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1 Introduction

The definition of unstable states in quantum mechanics is notoriously difficult[1],[2],[3].
The most usual approach is based on the Breit-Wigner approximation of scattering
amplitudes[4] in which the unstable state is associated with a factorizable simple pole in
the complex s-channel variable, s being the total momentum squared in s-channel. This
approach, however, is not suitable to describe the detailed space-time behaviour of the
unstable system. In particular it underscores the deviations from simple exponential
behaviour at very short and very large times, which follow from general arguments[5].

The short-time behaviour of an unstable state weakly coupled to the final decay
channels has been investigated recently in Ref.[6]. The result has been to underline
an unexpected singularity in the short-time expansion of the non-decay amplitude,
which makes the deviations from exponential behaviour in this region depend from
the formation process of the unstable state itself. The short-time singularity and the
corresponding dependence from the formation condition of the unstable state seems to
eliminate the so-called Zeno paradox ([7]- [13]) at least for systems described in terms
of Relativistic Quantum Field Theory.

In this paper, we present a general, relativistically invariant, definition of the un-
stable state which allows to elucidate the space-time behaviour of the non-decay ampli-
tude. The definition follows closely the experimental procedure to measure the lifetime
of weakly decaying particles (i.e. the so-called impact parameter distribution).

For weakly unstable particles, where perturbation theory can be used, we find that
the general quantum-mechanical expression of the decay rate per unit time (the Fermi
Golden Rule) has to be modified at short times in a well defined way. In addition, we
recover the results of the previous analysis[6], with a much clearer characterization of
the non- universal dependence upon the wave-packet shape of the initial particles from
which the unstable state was formed.

The space-time behaviour of the non-decay amplitude is specified in terms of S-
matrix amplitudes. Adopting for the latter the Breit-Wigner form with a constant
width gives, for times larger than the formation time, the familiar exponential be-
haviour.

Finally, on the basis of unitarity arguments, one can estimate the very large time
behaviour where again deviations from the exponential form are to be expected, in the
form of a power-law time dependence. It is worth stressing that, in this case, the time
behaviour is again a non-universal one, related to the form of the initial state wave
packets.

Although not strictly related to the central arguments of the present paper, we also
give, in the last section, a simple and general derivation of the so-called Wigner’s delay
relation[15] for scattering systems, because it fits very naturally within the general
spatio-temporal description of the scattering process used in this investigation.

2 Constructing the Unstable State from Scratch

We define as usual the S- and the T - matrices, according to:

Sαβ = 〈α; out | β; in〉 = 〈α; in|S |β; in〉 = 〈α; out|S |β; out〉
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S = I + iT =
∑

δ
|δ; in〉 〈δ; out|

TT+ = T+T = 2ImT (1)

where α, β and δ denote a suitable set of free particle quantum numbers, e.g. momenta
and spin components. However, to describe the space-time evolution of the scattering
process it is necessary to introduce wave-packtes for the initial states. We consider,
therefore, a two-particle state in the far past:

|in〉 =

∫
d3p1d

3p2f(p
1
)g(p

2
)
∣∣∣p

1
, p

2
; in
〉

(2)

We consider, for simplicity, equal mass, spinless, particles and we set ourselves in
the center of mass (c.o.m.) frame of reference. We are interested in a situation in
which the incoming particles can create a resonant state. We therefore choose the
wave packets so that f(p) is peaked around some momentum p

res
and g(p) around

momentum −p
res

such that the c.o.m. energy is about equal to the resonance mass
M :

2ω(p
res

) ≈
√
s ≈M (3)

Wave packets are choosen so as to represent very distantly localized particles, at
some large, negative time t = −T , and to overlap around the origin of coordinates, at
time t = 0. Neglecting long- range forces, which can be dealt with separately, wave
packets evolve in time freely for all times before collision, up to the last 10−23 seconds
or so. We consider the state:

−iT |in〉 = (I − S) |in〉 = |in〉 − |out〉 ≡ |R〉 (4)

The state |out〉, in Eq.[4], represents a two particle state in the distant future in
the wave packets f and g, such that they were overlapping around the origin at t = 0.
Thus the state vector |R〉 defined by Eq.[4] is the initial state minus the state where
nothing happens, i.e. it represents the state of the products of the collision which has
taken place around time t = 0.

