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1 Dipartimento di Fisica, Universitá di Genova, via Dodecaneso 33, I-16146 Genova
and Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino, Italy

2 Dipartimento di Fisica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino

and Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino, Italy

3 CERN Theoretical Division, CH 1211 Geneva 23, Switzerland

Talk given by S. Ferrara at the
“STRINGS ’97” Conference,

16-21 June 1997, Amsterdam, The Netherlands

Abstract

We report on some general results on the physics of extremal BPS black holes in four and five dimensions. The

duality-invariant entropy-formula for all N > 2 extended supergravities is derived. Its relation with the fixed-

scalar condition for the black-hole “potential energy” wich extremizes the BPS mass is obtained. BPS black holes

preserving different fractions of supersymmetry are classified in a U-duality invariant set up. The latter deals

with different orbits of the fundamental representations of the exceptional groups E7(7) and E6(6). We comment

upon the interpretation of these results in a string and M-theory framework.

∗ Work supported in part by EEC under TMR contract ERBFMRX-CT96-0045 (LNF Frascati, Politecnico di Torino and

Univ. Genova) and by DOE grant DE-FGO3-91ER40662

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25218192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Duality, Central Charges and Entropy of Extremal BPS Black Holes

L. Andrianopolia, R. D’Auriab and S. Ferrarac
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We report on some general results on the physics of extremal BPS black holes in four and five dimensions. The
duality-invariant entropy-formula for all N > 2 extended supergravities is derived. Its relation with the fixed-
scalar condition for the black-hole “potential energy” wich extremizes the BPS mass is obtained. BPS black holes
preserving different fractions of supersymmetry are classified in a U-duality invariant set up. The latter deals
with different orbits of the fundamental representations of the exceptional groups E7(7) and E6(6). We comment
upon the interpretation of these results in a string and M-theory framework.

1. Introduction

In recent time, remarkable results have been
obtained in the study of general properties of
BPS states both in supersymmetric gauge theo-
ries as well as in supersymmetric theories of grav-
ity. The latter are described by string theory and
M-theory [1] whose symmetry properties are en-
coded in extended supergravity effective field the-
ories.

Of particular interest are extremal black holes
in four and five dimensions which correspond to
BPS saturated states [2] and whose ADM mass
depends, beyond the quantized values of electric
and magnetic charges, on the asymptotic value
of scalars at infinity. The latter describe the
moduli space of the theory Another physical rel-
evant quantity, which depends only on quantized
electric and magnetic charges, is the black hole
entropy, which can be defined macroscopically,
through the Bekenstein-Hawking area-entropy re-
lation or microscopically, through D-branes tech-
niques [3] by counting of microstates [4]. It has
been further realized that the scalar fields, in-
dependently of their values at infinity, flow to-
wards the black hole horizon to a fixed value of
pure topological nature given by a certain ratio

of electric and magnetic charges [5]. These “fixed
scalars” correspond to the extrema of the ADM
mass in moduli space while the black-hole entropy
is the value of the squared ADM mass at this
point in D = 4 [6] [7] and the power 3/2 of the
ADM mass in D = 5. In four dimensional the-
ories with N > 2, extremal black-holes preserv-
ing one supersymmetry have the further property
that all central charge eigenvalues other than the
one equal to the BPS mass flow to zero for “fixed
scalars”. This is not true in D = 5 because the
charges transform in the antisymmetric represen-
tation of Usp(N) instead of U(N) as in the four
dimensional cases.

The entropy formula turns out to be in all cases
a U-duality invariant expression (homogeneous of
degree two in D = 4 and of degree 3/2 in D = 5)
built out of electric and magnetic charges and
as such can be in fact also computed through
certain (moduli-independent) topological quanti-
ties which only depend on the nature of the U-
duality groups and the appropriate representa-
tions of electric and magnetic charges. For ex-
ample, in the N = 8, D = 4 theory the entropy
was shown to correspond to the unique quartic E7

invariant built with its 56 dimensional represen-
tation [8]. In this report we intend to summarize
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further progress in this subject by deriving, for all
N > 2 theories in D = 4, 5, topological (moduli-
independent) U-invariants constructed in terms
of (moduli-dependent) central charges and mat-
ter charges, and show that, as expected, they co-

incide with M2
ADM or M

3/2
ADM (in the case of the

four and five dimensional theories respectively),
computed at “fixed scalars”.

The situation of black-hole backgrounds pre-
serving more than 1/8 of the original supersym-
metry (32 charges) is further explored.

Sections 2 and 3 deal with the four and five di-
mensional cases respectively, section 4 describes
the absolute duality invariants, section 5 de-
scribes BPS states preserving more than one su-
persymmetry and section 6 gives a further classi-
fication of BPS states in terms of duality orbits.

