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Abstract

The problem of predicting long-term particle loss in 4D betatronic motion is considered. A

phenomenological scenario is derived through numerical tools based on tracking and frequency

analysis. A three-parameter formula to interpolate the dynamic aperture versus the number of

turns is proposed. The agreement with tracking data is excellent, and the extrapolation for very

high number of turns agrees with the onset of chaos evaluated through the Lyapunov method.
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Introduction

Modern hadron colliders based on superconducting magnets su�er from the unavid-
able e�ect of �eld-shape distortions, particularly harmfull during the injection plateau.
This critical period can last a considerable number of turn making di�cult to evaluate
the single-particle stability with computer tracking simulations. For instance, in the case
of the CERN Large Hadron Collider [1] the injection process will last of the order of 107

turns. On the other hand, numerical simulations based on symplectic tracking can hardly
reach 105�106 turns. In addition, a dense sampling of the phase space is crucial to obtain
signi�cant results from numerical tracking. Three main approaches have been proposed in
the past to speed-up the investigations on beam stability: the determination of the onset
of chaotic behaviour using the maximal Lyapunov exponent [2, 3], the evaluation of the
drift in the space of approximated invariants carefully evaluated through numerical meth-
ods [4], and the visualization of the dynamic aperture reduction with increasing number
of turns through survival plots [6, 7].

In this paper we investigate in an extensive manner the last one using a simpli�ed
model of 4D betatronic motion where the coupling with longitudinal dynamics and the
modulation of the linear frequencies are neglected. We propose some numerical tools and
we derive a phenomenological scenario to interpret the results of our simulations. We recall
a way to de�ne the dynamic aperture [14] and we show how it can be interpolated using a
three-parameter formula that can be interpreted in terms of the Nekhoroshev and KAM
theorem. The interpolation �ts very well with the numerical data and agrees with the
prediction of the onset of chaos provided by the Lyapunov exponent. Additional studies
to check the validity of this scenario in a more realistic accelerator model, describing 6D
motion and includind the ripple e�ect, are in progress [8, 9].

Models

In this paper we restrict ourselves to the analysis of the betatron motion neglecting
the e�ect of coupling with the synchrotron motion. Therefore, the map that simulates
the single-particle dynamics over one turn of the machine has a four dimensional phase
space, and its linear part is the direct product of two rotations of frequencies !

1
and !

2
.

A prototype of these models is the H�enon map that represents a linear lattice with a
sextupole in the one-kick approximation:
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We made several simulations of this model for di�erent values of the linear frequencies.
In this paper we will only present the results relative to this model. Simulations over a
4D model of the LHC have con�rmed the results obtained for the H�enon map [3].

Analysis of the phase space

In this section we review some numerical tools based on frequency analysis [3, 10,
11, 12] to determine the position and the width of resonances in the 4D phase space.
We consider a grid of initial conditions on the plane (x; y), px = py = 0. The numerical

1



method is based on two tools: the orbit of length N associated to each initial condition is
evaluated through the iteration of the map, and then the main frequencies are computed
using an interpolation of the FFT plus Hanning �lter [12]. This methods provides under
some general conditions a precision of the order of 1=N4 for regular trajectories (where
the frequencies are well de�ned). For chaotic orbits the frequencies are not de�ned and
the algorithm provides quantities that can considerably vary along the discrete time N ,
and that do not converge for N !1.

For each intial condition, the simulations provide the number of turns n up to
which the particle is stable and the two nonlinear frequencies (�

1
; �

2
). One can display

this information through the following plots:
{ long-term plot: each initial condition (x; y) is plotted using a di�erent marker ac-
cording to the number of turns n where particle loss occurs. One can visualize the
shape of the dynamic aperture and how it shrinks when the length of the orbit N
increases;

{ tune footprint (or image of the frequency map): the frequencies are plotted in the
frequency space. This provides very relevant information about what part of the
tune diagram is covered by the stable initial conditions. Moreover, depletion regions
around resonance lines indicate that the resonance is excited since there is a strong
phase locking;

{ network of resonances: only the initial conditions that are locked on resonances, i.e.
whose frequencies satisfy

q�
1
+ p�

2
= l + � q; p; l 2 Z (2)

are plotted in the coordinate plane (x; y). We used 2048 iterates and � = 10�4.
This plot provides very relevant information since it directly displays the size of
resonances, their position in phase space, and their relation with the dynamic aper-
ture. Contrary to the tune footprint, this plot is not invariant under the selection
of the initial phases. Nevertheless the plot is invariant under the linear dynamics
and therefore a change in the initial phases does not signi�cantly a�ect the pattern
obtained, leading only to some deformations at high amplitudes. Indeed, one can
produce similar plots in the space of the nonlinear invariants [13] by evaluating them
through numerical methods. In this way one can rigorously measure the position of
the resonances and their width in phase space. We will not use this method since
we are interested only in a qualitative analysis of the phase space dynamics.
In Fig. 1 we show a very dense long-term plot for the H�enon map [see Eq. (1)]