We consider next the amplitude:

A(t) = 〈in|T+e−iHtT |in〉 ≡ 〈Rt | R〉 (5)

A(t) represents the overlap of the collision state, when the collision has taken place
at time t = 0, |R〉, with the collision state when the collision has taken place at a later
time t (the state 〈in| iT+e−iHt ≡ 〈Rt|). If the collision goes through the formation of
an unstable state, A(t) is, apart from a normalization factor, the amplitude for this
state to have remained unchanged during time t, i.e. the non-decay amplitude, so that:

Anon−decay(t) =
A(t)

A(0)

Pnon−decay(t) =

∣∣∣∣A(t)

A(0)

∣∣∣∣2 (6)

Eq.[6] is our basic starting point. We write:〈
p

3
, p

4
; in
∣∣∣T ∣∣∣p

1
, p

2
; in
〉

= (2π)4δ(4)(p3 + p4 − p1 − p2)T (s, t) (7)

2



where s and t are the usual Mandelstam variables. Using the unitarity relation, Eq.[5]
can then be rewritten as:

A(t) =

∫
d3p1d

3p2d
3p3d

3p4f
∗(p

3
)g∗(p

4
)f(p

1
)g(p

2
)e−i(ωp1+ωp2 )t ×

×(2π)4δ(4)(p3 + p4 − p1 − p2)2ImT (s, t) = (8)

=
〈
e−i(ωp1+ωp2 )t(2π)4δ(4)(p3 + p4 − p1 − p2)2ImT (s, t)

〉
where brackets indicate folding with wave packets. Eq.[8] can be rewritten as:

A(t) = e−iMt
∫
dxe−ixtF (x) (9)

with F (x) a positive definite function with a limited-from-below support (correspond-
ing to the combined support of ImT and of the wave packets):

F (x) ≡
〈

(2π)4δ(4)(p3 + p4 − p1 − p2)δ(ωq1 + ωq2 −M − x)2ImT (s, t)
〉

(10)

We add a few comments.

• The definition of the non-decay probability, Eqs.[5],[6], is given in term of S-
matrix elements, i.e. it involves only the stable asymptotic states out of which the
unstable state is formed (and in which it will, eventually, decay). No assumption
is made, in particular, about the existence of a state representing the unstable
particle itself (at time t = 0), which is indeed a very questionable assumption,
certainly not valid beyond perturbation theory. If we had assumed that, we could
have written:

A(t) = 〈R| e−iHt |R〉 =
∑

n
e−iEnt |〈n | R〉|2 (11)

The amplitude A(t) in Eq.[5], as shown by Eqs.[9] and [10], shares with the naive
amplitude, Eq.[11], the property of being the Fourier-transform of a positive def-
inite function with a limited-from-below support. This property, first stressed by
L.A. Khalfin[7] for the naive amplitude Eq.[11], gives rise to the non-exponential
behaviour af A(t) at very large times, as discussed in Section 6.

• The above definition of A(t) makes sense only for times t which are larger than
either the overlap time of the initial wave packets or the characteristic decay time
of the background processes. In turn, this implies that the definition is useful only
if the lifetime of the resonance is larger than either these characteristic times.

Since:

∆t|overlap =
∆x

v
≈

1

v∆p
≈

1

∆E
≈

1

M
(12)

the first condition gives:

Γ =
1

τ
<<

1

∆t|overlap
≈M (13)

Similarly, background processes (e.g. box- diagram contributions to the scattering
process) decay in time with the only time-scale available, that is:

∆t|backgnd ≈
1
√
s
≈

1

M
(14)
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so that, in conclusion, our definition is suitable for:

Γ =
1

τ
<< M (15)

as intuitively expected.

• If we transform from the c.o.m. to another frame of reference, the time translation
gives rise to a non vanishing space translation. The amplitude A(t) transforms
into the probability amplitude for the final particles to originate at a non- van-
ishing distance from the collision point. P (t) corresponds, in this case, to the
so-called impact parameter distribution of the decay products of an unstable
particle produced with non-vanishing velocity.

3 Perturbation Theory

In this section we show how the previous general scheme works when perturbation
theory is reliable. In particular we will discuss the derivation of the Fermi Golden Rule
and its modifications at short times, related to the singularities inherent to Relativistic
Quantum Field Theory.