2. Central charges, U-invariants and en-
tropy in D = 4

In D = 4, extremal black-holes preserving one
supersymmetry correspond to N -extended multi-
plets with

MADM = |Z1| > |Z2| · · · > |Z[N/2]| (1)

where Zα, α = 1, · · · , [N/2], are the proper val-
ues of the central charge antisymmetric matrix
written in normal form [11]. The central charges
ZAB = −ZBA, A,B = 1, · · · , N , and matter
charges ZI , I = 1, · · · , n are those (moduli-
dependent) symplectic invariant combinations of
field strenghts and their duals (integrated over
a large two-sphere) which appear in the grav-
itino and gaugino supersymmetry variations re-
spectively [12], [13], [14]. Note that the total
number of vector fields is nv = N(N − 1)/2 + n
(with the exception of N = 6 in which case there
is an extra singlet graviphoton)[15].
It was shown in ref. [7] that at the attractor point,
where MADM is extremized, supersymmetry re-
quires that Zα, α > 1, vanish together with the
matter charges ZI , I = 1, · · · , n (n is the num-
ber of matter multiplets, which can exist only for
N = 3, 4)

This result can be used to show that for “fixed
scalars”, corresponding to the attractor point, the

scalar “potential” of the geodesic action [9][10]

V = −
1

2
P tM(N )P (2)

is extremized in moduli space. Here P is the sym-
plectic vector P = (pΛ, qΛ) of quantized electric
and magnetic charges and M(N ) is a symplec-
tic 2nv × 2nv matrix whose nv × nv blocks are
given in terms of the nv × nv vector kinetic ma-
trix NΛΣ (−ImN , ReN are the normalizations of
the kinetic F 2 and the topological F ∗F terms re-
spectively) and

M(N ) =

(
A B
C D

)
(3)

with:

A = ImN +ReN ImN−1ReN

B = −ReN ImN−1

C = −ImN−1ReN

D = ImN−1 (4)

The above assertion comes from the important
identity, shown in ref. [13], [14] to be valid in all
N ≥ 2 theories:

−
1

2
P tM(N )P =

1

2
ZABZ

AB
+ ZIZ

I
(5)

Indeed, let us consider the differential relations
satisfied by the charges [14]:

∇ZAB =
1

2
PABCDZ

CD
+ PABIZ

I

∇ZI =
1

2
PABIZ

AB
+ PIJZ

J
(6)

where the matrices PABCD, PABI , PIJ are the
subblocks of the vielbein of G/H embedded in
USp(n, n) [14]:

P ≡ L−1∇L =

(
PABCD PABJ
PICD PIJ

)
(7)

written in terms of the indices of H = HAut ×
Hmatter . By computing the extremum of (2) and
using equations (5),(6) we obtain

PABCDZABZCD = 0; ZI = 0 (8)

PABCD being the vielbein of the scalar manifold,
completely antisymmetric in its SU(N) indices.
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It is easy to see that in the normal frame these
equations imply:

MADM |fix ≡ |Z1| 6= 0 (9)

|Zi| = 0 (i = 2, · · · , N/2) (10)

The main purpose of this section is to provide
particular expressions which give the entropy for-
mula as a moduli–independent quantity in the
entire moduli space and not just at the criti-
cal points. Namely, we are looking for quanti-

ties S
(
ZAB(φ), Z

AB
(φ), ZI(φ), Z

I
(φ)
)

such that
∂
∂φi

S = 0, φi being the moduli coordinates.
These formulae generalize the quartic E7(7) in-

variant of N = 8 supergravity [8] to all other
cases.

Let us first consider the theories N = 3, 4,
where matter can be present [16], [17].

The U-duality groups are, in these cases,
SU(3, n) and SU(1, 1) × SO(6, n) respectively
(Here we denote by U-duality group the isom-
etry group G acting on the scalars, although
only a restriction of it to integers is the proper
U-duality group [18]). The central and matter
charges ZAB, ZI transform in an obvious way un-
der the isotropy groups

H = SU(3)× SU(n)× U(1) (N = 3) (11)

H = SU(4)×O(n)× U(1) (N = 4) (12)

Under the action of the elements of G/H the
charges get mixed with their complex conjugate.
For N = 3:

PABCD = PIJ = 0 , PABI ≡ εABCP
C
I

ZAB ≡ εABCZ
C (13)

Then the variations are:

δZA = ξAI Z
I

(14)

δZI = ξAI ZA (15)

where ξAI are infinitesimal parameters of K =
G/H. Indeed, once the covariant derivatives are
known, the variations are obtained by the substi-
tution ∇→ δ, P → ξ.

With a simple calculation, the U-invariant ex-
pression is:

S = ZAZA − ZIZ
I

(16)

In other words, ∇iS = ∂iS = 0, where the covari-
ant derivative is defined in ref. [14].

Note that at the attractor point (ZI = 0) it co-
incides with the moduli-dependent potential (2)
computed at its extremum.
For N = 4

PABCD = εABCDP, PIJ = ηIJP

PABI =
1

2
ηIJεABCDP

CDJ
(17)

and the transformations of K = SU(1,1)
U(1) ×

O(6,n)
O(6)×O(n) are:

δZAB =
1

2
ξεABCDZ

CD
+ ξABIZ

I
(18)

δZI = ξηIJZ
J

+
1

2
ξABIZ

AB
(19)

with ξ
ABI

= 1
2η
IJεABCDξCDJ .