with linear frequencies �x = 0:168, �y = 0:201. A rectangular grid of 250 � 250 initial
conditions is iterated for 108 turns. The di�erent shadows of grey correspond to the
particle loss number. It turns out that one has an inner region where all the particle are
stable for at least 108 turns; such a region features no holes with the used resolution in the
initial conditions scan. Then, one �nds a rather irregular but sharp border of instability:
outside the border, one has a chaotic sea of initial conditions that are lost between 108 and
103� 102 turns; no structure is visible in this region, and neighbour initial conditions can
be lost at number of turns n that may di�er by one or two orders of magnitude. Finally,
there is an outer region of fast particle loss (10� 102 turns) where the dependence of the
initial conditions on n is much smoother, and some structures probably associated with
hyperbolic manifolds are visible.

In Fig. 2 we show the network of resonances of the same model. One �nds very
large resonances that are stable; moreover, the mechanism of particle loss due to the
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di�usion along the resonant channels or due to resonance crossing does not seem to be
very relevant. Indeed, the bulk of long-term losses occur in the wide chaotic band where
no resonance structures are visible. This chaotic band is characterized by isolated points
locked on very low order resonances, that appear in the �gure as a set of scattered dots.
The same analysis has been carried out for other models, and also for a 4D model of the
LHC [3], leading to the same qualitative results. In Figs. 3 and 4 we show the long-term
plot and the resonance network for the H�enon map with linear frequencies �x = 0:201,
�y = 0:112. Also in this case most long-term losses occur in the wide chaotic band localized
at x 2 [0:25; 0:45], y 2 [0:0:3] that can be recognized in the resonance network by the
presence of isolated initial conditions locked on low-order resonances. Moreover, in this
case one has the rather striking presence of a very large resonance that is stable for at
least 107 turns. The size of this resonance cannot be evaluated by analyzing the tune

Figure 1: Long-term plot of the H�enon map at �x = 0:168, �y = 0:201: black dots repre-
sent initial conditions stable up to 108 turns; shadows of grey represent unstable initial
conditions (lighter grey corresponds to shorter stability time).
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footprint, that only displays a strong phase locking around that resonance.
The conclusions of this qualitative analysis are the following:

{ there is a rather sharp border that separates stable from unstable initial conditions
for the considered number of turns (107 � 108);

{ long-term particle losses mainly occur in wide chaotic bands where all the integrable
structure has been wiped out;

{ the mechanism of di�usion along the resonant channels and due to resonance cross-
ing are rather weak.

Dynamic Aperture and Associated Errors

In a previous work [14] we have proposed a de�nition of dynamic aperture as a
function of the number of turns N as the �rst amplitude where particle loss occurs before
N turns, averaged over the phase space. Particles are started along a 2D polar grid in the
coordinate space (x; y):

x = r cos � y = r sin � (3)

and the intial momenta px py are set to zero. Let r(�;N) be the last stable initial condition
along � before the �rst loss at a turn number lower than N occurs. Then the dynamic
aperture is de�ned as

D =

 Z �=2

0

[r(�;N)]4 sin 2�d�

!
1=4

: (4)

Figure 2: Network of resonances of the H�enon map at �x = 0:168, �y = 0:201: black dots
represent initial conditions locked on resonances up to order 15.
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With respect to the approach used in several long-term simulations (see for instance [6, 7]),
where the scan over only one variable is considered in order to speed up simulations, this
de�nition provides a smoother dependence ofD onN , thus allowing to derive interpolating
formulas and to extrapolate them to predict long-term particle loss.

One of the crucial issues in the de�nition of the dynamic aperture is the determi-
nation of the error associated to the estimate in computer simulations. When de�nition
(4) is implemented one has to carry out two discretizations: one over the radial variable
r and one over the angular variable �. Let �r = (rmax � rmin)=Nr and �� = �=2N� be
the step size in r and � respectively. The total error can be obtained using gaussian sum
in quadrature

�D =

vuut @D
@r

�r

2

!
2

+

 
@D

@�

��

2

!
2

: (5)

An approximated formula for the error can be obtained by replacing the dynamic aperture
de�nition with a simple average over �

D =
2

�

Z �=2

0

r(�;N)d� �< r(�;N) > : (6)

Figure 3: Long-term plot of the H�enon map at �x = 0:201, �y = 0:112: empty circles
represent initial conditions stable up to 107 turns; full circles represent unstable initial
conditions (smaller circles correspond to shorter stability times).