We shall study, for definiteness, a system consisting of an unstable scalar particle
φ, with mass M , decaying into two scalar particles ψ1 and ψ2 with masses m1 and m2

respectively. We take a decay hamiltonian, HI , of the simple (super-renormalizable)
form:

HI = g

∫
d3xφψ1ψ2 (16)

The unstable particle φ contributes to the elastic scattering amplitude of the two
particles ψ1 and ψ2 as:

Sfi ≡ 〈p3, p4; out | p1, p2; in〉 = δfi +
iMfi∏

i

√
(2π)32ωi

(2π)4δ(4)(p1 + p2 − p3 − p4) (17)

where:

iMfi = (ig)2 i

P 2 −M2 + iε
− (ig)2 i

(P 2 −M2 + iε)
iΠ(P 2)

i

(P 2 −M2 + iε)
(18)

and:
P = p1 + p2 = p3 + p4 (19)

iΠ(P 2) ≡ δM2 + i2
∫
dx 〈0|T (O(x)O(0)) |0〉 exp(iPx) (20)

O(x) ≡ gψ1(x)ψ2(x) (21)

The counterterm δM2 in Eq.[20] is adjusted so that:

ReΠ(M2) = 0 (22)
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and therefore M is the renormalized mass of the resonant state. The behaviour of
Π(P 2) around M is then:

Π(P 2) ≈
P 2≈M2

(P 2 −M2)ReΠ′(M2) + iImΠ(P 2) (23)

where ReΠ′(M2) is an ultraviolet divergent parameter related to the wave function
renormalization of the unstable particle propagator, which is to be removed by renor-
malization. It will be clear in a moment that this term does not affect the non-decay
amplitude of the unstable state. As for ImΠ(P 2), it has the expression:

ImΠ(P 2) =
1

2

∑
n

|〈0|O(0) |n〉|2 (2π)4δ(4)(P − Pn) (24)

The overlap A(t) defined in Eq.[5], then becomes:

A(t) = 〈Rt | R〉 =

∫
f∗(p3)g∗(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2

× (25)

×(2π)4δ(4)(p1 + p2 − p3 − p4) exp[−i(ωp1 + ωp2)t] {−iMfi − (iMfi)
∗}

We have:

−iMfi − (iMfi)
∗ = (g)2(2π)δ(P 2 −M2)− 2g2Im

(
Π(P 2)

(P 2 −M2 + iε)2

)
(26)

and:

Im

(
Π(P 2)

(P 2 −M2 + iε)2

)
=

ImΠ(P 2)Re
1

(P 2 −M2 + iε)2
+ReΠ(P 2)Im

1

(P 2 −M2 + iε)2
(27)

so that:

Im

(
Π(P 2)

(P 2 −M2 + iε)2

)
=

ImΠ(P 2)

(P 2 −M2)2
− 2πReΠ′(M2)δ(P 2 −M2) (28)

Eq.[25] then becomes:

〈Rt | R〉 =

∫
f∗(p3)g∗(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2

× (29)

×(2π)4δ(4)(p1 + p2 − p3 − p4) exp[−i(ωp1 + ωp2)t]×

×

{
g2(1 + 2ReΠ′(M2))2πδ(P 2 −M2)− 2g2 ImΠ(P 2)

(P 2 −M2)2

}

For simplicity we choose to work in the narrow wave packet approximation. This
means that we parametrize the momenta as:

p
i

= p
res i

+ ki (30)

and neglect terms quadratic in ki.
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Eq.[29] can therefore be rewritten as:

〈Rt | R〉 = 〈Rt | R〉1 + 〈Rt | R〉2 (31)

with:

〈Rt | R〉1 = 2π g2(1 + 2ReΠ′(M2)) exp[−iM t]

∫
f∗(p3)g∗(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2

×

×(2π)4δ(3)(k1 + k2 − k3 − k4)δ[2Mv · (k1 − k2)] δ[v · (k3 − k4)] (32)

and:

〈Rt | R〉2 = −2g2 exp[−iM t]

∫
f∗(p3)g∗(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2

× (33)

×(2π)4δ(4)(p1 + p2 − p3 − p4) exp−i[v · (k1 − k2)]t
ImΠ(P 2)

[2Mv · (k1 − k2)]2

Using Eq.[27], Eq.[33] becomes:

〈Rt | R〉2 =

= − 2π g2 exp[−iM t]
∑
n

|〈0|O(0) |n〉|2 (2π)3δ(3)(P n)
exp−i(En −M)t

4M2(En −M)2
× (34)

×
∫

f∗(p3)g∗(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2

(2π)4δ(4)(p1 + p2 − p3 − p4)δ[M + v · (k1 − k2)−En]

We can now define α, α0, α1 and β1 through:

〈Rt | R〉1 ≡ 2πg2α exp−iMt ≡ (2πg2)(α0 + α1) exp−iMt (35)

and
〈Rt | R〉2 ≡ 2πg2β1(t) exp−iMt (36)

where α is independent of t, α0 is order 0 in g2, while α1 and β1(t) are first order in
g2.