There are three O(6, n) invariants given by I1,
I2, I2 where:

I1 =
1

2
ZABZAB − ZIZ

I
(20)

I2 =
1

4
εABCDZABZCD − ZIZ

I
(21)

and the unique SU(1, 1) × O(6, n) invariant S,
∇S = 0, is given by:

S =
√

(I1)2 − |I2|2 (22)

At the attractor point ZI = 0
and εABCDZABZCD = 0, so that S reduces to
the square of the BPS mass.

For N = 5, 6, 8 the U-duality invariant expres-
sion S is the square root of a unique invariant un-
der the corresponding U-duality groups SU(5, 1),
O∗(12) and E7(7). The strategy is to find a
quartic expression S2 in terms of ZAB such that
∇S = 0, i.e. S is moduli-independent.

As before, this quantity is a particular combi-
nation of the H quartic invariants.

For SU(5, 1) there are only two U(5) quartic in-

variants. In terms of the matrix A B
A = ZACZ

CB

they are: (TrA)2, Tr(A2), where

TrA = ZABZ
BA

(23)

Tr(A2) = ZABZ
BC

ZCDZ
DA

(24)
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As before, the relative coefficient is fixed by the

transformation properties of ZAB under SU(5,1)
U(5)

elements of infinitesimal parameter ξC :

δZAB =
1

2
ξCεCABPQZ

PQ
(25)

It then follows that the required invariant is:

S =
1

2

√
4Tr(A2)− (TrA)2 (26)

For N = 8 the SU(8) invariants are:

I1 = (TrA)2 (27)

I2 = Tr(A2) (28)

I3 = Pf Z

=
1

244!
εABCDEFGHZABZCDZEFZGH (29)

The
E7(7)

SU(8) transformations are:

δZAB =
1

2
ξABCDZ

CD
(30)

where ξABCD satisfies the reality constraint:

ξABCD =
1

24
εABCDEFGHξ

EFGH
(31)

One finds the following E7(7) invariant [8]:

S =
1

2

√
4Tr(A2)− (TrA)2 + 32Re(Pf Z) (32)

The N = 6 case is the more complicated because
under U(6) the left-handed spinor of O∗(12) splits
into:

32L → (15, 1) + (15,−1) + (1,−3) + (1, 3) (33)

The transformations of O∗(12)
U(6) are:

δZAB =
1

4
εABCDEF ξ

CDZ
EF

+ ξABX

δX =
1

2
ξABZ

AB
(34)

where we denote by X the SU(6) singlet. The
quartic U(6) invariants are:

I1 = (TrA)2 (35)

I2 = Tr(A2) (36)

I3 = Re(Pf ZX)

=
1

233!
Re(εABCDEFZABZCDZEFX) (37)

I4 = (TrA)XX (38)

I5 = X2X
2

(39)

The unique O∗(12) invariant is:

S =
1

2

√
4I2 − I1 + 32I3 + 4I4 + 4I5 (40)

∇S = 0 (41)

Note that at the attractor point Pf Z = 0, X = 0
and S reduces to the square of the BPS mass.

We note that in the normal frame the transfor-
mations of the coset which preserve the normal
form of the ZAB matrix belong to O(1, 1)3 both
for N = 6 and N = 8 theories. The relevant
O(1, 1)3 transformations can be read out from
eqs. (30), (34) going to the normal frame. The
ensuing transformations correspond to commut-
ing matrices which are proper, non compact, Car-
tan elements of the coset algebra of N = 8, N = 6
respectively[20].

3. The attractor point condition in D = 5

In this section we extend the previous analysis
to the D = 5 dimensional case, for theories with
N > 2 supersymmetries. Theories with N = 2 at
D = 5 have been considered earlier [6] and fixed
scalars recently analyzed in great detail [19]. A
technical important difference in this case is that
although matter charges vanish for fixed scalars,
preserving one supersymmetry requires that the
eigenvalues of the central charges which are not
the BPS mass do not generally vanish at the hori-
zon, but are all equal and fixed in terms of the
entropy.