5



Using this formula the associated error reads

�D =

s
(�r)2

4
+ < j

@r

@�
j >2

(��)2

4
(7)

and therefore it turns out that the step in r must be equal to the step in � times < j@r
@�
j >

in order to have an optimization of the integration steps.

Prediction based on Lyapunov Exponent

A method that has been used to select chaotic from regular orbits in nonlinear
dynamical systems is based on the evaluation of the maximal Lyapunov exponent [2, 3,
15, 16, 17]. For a given initial condition, the Lyapunov �(N) is evaluated using an orbit of
N turns. The theory states that if limN!1 �(N) = 0, the orbit is regular and therefore the
particle is stable; on the other hand, if the limit is positive, then the particle is chaotic
(i.e., there is sensitivity to initial conditions and exponential divergence of neighbour
trajectories), and therefore it can be lost. The Lyapunov method allows one to determine
the border between chaotic and regular motion. On the other hand, it does not give
information about how this limit is reached when N tends to in�nity.

In Ref. [3] we have proposed an automatic method to select regular from chaotic
orbits based on a threshold on the Lyapunov. Since for regular particles the distance be-
tween neighbour orbits linearly increases with the discrete time N , one can �x a threshold

Figure 4: Network of resonances of the H�enon map at �x = 0:201, �y = 0:112: black dots
represent initial conditions locked on resonances up to order 15.
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according to

��(N) =
1

N
logA�N (8)

If �(N) > ��(N), then the particle is assumed to be chaotic, whilst if �(N) < ��(N) the
particle is regular. The thresholds ��(N) can be determined by the analysis of the distri-
bution of the Lyapunov evaluated at N turns for the chosen set of initial conditions. We
refer to Ref. [3] for more details. It turns out that the thresholds are very well interpolated
by Eq. (8), and that the constant A� seems to depend very weakly on the model. In fact,
we found for all our simulations (H�enon, SPS, LHC 4D, LHC 6D, see Ref. [3]) the value
A� = 0:5.

Prediction based on Extrapolation

During the past years, extensive tracking has been carried out to determine the
long-term stability of both existing and planned machines. A very e�ective way to display
the tracking data is provided by survival plots[6, 7], where the particle loss number n
is plotted versus the initial amplitude A for a given lattice. The obtained pattern is in
general rather irregular; in fact, due to the complicated structure of the chaotic region
(see the previous sections), the dependence of n versus the amplitude is far from being
regular. Therefore, an extrapolation to a larger number of turns is very hard to obtain.
The de�nition of dynamic aperture given in the previous section allows one to make the
survival plot considerably smoother, and therefore an interpolation becomes possible. In
Fig. 5 we show D(N) versus N for the same model of Fig. 1, carrying out simulations up
to 108 turns. A very �ne phase space scan (120 radial steps from 0.3 to 0.8 and 60 angular
step) has been used in order to obtain a very small error (of the order of 1%).

In Ref. [3] we have proposed an "inverse log" behaviour to interpolate the dynamic
aperture:

D(N) = D1

 
1 +

b

logN

!
: (9)

An heuristic interpretation of this formula has been proposed [18] according to two main
theorems of dynamical systems, namely KAM [19] and Nekhoroshev [20, 21, 22, 23] the-
orems. One assumes that the phase space is divided into two regimes:

{ an inner region where almost all the phase space is foliated into KAM tori, except
a very small fraction where the Arnold di�usion can take place over the resonance
web. This region appears in simulations as a \full" domain of initial conditions
stable for extremely high number of turns;

{ an outer region where almost all the foliation of phase space in KAM tori has been
destroyed, and only a wide chaotic sea is left. Since we are close to the last KAM
tori, we assume that in this region the particles escape to in�nity with the rate
provided by the Nekhoroshev estimate:

N(r) = N
0
exp

�
r�

r

�
1=�

; (10)

where N(r) is the number of turns that are estimated to be stable for particles with
initial amplitude smaller than r. The inversion of the above formula provides

r(N) =
r�

log�(N=N
0
)
: (11)
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In order to check out this scenario, we have carried out the following simulations over
the model used in Fig. 1: we choose initial conditions along x = y = A and px = py = 0,
and for each amplitude A we start a dense cloud of initial conditions around A (1000
particles with a neighbourhood size of 10�4). We compute the fraction S(A;N) of the
particles that are stable for at least N turns: assuming that all the chaotic particles are
unstable, the limN!1 S(A;N) is the local fraction S(A) of the phase space foliated into
invariant tori as a function of the amplitude. If the proposed scenario is valid, one should
�nd a good approximation of the theta function, i.e. S(A) should be very close to one for
A < A1, and then it should fall abruptly to zero. The results shown in Fig. 6 for S(A; 10

7)
fully con�rm this scenario: the phase space region where one has comparable probability
of �nding both KAM tori and chaotic regions seems to be very small. Moreover, for
A < A1, S(A; 10

7) is exactly equal to one, i.e. for each A all the 103 particles were found
to be stable. This con�rms that the Arnold di�usion for this kind of models is extremely
weak and therefore is not an important mechanism for the determination of the dynamic
aperture.