We finally have for the properly normalized non-decay probability defined in Eq.[6]:

Pnon−decay(t) =
|〈Rt | R〉|2

|〈R0 | R〉|2
=
|〈Rt | R〉1 + 〈Rt | R〉2|

2

|〈R0 | R〉1 + 〈R0 | R〉2|
2 ≈

≈
1 + 2Re[ α1+β1(t)

α0
]

1 + 2Re[ α1+β1(0)
α0

]
≈ 1 + 2Re[

β1(t)− β1(0)

α0
] (37)

If, for simplicity, we take real momentum- space wave functions, we get:

Pnon−decay(t) = 1−
2

M

∑
n

|〈0|O(0) |n〉|2

(En −M)2
(2π)3δ(3)(P n) sin2[

(En −M)

2
t]H(En −M)

(38)
where:

H[En −M ] ≡ (39)

≡

∫ f(p3)g(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2
(2π)4δ(4)(p1 + p2 − p3 − p4)δ[M −En + v · (k1 − k2)]∫ f(p3)g(p4)f(p1)g(p2)

(2π)6
√

2ωp32ωp42ωp12ωp2
(2π)4δ(4)(p1 + p2 − p3 − p4)δ[v · (k1 − k2)]
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is a function which provides a cutoff in energy at small times t, when the energy
conservation is not yet active. In fact, due to the finite spread in energy of the wave
packets, H(x) rapidly vanishes for large x, while it goes to unity for vanishing x:

H[0] = 1 (40)

Eq.[38] reproduces the result first found in Ref.[6]. The ”form-factor”, H(En−M),
provides the cut-off to the sum over intermediate states which is generally needed to
cope with the singular behavior at very small times, as further discussed in the next
section. At larger times, t, on the other hand:[

2
sin[En−M2 t]

En −M

]2

→ 2πtδ(En −M) (41)

and Eq.[38], in virtue of Eq.[40], reduces to the usual Golden Rule formula for the
non-decay probability of an unstable particle:

Pnon−decay(t) = 1−
t

2M

∑
n

|〈0|O(0) |n〉|2 (2π)4 δ(3)(Pn)δ[En −M ] (42)

4 The Nature of Short-Time Singularities

As discussed in Ref.[6], the use of perturbation theory without taking into account
the formation time of the resonant state, would lead to an expression for Pnon−decay(t)
similar to the one given by Eq.[38] with H(En −M) ≡ 1, i.e.:

Pnon−decay(t) = 1−
2

M

∑
n

|〈0|O(0) |n〉|2

(En −M)2
(2π)3δ(3)(P n) sin2[

(En −M)

2
t] (43)

It was shown in Ref.[6] that the expansion of Eq.[43] in powers of t is usually marred
by meaningless ultraviolet divergencies. In this section we discuss in more detail the
nature of these short-time singularities. This discussion clarifies the nature of the
assumptions needed to derive the so called Zeno paradox ([7]-[13]). In fact the Zeno
paradox strongly depends on the quadratic short-time behaviour, usually inferred from
the (highly formal) argument:

Pnon−decay(t) =| < P | e−iHt | P > | 2 =

= 1− t2(< P | H2 | P >− | < P | H | P > | 2) + ... =

= 1−∆E2t2 + ... (44)

Expanding the explicit expression of Pnon−decay(t) given by Eq.[43] in powers of t,
we have:

Pnon−decay(t) = 1−
t2

2M

∑
n

|〈0|O(0) |n〉|2(2π)3δ(3)(Pn) =

= 1−
t2

2M

∫
dx 〈0|O(x, 0)O(0) |0〉 (45)

Eq.[45] shows that in this way we get, indeed, formally, a t2 short-time behaviour,
as in Eq.[44]. The problem is that the operator product appearing in Eq.[45] is not
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integrable. In fact, apart from possible logs, we have from the Operator Product
Expansion:

O(x, 0)O(0) ≈
x≈0

1

|x|2dO
I + ... (46)

where dO denotes the dimension of the operator O. In the present example dO = 2
and Eq.[45] suffers from a linear ultraviolet divergence. The situation worsens for more
singular (higher dimensional) decay hamiltonians, as discussed in Ref.[6].