The five dimensional case exhibits analogies
and differencies with respect to the four dimen-
sional one. Exactly like in the four dimen-
sional theories, the entropy is given, through the
Bekenstein-Hawking relation, by an invariant of
the U-duality group over the entire moduli space
and its value is given in terms of the moduli-
dependent scalar potential of the geodesic ac-
tion[9] at the attractor point [5], [6], [7]:

S =
A

4
=
π2

12
M

3/2
extr =

π2

12

[√
3

2
V (φfix, g)

]3/4

(42)

where we have used the relation Vextr = 4
3M

2
extr

which is valid for any N in D = 5, as we will show
in the following. Note that, while in the four di-
mensional case the U-invariant is quartic in the
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charges, in D = 5 it turns out to be cubic. Fur-
thermore, in five dimensions the automorphism
group under which the central charges transform
is USp(N) instead of SU(N) × U(1) as in the
four dimensional theories [14], [15]. As it is ap-
parent from the dilatino susy transformation law,
this implies that, at the minimum of the ADM
mass, the central charges different from the max-
imal one do not vanish, contrary to what hap-
pens in D = 4. Indeed in D = 5 we may perform
again the extremization of the geodesic potential
as in D = 4 but, due to the traceless condition
of the antisymmetric symplectic representations
of the vielbein PABCD and of the central charges
ZAB,the analogous equations:

PABCDZABZCD = 0; ZI = 0 (43)

do not imply anymore the vanishing of the central
charges different from the mass. Here A,B, · · ·
are USp(N) indices and the antisymmetric ma-
trix ZAB satisfies the reality condition:

Z
AB

= CACCBDZCD (44)

CAB being the symplectic invariant antisymmet-
ric matrix satisfying C = −CT , C2 = −11. Let
us now consider more explicitly the various five
dimensional theories. In N = 4 matter coupled
supergravity [14], the scalar manifold is given by

G/H = O(5,n)
O(5)×O(n) × O(1, 1). The black-hole po-

tential is given by:

V (φ, q) =
1

2
ZABZ

AB
+ 2X2 + ZIZ

I

= qΛ(N−1)ΛΣqΣ (45)

where X is the central charge associated to the
singlet photon of the N = 4 theory, qΛ ≡∫
S3
NΛΣ

?FΣ and NΛΣ are the electric charges
and vector kinetic matrix respectively. The cen-
tral charge ZAB can be decomposed in its C-

traceless part
◦
ZAB and trace part X according

to:

ZAB =
◦
ZAB −CABX (46)

This decomposition corresponds to the combi-
nation of the five graviphotons and the singlet
photon appearing in the gravitino transformation

law [14]. The matter charges ZI are instead in
the vector representation of O(n). Note that in
the dilatino transformation law a different com-
bination of the five graviphotons and the singlet
photon appears corresponding to the integrated
charge:

Z
(χ)
AB ≡

1

2
(ZAB + 3CABX)

=
1

2
(
◦
ZAB + 2CABX) (47)

The differential relations satisfied by the central
and matter charges are:

∇ZAB = PIABZ
I − 2Z

(χ)
ABdσ

→ ∇
◦
ZAB = PIABZ

I −
◦
ZABdσ (48)

∇X = 2Xdσ (49)

∇ZI =
1

4
(ZABP

AB

I

+ Z
AB
PABI)− ZIdσ (50)

To minimize the potential, it is convenient to go

to the normal frame where
◦
ZAB has proper values

e1, e2 = −e1. In this frame, the potential and the
differential relations become:

V (φ, q) = e2
1 + e2

2 + 4X2 (51)

∇e1 = −e1dσ + PIZ
I (52)

∇X = 2Xdσ (53)

where PI ≡ PI12 is the only independent com-
ponent of the traceless vielbein one-form PIAB
in the normal frame. We then get immediately
that, in the normal frame, the fixed scalar condi-
tion ∂V

∂φ
= 0 requires:

ZI = 0 (54)

e1 = −e2 = −2X (55)

where ei (i = 1, 2) are the proper values of
◦
ZAB.

It follows that Mextr = |Z12 extr| =
3
2e1 so that

Vextr = 3e2
1 =

4

3
M2
extr (56)

In the N = 6 theory, the scalar manifold is
G/H = SU?(6)/Sp(6) [14]. The central charge
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ZAB can again be decomposed in a C-traceless

part
◦
ZAB and a trace part Z according to:

ZAB =
◦
ZAB +

1

3
CABX (57)

The traceless and trace parts satisfy the differen-
tial relations:

∇
◦
ZAB =

◦
ZC[APB]DCCD

+
1

6
CAB

◦
ZLMP

LM +
2

3
XPAB (58)

∇X =
1

4

◦
ZABP

AB (59)

where PAB is the C traceless vielbein of G/H.
The geodesic potential has the form:

V (φ, q) =
1

2
ZABZ

AB +
4

3
X2

= qΛΣ(N−1)ΛΣ,Γ∆qΓ∆ (60)

where Λ,Σ, · · · = 1, · · · , 6 are indices in the fun-
damental representation of SU?(6), the couple of
indices ΛΣ in the elctric charges qΛΣ are anti-
symmetric and (N )ΛΣ,Γ∆ is the kinetic matrix
of the vector field-strengths FΛΣ To perform the
minimization of the potential we proceed as in
the N = 4 case going to the normal frame where
◦
ZAB has proper values e1, e2, e3 = −e1− e2. The
potential becomes:

V (φ, q) = e2
1 + e2

2 + (e1 + e2)2 +
4

3
X2 (61)

Moreover, the differential relations (58) take the
form:

∇e1 =
1

3
(−e1 + e2 + 2X)P1

+
1

3
(e1 + 2e2)P2 (62)

∇e2 =
1

3
(2e1 + e2)P1

+
1

3
(e1 − e2 + 2X)P2 (63)

∇X =
1

2
(2e1 + e2)P1 +

1

2
(e1 + 2e2)P2 (64)

where P1, P2, P3 = −P1 − P2 are the proper val-
ues of the vielbein one-form PAB in the normal
frame. Imposing the attractor-point constraint

∂V
∂φ

= 0 on the potential we get the following re-
lations among the charges at the extremum:

e2 = e3 = −
1

2
e1 = −

4

3
X

Vextr =
27

16
e2

1 =
4

3
M2
extr. (65)

Note that, using eqs. ( 62)-(64), (65), the mass
e1 + 1

3X satisfies ∂
∂φi (e1 + 1

3X) = 0 at the ex-

tremum, with value Mextr = 9
8e1.

In the N = 8 supergravity the scalar manifold
is G/H = E6(−6)/Sp(8) and the central charges
sit in the twice antisymmetric, C-traceless, repre-
sentation of USp(8) [14]. The scalar “potential”
of the geodesic action is given by:

V (φ, g) =
1

2
ZABZ

AB

= qΛΣ(N−1)ΛΣ,Γ∆(φ)qΓ∆ (66)

where qΛΣ ≡
∫
NΛΣ,Γ∆F

Γ∆ are the electric
charges and NΛΣ,Γ∆ the vector kinetic matrix.
The extremum of V can be found by using the
differential relation [14]:

∇ZAB =
1

2
PABCDZ

CD
(67)

where PABCD is the four-fold antisummetric viel-
bein one-form of G/H. One obtains:

PABCDZABZCD = 0 (68)

To find the values of the charges at the
extremum we use the traceless conditions
CABPABCD = 0, CABZAB = 0. In the
normal frame, the proper values of ZAB are
e1, e2, e3, e4 = −e1 − e2 − e3 and we take, as
independent components of the vielbein, P1 =
P1234 = P5678, P2 = P1256 = P3478 (P3456 =
P1278 = −P1 − P2). In this way, the covariant
derivatives of the charges become:

∇e1 = (e1 + 2e2 + e3)P1

+ (e1 + e2 + 2e3)P2 (69)

∇e2 = (e1 − e3)P1 + (−e1 − e2 − 2e3)P2 (70)

∇e3 = (−e1 − 2e2 − e3)P1 + (e1 − e2)P2 (71)
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Using these relations, the extremum condition of
V implies:

e2 = e3 = e4 = −
1

3
e1

Vextr =
4

3
e2

1 =
4

3
M2
extr (72)

4. Topological invariants

In this section we determine the U-invariant
expression in terms of which the entropy can be
evaluated over the entire moduli space. Our pro-
cedure is the same as in ref. [20], namely we com-
pute cubic H-invariants and determine the appro-
priate linear combination of them which turns out
to be U-invariant. The invariant expression of the
entropy for N = 4 and N = 8 at D = 5 in terms
of the quantized charges was given in [7]. Let us
begin with the N = 4 theory, controlled by the

coset O(5,n)
O(5)×O(n) × O(1, 1). In this case there are

three possible cubic H-invariants, namely:

I1 =
1

2

◦
ZAB

◦

Z

AB

X (73)

I2 = ZIZIX (74)

I3 = X3 (75)

In order to determine the U ≡ G = O(5, n) ×
O(1, 1)-invariant, we set I = I1+αI2+βI3 and us-
ing the differential relations (48) one easily finds
that ∂I = 0 implies α = 1, β = 0. Therefore:

I = I1 − I2 =

(
1

2

◦
ZAB

◦

Z

AB

− ZIZI

)
X (76)

is the cubic (O(5, n)×O(1, 1))-invariant indepen-

dent of the moduli and the entropy S = π
12M

3
2 is

then given as:

S ∼ I1/2 =

√
(
1

2
ZABZ

AB
− ZIZI)Z (77)

In the N = 6 theory, where the coset mani-
fold is SU∗(6)/Sp(6), the possible cubic Sp(6)-
invariants are:

I1 = Tr(ZC)3 (78)

I2 = Tr(ZC)2X (79)

I3 = X3 (80)

Setting as before:

I = I1 + αI2 + βI3 (81)

the covariant derivative ∂I is computed using the
differential relations (58) and the parametrer α
and β are then determined by imposing ∂I = 0.
Actually, the best way to perform the computa-
tion is to go to the normal frame. Using the dif-
ferential relations (62)-(64) and the expression for
the invariants in the normal frame:

Tr(ZC)3 = −6(e2
1e2 + e1e

2
2) (82)

Tr(ZC)2 = 4(e2
1 + e2

2 + e1e2) (83)

the vanishing of ∂I fixes the coefficients α and β.
The final result is:

I = −
1

6
Tr(ZC)3 −

1

6
Tr(ZC)2X +

8

27
X3 (84)

and the entropy is:

S ∼

√
−

1

6
Tr(ZC)3 −

1

6
Tr(ZC)2X +

8

27
X3 (85)

Finally, for the N = 8 theory, described by the
coset E6(6)/Sp(8), it is well known that there is
a unique E6 cubic invariant, namely:

I3(27) = Tr(ZC)3 = Z B
A Z C

B Z A
C (86)

where the Sp(8) indices are raised and lowered
by the antisymmetric matrix CAB. Curiously,
the E6-invariant corresponds to a single cubic
USp(8)-invariant. Again, the invariance of I can
be best computed in the normal frame where the
invariant (85) takes the form:

I3(27) = Tr(ZC)3 = −2(e3
1 + e3

2 + e3
3 + e3

4)

= 6(e2
2e3 + e2e

2
3 + e2

1e2 + e1e
2
2

+ e2
1e3 + e1e

2
3 + 2e1e2e3) (87)

One finds indeed ∂I = 0 and therefore

S ∼ I1/2 =
√
Tr(ZC)3 (88)

As in D = 4 the transformations of the coset
which preserve the normal form of the ZAB ma-
trix belong to the non compact Cartan subalge-
bra of SU∗(6) and E6(6) for N = 6 and N = 8
respectively, which in both cases turns out to be
SO(1, 1)2.

The relevant O(1, 1)2 transformations can be
read out from eqs. (62)-(64), (69) written in the
normal frame[21].
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5. BPS Conditions for Enhanced Super-
symmetry

In this section we will describe U-duality in-
variant constraints on the multiplets of quantized
charges in the case of BPS black holes whose
background preserves more than one supersym-
metry [22].

We will still restrict our analysis to four and five
dimensional cases for which three possible cases
exist i.e. solutions preserving 1/8, 1/4 and 1/2 of
the original supersymmetry (32 charges).

The invariants may only be non zero on solu-
tions preserving 1/8 supersymmetry. In dimen-
sions 6 ≤ D ≤ 9 black holes may only preserve
1/4 or 1/2 supersymmetry, and no associated in-
variants exist in these cases.

The description which follows also make con-
tact with the D-brane microscopic calculation, as
it will appear obvious from the formulae given
below. We will first consider the five dimensional
case.

In this case, BPS states preserving 1/4 of su-
persymmetry correspond to the invariant con-
straint I3(27) = 0 where I3 was defined in eq.
86. This corresponds to the E6 invariant state-
ment that the 27 is a null vector with respect
to the cubic norm. As we will show in a mo-
ment, when this condition is fulfilled it may be
shown that two of the central charge eigenvalues
are equal in modulus. The generic configuration
has 26 independent charges.

Black holes corresponding to 1/2 BPS states
correspond to null vectors which are critical,
namely

∂I(27) = 0 (89)

In this case the three central charge eigenvalues
are equal in modulus and a generic charge vector
has 17 independent components.

To prove the above statements, it is useful to
compute the cubic invariant in the normal frame,
given by:

I3(27) = Tr(ZC)3

= 6(e1 + e2)(e1 + e3)(e2 + e3)

= 6s1s2s3 (90)

where:

e1 =
1

2
(s1 + s2 − s3)

e2 =
1

2
(s1 − s2 + s3)

e3 =
1

2
(−s1 + s2 + s3) (91)

are the eigenvalues of the traceless antisymmetric
8 × 8 matrix. We then see that if s1 = 0 then
|e1| = |e2|, and if s1 = s2 = 0 then |e1| = |e2| =
|e3|. To count the independent charges we must
add to the eigenvalues the angles given by USp(8)
rotations. The subgroup of USp(8) leaving two
eigenvalues invariant is USp(2)4, which is twelve
dimensional. The subgroup of USp(8) leaving in-
variant one eigenvalue is USp(4)×USp(4), which
is twenty dimensional. The angles are therefore
36−12 = 24 in the first case, and 36−20 = 16 in
the second case. This gives rise to configurations
with 26 and 17 charges respectively, as promised.

Taking the case of Type II on T 5 we can choose
s1 to correspond to a solitonic five-brane charge,
s2 to a fundamental string winding charge along
some direction and s3 to Kaluza-Klein momen-
tum along the same direction.

The basis chosen in the above example is S-dual
to the D-brane basis usually chosen for describ-
ing black holes in Type IIB on T5. All other bases
are related by U-duality to this particular choice.
We also observe that the above analysis relates
the cubic invariant to the picture of intersecting
branes since a three-charge 1/8 BPS configura-
tion with non vanishing entropy can be thought
as obtained by intersecting three single charge 1/2
BPS configurations [31], [32], [33]

By using the S–T-duality decomposition we
see that the cubic invariant reduces to I3(27) =
10−210−214 + 16116110−2. The 16 correspond to
D-brane charges, the 10 correspond to the 5 KK
directions and winding of wrapped fundamental
strings, the 1 correspond to the N-S five-brane
charge.

