x� 2�2 ~�4 � ~�4 + 2�2 ~�2 + 4~�2 � 3)

�
L

2~�
(4 ~�2x2 � 12x2 � 8~�2x + 12x� ~�4 + 4~�2 � 3)

#
; (30)

where e is the electric charge of the produced quark in units of the positron charge,

�S is the strong coupling, and

L = log
1 + � ~�

1� � ~�
: (31)

The collinear singularities are collected in the factor L, which diverges logarithmically

when both m2 and p2 go to zero. The structure function g1 was �rst computed in

ref. [5] for m = 0, p2 < 0. The general case m2 6= 0; p2 6= 0 was considered in

ref. [6]. Our result for g1, eq. (29), is di�erent from the analogous formula obtained

in ref. [6]. The origin of this discrepancy is the fact that the operator used in ref. [6]

to obtain g1 from W
��
A actually projects out the desired structure function only in

the limit p2 ! 0, while p2 is kept non-zero elsewhere at this stage. However, the �nal
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result of ref. [6] is correct in the physically interesting limit, as we shall see later.

Equation (30), on the other hand, is a new result.

For Q2 !1 with

r =
�p2

m2
(32)

�xed, we �nd

g1 = �
e2�S

4�

"
4rx3 � 6rx2 + 2rx� 4x + 3

rx2 � rx� 1
� (2x� 1)L

#
(33)

g2 = +
e2�S

4�

"
6rx3 � 10rx2 + 4rx� 4x + 3

rx2 � rx� 1
� (2x� 1)L

#
: (34)

In this limit, L takes the form

L = log
Q2

m2
� log

�
rx2 +

x

1� x

�
: (35)

It is interesting to notice that the terms proportional to L, which contains the collinear

divergence, cancel in the sum g1 + g2.

As a test of the correctness of our calculation, we can check that we reproduce

the known results for g1. Indeed, eq. (33) gives

r = 0 : g1 =
e2�S

4�

"
�4x + 3 + (2x� 1)

 
log

Q2

m2
� log

x

1� x

!#
; (36)

Z
1

0

dx g1(x;Q
2) = 0; (37)

r!1 : g1 =
e2�S

4�

"
�4x + 2 + (2x� 1)

 
log

Q2

�p2
� logx2

!#
; (38)

Z
1

0

dx g1(x;Q
2) = �

e2�S

4�
; (39)

which coincide, for example, with the results of ref. [6]. The fact that di�erent choices

of the regularization scheme lead to di�erent results for g1 (and in particular for its

�rst moment) has important physical implications, and has been widely discussed in

the literature [7].

We now turn to the structure function g2. From eq. (34) we get

r = 0 : g2 =
e2�S

4�

"
4x� 3� (2x� 1)

 
log

Q2

m2
� log

x

1� x

!#
; (40)

r!1 : g2 =
e2�S

4�

"
6x� 4� (2x� 1)

 
log

Q2

�p2
� logx2

!#
: (41)
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The �rst moment of g2 vanishes in both cases; actually, it is easy to prove, using

eq. (34), that Z
1

0

dx g2(x;Q
2) = 0 (42)

for all values of r. Therefore we conclude that the BC sum rule is satis�ed also by

the gluon contribution to g2 at order �S, within the class of regularization schemes

we have adopted.

Having computed g2(x;Q
2), its n-th moment

gn
2
=

Z
1

0

dx xn�1 g2(x;Q
2); (43)

can be obtained for any n. In the two cases r = 0 and r !1, the nth moment of g2

is given by

r = 0 : gn
2
=

e2�S

4�

"
4

n+ 1
�

3

n
+

1

n2
�

n� 1

n(n + 1)

 
log

Q2

m2
� S(n)

!#
(44)

r !1 : gn
2
=

e2�S

4�

"
6

n+ 1
�

4

n
�

4

(n + 1)2
+

2

n2
�

n� 1

n(n + 1)
log

Q2

�p2

#
;(45)

where S(n) =
Pn

k=1 1=k. Once again, we see that both expressions vanish when n = 1.

The computation presented here is equivalent to the calculation of gluon coe�cient

functions in the light-cone operator product expansion of W
��
A ; in that case, the

quantities that are directly computed are odd moments of the coe�cient functions;

in the case of g2, only moments for n � 3 are obtained, and therefore no direct test

of the BC sum rule can be performed. Such a calculation was performed in ref. [5] in

the case m = 0, which corresponds to our eq. (45). The two results are in agreement.

In conclusion, we have performed a calculation of the structure function g2 for

a target gluon. We have considered various regularization schemes for the collinear

divergences, and we have found that in all of them the �rst moment of g2 vanishes as

expected.
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