Adding the information obtained from the KAM theorem (the existence of a pos-
itive D1) and from the Nekhoroshev theorem (the inverse log decaying of the dynamic
aperture), one obtains the following equation

D(N) = D1

 
1 +

b

log�(N=N
0
)

!
(12)

that reduces to Eq. 9 for N
0
= � = 1. We tried to interpolate the data shown in Fig. 5

Figure 5: Dynamic aperture versus number of turns (dots) for the H�enon map at �x =
0:168, �y = 0:201; analytic interpolation (solid line) and extrapolation at in�nity (dotted
line). Prediction of the chaotic border according to the Lyapunov exponent (stars).
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with this formula using three free parameters D1, b and the exponent �. We �xed N
0
to

one by using the heuristic argument that D(1) =1. In order to �nd a solution, we made
a scan over � and for each � we evaluated D1, and b by solving a linear system. Then we
computed the �2 function, i.e.

�2 =
1

J � 3

JX
j=1

(D(Nj)� D̂(Nj))
2

�i
(13)

where the interpolated dynamic aperture D̂(Ni) according to Eq. (9) is evaluated at the
turn number Ni, and

p
�i is the error estimated through Eq. (7). It turns out that:

{ it is rather di�cult to determine the exponent with a high precision. For instance,
if we consider all the exponents that provide a � smaller than 0:7, that corresponds
in our case of a con�dence level of 95%, we obtain � 2 [0:9; 2];

{ the optimal exponent for our case turns out to be around 1:5. The interpolation is
shown in Fig. 5 as a solid line, and agrees very well with tracking data. The theory
of Nekhoroshev for mappings [23, 22] provides an estimate for the exponent � that is
equal to the number of degrees of freedom plus one, i.e. in our case � = 3. This value
of � does not agree with our simulations. Indeed, a re�ned version of the theorem
[24] leads to the improved estimate � = (1+d)=2, i.e. in our case � = 1:5. This is in
agreement with our simulations; additional checks for higher dimensions would be
highly desirable in order to cross-check the optimal estimate of the exponent with
the validity of our scenario.
We have also computed the estimate of the chaotic border through the Lyapunov

exponent, using the same type of de�nition for the dynamic aperture, where now r(�) the
amplitude of the particle immediately before the �rst particle along � whose Lyapunov is
greater than the threshold. In Fig. 5 we show, together with the tracking data and with

Figure 6: Fraction of the particles stable for 107 turns around the initial condition x =
y = A, px = py = 0 for the H�enon map at �x = 0:168, �y = 0:201.
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the interpolation, the guess provided by the Lyapunov exponent at increasing number
of turns. It turns out that the Lyapunov guess of the chaotic border seems to approach
rather rapidly (when compared to tracking) the dynamic aperture value extrapolated
to in�nity according to our formula. This result con�rms the scenario illustrated in the
previous section. The same simulations have been carried out for two other H�enon maps
with di�erent linear frequencies. The dynamic aperture data, the interpolation and the
Lyapunov prediction are shown in Fig. 7 and 8. The results fully agree with the scenario
described for the previous case.

Conclusion

We have analysed simpli�ed models of the 4D betatronic motion to derive a phe-
nomenological description of the mechanisms of instability and to build numerical meth-
ods to predict long-term particle loss. Long-term tracking of very dense sets of initial
conditions shows that particle loss mainly occurs in macroscopic chaotic bands. Other
mechanisms such as Arnold di�usion or di�usion along resonances are shown to be rather
weak. We also show that the dynamic aperture, computed as an average over the ratio
of emittances, is very well interpolated by an empirical law that can be justi�ed in terms
of KAM and Nekhoroshev theorem. The determination of the exponent in the inverse log
formula is a�ected by a rather large error, but the extrapolation is reliable. Moreover,
the extrapolation for in�nite number of turns agrees well with the guess provided by the
Lyapunov method. Even though relevant studies for the 6D case have been already carried
out [2, 3, 8], we believe that additional analysis should be done, including also the ripple

Figure 7: Dynamic aperture versus number of turns (dots) for the H�enon map at �x =
0:201, �y = 0:168; analytic interpolation (solid line) and extrapolation at in�nity (dotted
line). Prediction of the chaotic border according to the Lyapunov exponent (stars).
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e�ect, in order to see how the presence of an additional degree of freedom modi�es the
proposed scenario and the predictivity of the numerical tools.
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