We see that to have a non-vanishing area we
need a configuration with three non-vanishing N-
S charges or two D-brane charges and one N-S
charge.

Unlike the 4-D case, it is impossible to have
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a non-vanishing entropy for a configuration only
carrying D-brane charges.

We now turn to the four dimensional case.
In this case the situation is more subtle because

the condition for the 56 to be a null vector (with
respect to the quartic norm defined through eq.
32) is not sufficient to enhance the supersymme-
try. This can be easily seen by going to the nor-
mal frame where it can be shown that for a null
vector there are not, in general, coinciding eigen-
values. The condition for 1/4 supersymmetry is
that the gradient of the quartic invariant vanish.

The invariant condition for 1/2 supersymmetry
is that the second derivative projected into the
adjoint representation of E7 vanish. This means
that, in the symmetric quadratic polynomials of
second derivatives, only terms in the 1463 of E7

are non-zero. Indeed, it can be shown, going to
the normal frame for the 56 written as a skew 8×8
matrix, that the above conditions imply two and
four eigenvalues being equal respectively.

The independent charges of 1/4 and 1/2 pre-
serving supersymmetry are 45 and 28 respec-
tively.

To prove the latter assertion, it is sufficient to
see that the two charges normal-form matrix is
left invariant by USp(4)×USp(4), while the one
charge matrix is left invariant by USp(8) so the
SU(8) angles are 63 − 20 = 43 and 63− 36 = 27
respectively.

The generic 1/8 supersymmetry preserving
configuration of the 56 of E7 with non vanish-
ing entropy has five independent parameters in
the normal frame and 51 = 63−12 SU(8) angles.
This is because the compact little group of the
normal frame is SU(2)4. The five parameters de-
scribe the four eigenvalues and an overall phase
of an 8× 8 skew diagonal matrix.

If we allow the phase to vanish, the 56 quar-
tic norm just simplifies as in the five dimensional
case:

I4(56) = s1s2s3s4

= (e1 + e2 + e3 + e4)(e1 + e2 − e3 − e4)

×(e1 − e2 − e3 + e4)(e1 − e2 + e3 − e4) (92)

where ei (i = 1, · · · , 4) are the four eigenvalues.
1/4 BPS states correspond to s3 = s4 = 0 while

1/2 BPS states correspond to s2 = s3 = s4 = 0.
An example of this would be a set of four D-

branes oriented along 456, 678, 894, 579 (where
the order of the three numbers indicates the ori-
entation of the brane). Note that in choosing the
basis the sign of the D-3-brane charges is impor-
tant; here they are chosen such that taken to-
gether with positive coefficients they form a BPS
object. The first two possibilities (I4 6= 0 and
I4 = 0, ∂I4

∂qi 6=0 ) preserve 1/8 of the supersymme-

tries, the third (∂I4∂qi = 0, ∂2I4
∂qi∂qj |Adj E7 6= 0) 1/4

and the last ( ∂2I4
∂qi∂qj |Adj E7 = 0) 1/2.

It is interesting that there are two types of 1/8
BPS solutions. In the supergravity description,
the difference between them is that the first case
has non-zero horizon area. If I4 < 0 the solution
is not BPS. This case corresponds, for example,
to changing the sign of one of the three-brane
charges discussed above. By U-duality transfor-
mations we can relate this to configurations of
branes at angles such as in [23]

Going from four to five dimensions it is natural
to decompose the E7 → E6×O(1, 1) where E6 is
the duality group in five dimensions and O(1, 1)
is the extra T-duality that appears when we com-
pactify from five to four dimensions. According
to this decomposition, the representation breaks
as: 56→ 271 + 1−3 + 27′−1 + 13 and the quartic
invariant becomes:

564 = (271)31−3 + (27′−1)313 + 13131−31−3

+ 27127127′−127′−1 + 27127′−1131−3(93)

The 27 comes from point-like charges in five
dimensions and the 27′ comes from string-like
charges.

Decomposing the U-duality group into T- and
S-duality groups, E7 → SL(2, IR) × O(6, 6), we
find 56 → (2,12) + (1,32) where the first term
corresponds to N-S charges and the second term
to D-brane charges. Under this decomposition
the quartic invariant (92) becomes 564 → 324 +
(12.12′)2 + 322.12.12′. This means that we can
have configurations with a non-zero area that
carry only D-brane charges, or only N-S charges
or both D-brane and N-S charges.

It is remarkable that E7(7)-duality gives addi-
tional restrictions on the BPS states other than
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the ones merely implied by the supersymmetry
algebra. The analysis of double extremal black
holes implies that I4 be semi-definite positive for
BPS states. From this fact it follows that config-
urations preserving 1/4 of supersymmetry must
have eigenvalues equal in pairs, while configu-
ratons with three coinciding eigenvalues are not
BPS.