These considerations clearly show that there is a short-time ultraviolet singularity
which:

• makes ∆E2 divergent in Eq.[44]

• is smeared, in the particle survival amplitude Eq.[38], over time scales provided by
the formation mechanism of the unstable state (the overlap time of the incident
wave-packets).

It should be clear that no form factors (in the case of decays involving hadrons, as
e.g. proton decay) can cure this divergence which is quite similar to the one measured
in deep-inelastic- scattering, due to the singular product of two currents.

In Eq.[38], we can interpret the presence of H(En −M) as a cut-off on the energy
of detected final decay products (a reasonable requirement for a measuring apparatus),
which, by the optical theorem, produces an effective smearing on the particle survival
amplitude.

We stress again the conclusions of Ref.[6] concerning the fallacy of the finiteness of
∆E2 in Eq.[44], on which many of the papers dealing with the Zeno paradox are based.

5 The Exponential Decay

Higher orders in perturbation theory give rise to higher powers of the time, t, in Eq.[42].
For times of the order of the lifetime τ we need to sum up at least the leading terms,
to get a meaningful result.

The linear behaviour in time, in Eq.[42], arises from the singular behaviour in
(s −M2) of the self-energy insertion. Thus, higher powers in t shall correspond to
repeated self-energy insertions in the lowest-order particle propagator.

More precisely, the leading singular behaviour is given by insertion of the imaginary
part of the self-energy evaluated at s = M2. Inserting the successive terms of the
expansion of ImΠ around s = M2 would give rise to less singular terms in (s−M2),
i.e. to a subleading behaviour in time. The same applies to the insertion of ReΠ, since
it vanishes at s = M2 by mass renormalization.

Using the above considerations, we find that the sum of the leading terms in time
is given by the Breit-Wigner propagator:

A(t) =
〈
e−i(ωp1+ωp2)t(2π)4δ(4)(p3 + p4 − p1 − p2)2Im[T (s, t)]BW

〉
(47)

TBW =
−1

s−M2 + iΓM
(48)
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so that (compare with Eq.[9]):

A(t) = e−iMt
∫
dxe−ixt

2MΓ

4M2(x2 + Γ2

4 )
G(x) (49)

with G(x) defined by:

G(x) ≡
〈

(2π)4δ(4)(p3 + p4 − p1 − p2)δ(ωp1 + ωp2 −M − x)
〉

(50)

In the narrow wave packet approximation, Eq.[30], we have:

ωp1 + ωp2 ≈M + v · (k1 − k2) (51)

The region where G(x) ≈ constant ≈ G(0) is thus limited by:

xcrit ≈ v∆p ≈
v

∆x
≈

1

∆t|overlap
>> Γ (52)

Since the integral in Eq.[49] is dominated by the region x ≈ Γ, we may take G(x)
as a constant, to a good approximation. Extending, furthermore, the integration range
to ±∞, we find:

A(t) =
πG(0)

M
e−iMte−

Γt
2 (53)

that is, in conclusion, a pure exponential behaviour for the non-decay probability.

6 Very Large Time Behaviour

The exponential behaviour displayed in Eq.[53] is the result of an approximation[1],[5].
In fact we kow from the Riemann-Lebesgue lemma that the asymptotic behaviour of a
Fourier transform integral, as the one appearing in Eq.[9], is determined by the points
where F (x) or some of its derivatives are singular. If F (x) where continuous together
with all its derivatives, the non-decay amplitude Anon−decay(t) whould vanish faster
than any power of 1

t . The presence of any singularity makes Anon−decay(t) vanish not
faster than some power of 1

t . From the expression of F (x), Eq.[10], it is clear that
singularities are necessarily present which originate from two possible sources:

1. singularities due to the unitarity of the S-matrix;

2. singularities of the wave function of the initial state.

As for 1), unitarity requires that a resonance pole be located on the second sheet of
the complex energy plane, thus implying the existence of at least one branch singularity
of the amplitude T (s, t) in Eq.[10].

The presence of this singularity will, however, be ineffective for the large t behaviour
of Anon−decay(t), unless the resonance location is very close to threshold. In fact, as
can be seen from Eq.[10], its contribution is, in general, depressed by the narrowness
of the wave packet of the initial state.