To see this, it is sufficient to write the quartic
invariant in the normal frame basis. A generic
skew diagonal 8× 8 matrix depends on four com-
plex eigenvalues zi. These eight real parameters
can be understood using the decomposition [34]:

56 → (8v,2,1,1) + (8s,1,2,1) + (8c,1,1,2)

+ (1,2,2,2) (94)

under

E7(7) → O(4, 4)× SL(2, IR)3 (95)

Here O(4, 4) is the little group of the normal
form and the (2,2,2) are the four complex skew-
diagonal elements. We can further use U(1)3 ⊂
SL(2, IR)3 to further remove three relative phases
so we get the five parameters zi = ρie

iφ/4 (i =
1, · · · , 4).

The quartic invariant, which is also the unique
SL(2, IR)3 invariant built with the (2,2,2), be-
comes [22]:

I4 =
∑
i

|zi|
4 − 2

∑
i<j

|zi|
2|zj |

2

+4(z1z2z3z4 + z1z2z3z4)

= (ρ1 + ρ2 + ρ3 + ρ4)(ρ1 + ρ2 − ρ3 − ρ4)

× (ρ1 − ρ2 + ρ3 + ρ4)(ρ1 − ρ2 − ρ3 + ρ4)

+8ρ1ρ2ρ3ρ4(cosφ− 1) (96)

The last term is semi-definite negative. The
first term, for ρ1 = ρ2 = ρ becomes:

−[4ρ2 − (ρ3 + ρ4)2](ρ3 − ρ4)2 (97)

which is negative unless ρ3 = ρ4. So 1/4 BPS
states must have

ρ1 = ρ2 > ρ3 = ρ4 , cosφ = 1 (98)

For ρ1 = ρ2 = ρ3 = ρ, the first term in I4 be-
comes:

−(3ρ+ ρ4)(ρ− ρ4)3 (99)

so we must also have ρ4 = ρ , cosφ = 1 which
is the 1/2 BPS condition.

An interesting case, where I4 is negative, cor-
responds to a configuration carrying electric and
magnetic charges under the same gauge group,
for example a 0-brane plus 6-brane configura-
tion which is dual to a K–K-monopole plus K–
K-momentum [24], [25]. This case corresponds
to zi = ρeiφ/4 and the phase is tanφ/4 = e/g
where e is the electric charge and g is the mag-
netic charge. Using (92) we find that I4 < 0 un-
less the solution is purely electric or purely mag-
netic. In [26] it was suggested that 0 + 6 does not
form a supersymmetric state. Actually, it was
shown in [27] that a 0 + 6 configuration can be
T-dualized into a non-BPS configuration of four
intersecting D-3-branes. Of course, I4 is negative
for both configurations. Notice that even though
these two charges are Dirac dual (and U-dual)
they are not S-dual in the sense of filling out an
SL(2,ZZ) multiplet. In fact, the K–K-monopole
forms an SL(2,ZZ) multiplet with a fundamental
string winding charge under S-duality [28]

6. Duality Orbits fo BPS States Preserving
Different Numbers of Supersymmetries

In this section we give an invariant classifica-
tion of BPS black holes preserving different num-
bers of supersymmetries in terms of orbits of the
27 and the 56 fundamental representations of the
duality groups E6(6) and E7(7) resperctively [29],
[30].

In five dimensions the generic orbits preserv-
ing 1/8 supersymmetry correspond to the 26 di-
mensional orbits E6(6)/F4(4) so we may think the
generic 27 vector of E6 parametrized by a point
in this orbit and its cubic norm (which actually
equals the square of the black-hole entropy).

The light-like orbit, preserving 1/4 supersym-
metry, is the 26 dimensional coset E6(6)/O(5, 4)�
T16 where � denotes the semidirect product.

The critical orbit, preserving maximal 1/2 su-
persymmetry (this correspond to ∂I4

∂qi
6= 0) corre-

spond to the 17 dimensional space

E6(6)

O(5, 5)� T16
(100)



11

In the four dimensional case, we have two inequiv-
alent 55 dimensional orbits corresponding to the
cosets E7(7)/E6(2) and E7(7)/E6(6) depending on
whether I4(56) > 0 or I4(56) < 0. The first
case corresponds to 1/8 BPS states whith non-
vanishing entropy, while the latter corresponds to
non BPS states.

There is an additional 55 dimensional light-
like orbit (I4 = 0) preserving 1/8 supersymmetry

given by
E7(7)

F4(4)�T26
.

The critical light-like orbit, preserving 1/4
supersymmetry, is the 45 dimesnsional coset
E7(7)/O(6, 5)� (T32 ⊕ T1)

The critical orbit corresponding to maximal
1/2 supersymmetry is described by the 28 dimen-
sional quotient space

E7(7)

E6(6) � T27
(101)

We actually see that the counting of parameters
in terms of invariant orbits reproduces the count-
ing previously made in terms of normal frame pa-
rameters and angles. The above analysis makes
a close parallel between BPS states preserving
different numbers of supersymmetries with time-
like, space-like and light-like vectors in Minkowski
space.
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