On the second point very little can be said. The possible singularities due to the
initial wave function have to do with the details of the experimental preparation of the
resonant state and are certainly not even under direct control of the experimentalist.
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Whatever their origin, the presence of these singularities in F (x) make Anon−decay(t)
behave asymptotically in a power-like way, rather than exponentially. It must be
remarked, however, that nothing general can be said on the onset time of this power-
like behaviour because it depends on the detailed structure of the wave function of the
initial state.

To get a crude idea of the times where the power law behaviour takes over, we may
replace Eq.[48] with a form in which the two particle cut is considered:

T =
−1

s−M2 + iMΠ(s)
(54)

where, to account for threshold behavour:

Π(s) = Θ(s− 4m2)[
k(s)

k(M)
]2l+1Γ (55)

and:
4k(s)2 = s− 4m2 (56)

but otherwise we neglect any energy dependence of the matrix element. With these
positions, Eq.[49] becomes:

A(t) = exp(−2imt)

∫
0
dxexp(−ixt)[2MΠ(s)][(s −M2)2 +M2Π(s)2]−1G(x) (57)

with √
(s) ≡ x+ 2m (58)

Neglecting further any variation of the function G(x), which describes the energy
spread of the initial wave packets, the asymptotic behaviour of A(t), as t → ∞, is
easily estimated to be:

A(t)asympt = C[
4mΓ

k(M
)]l+

5
2 (Γt)−l−

3
2 (59)

with:

C = (
1

128
)(
M

m2
)G(0)

∫
0
duexp(−iu)ul+

1
2 (60)

Comparing with the exponential law, Eq.[53], we see that the power law gets in for a
critical time , tcrit, which is very large indeed. Numerically:

Γtcrit ≈ 2(l +
5

2
){25 + ln{[

k(M)

0.7MeV
][

τ

10−10sec
]}} (61)

This result amply justifies the fact that no deviations from the exponential be-
haviour have been observed, until now, for long-lived systems[14].

7 Wigner’s Delay

Within the formalism described in the present paper, we can readily recover, in a
very general way the result, due to Wigner[15] and usually derived within potential
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scattering theory, which says that the derivative of scattering phase shift δl(E) is related
to the delay time induced by the interaction through:

T = 2
dδl(E)

dE
(62)

In order to prove Eq.[62] let us consider the center of mass scattering of two spinless
particles in a state of given orbital angular momentum l, under the inelastic threshold.
The incoming state (a wave packet normalized in a finite volume V ) is:

|f ; in〉 =

√
(2π)3

V

∫
dE f(E) |E, l,m; in〉 (63)

where |E, l,m; in〉 denotes the incoming state of two particles of given total energy E
and given angular momentum l, m, normalized as:〈

E′, l′,m′; in
∣∣ E, l,m; in

〉
=

V

(2π)3
δll′δmm′δ(E −E

′) (64)

and ∫
dE |f(E)|2 = 1 (65)

The amplitude to find, after the interaction, the system in a state which corresponds
to the free propagation of the initial state is:

A = 〈f ; out| f ; in〉 =

=
(2π)3

V

∫
dE′dEf∗(E′)f(E)

〈
E′, l′,m′; out

∣∣ E, l,m; in
〉

=

=

∫
dE |f(E)|2 exp 2iδl(E) (66)

If the system were non interacting, δl(E) = 0, and we would have A = 1.
In the case of a narrow wave packet, in which f(E) is strongly peaked around a

given energy E0, we have:

A ≈ exp[2iδl(E0)− 2iδ′l(E0)E0]

∫
dE |f(E)|2 exp[2iδ′l(E0)E] (67)

We can now ask what is the probability to find the system, after the interaction,
in a state which is the free propagation of the initial state delayed by a time T . Such
a time- translated state is given by:

|f, T ; out〉 = exp iHT

√
(2π)3

V

∫
dE f(E) |E, l,m; out〉 =

=

√
(2π)3

V

∫
dE f(E) exp[iET ] |E, l,m; out〉 (68)

where, as usual, H denotes the full hamiltonian of the interacting system.
We have, in this case:

A(T ) = 〈f, T ; out | f ; in〉 ≈

≈ exp[2iδl(E0)− 2iδ′l(E0)E0]

∫
dE |f(E)|2 exp iE[2δ′l(E0)− T ] (69)

11



From Eq.[69] it follows that for T = 2δ′l(E0), the probability becomes 1:∣∣A(T = 2δ′l(E0))
∣∣2 = 1 (70)

which proves the Wigner delay relation, Eq.[62].
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