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1 Motivations

In this talk I describe recent work on the bosonization of a non-local Quantum
Field Theory (QFT) and its application to the study of one-dimensional
(1d) many-body systems. This research has been done in collaboration with
Virginia Mańıas, Marta Trobo and Cecilia von Reichenbach from the
University of La Plata, Daniel Barci from Universidade do Estado do Rio
de Janeiro (UERJ), Brasil, and Kang Li from Hangzhou University, China.

Since Mattis and Lieb [5] showed how to correctly quantize the model of
1d fermions proposed by Luttinger [6] (which was nothing but a slightly mod-
ified version of the model introduced by Tomonaga many years before [7]),
the study of the highly-correlated electronic liquid remained an outstanding
problem in mathematical physics. Perhaps the main reason for this sustained
interest has been the rather strange behavior of the 2-point fermionic corre-
lator which, in 1d presents a branch cut instead of a pole structure. Conse-
quently one cannot define one single particle states , meaning that the usual
quasiparticle (Landau) picture fails. One then expects that only collective
modes (CDW4s and SDW4s) will be present in the spectrum. These features,
together with the separation of spin and density waves and the disappearence
of the Fermi edge in the momentum distribution, characterize the so called
Luttinger liquid behavior [8]. During the last decade a more practical and
surprising motivation has been added to the previous academic reasons to in-
vestigate the 1d electronic system. Indeed, striking developments in the field
of nanofabrication have allowed to build real 1d semiconductors [9] (Please
see [10] for a review of recent theoretical developments). Stimulated by this
curious situation in which simplified and unrealistic models became closely
related to reality, we tried to employ some path-integral techniques, which
have been very useful in the study of 1 + 1 QFT4s, in order to provide an
alternative field-theoretical approach to the study of 1d many-body systems.
This led us to propose a non-local generalization of the Thirring model which
contains the Tomonaga-Luttinger model as a particular case. In the next sec-
tion we shall show how to deal with such a non-local theory.
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2 The Non-Local Thirring model

We start by considering the Euclidean vacuum functional

Z = N
∫
DΨ̄DΨ e−S (1)

where N is a normalization constant and S is given by

S =
∫
d2x Ψ̄i/∂Ψ−

g2

2

∫
d2xd2y [V(0)(x, y)J0(x)J0(y) + V(1)(x, y)J1(x)J1(y)]

(2)
where Jµ = Ψ̄γµΨ and V(µ)(x, y) is an arbitrary function of two variables.
Note that for V(0) = V(1) = δ2(x−y) one recovers the usual covariant Thirring
model.

As it is habitual in the path-integral approach to the usual Thirring
model, one eliminates this quartic fermionic interaction by introducing an
auxiliary vector field Aµ. As we shall see, in the present non-local case one
needs one more auxiliary field to achieve the same goal. In order to depict
this procedure we first observe that S can be splitted in the form

S = S0 + Sint (3)

where

S0 =
∫
d2x Ψ̄i/∂Ψ, (4)

and

Sint = −
g2

2

∫
d2x JµKµ. (5)

In this last expression Jµ is the usual fermionic current,

Jµ(x) = Ψ̄(x)γµΨ(x), (6)

and Kµ is a new current defined as

Kµ(x) =
∫
d2y V(µ)(x, y)Jµ(y). (7)
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Please note that no sum over repeated indices is implied when a subindex
(µ) is involved. Introducing a functional delta the partition function can be
expressed as

Z = N
∫
DΨ̄DΨDÃµDB̃µ exp[−{S0 +

∫
d2x[ÃµB̃µ −

g
√

2
(ÃµJµ + B̃µKµ)]}]

(8)
On the other hand, the fermionic piece of the action can be written as

S0 −
g
√

2

∫
d2x (ÃµJµ + B̃µKµ) =

∫
d2x Ψ̄[i/∂ −

g
√

2
γµ(Ãµ + B̄µ)]Ψ, (9)

where we have defined

B̄µ(x) =
∫
d2y V(µ)(y, x)B̃µ(y). (10)

For later convenience we shall invert (10) in the form

B̃µ(x) =
∫
d2y b(µ)(y, x)B̄µ(y), (11)

with b(µ)(y, x) satisfying∫
d2y b(µ)(y, x)V(µ)(z, y) = δ2(x− z). (12)

Equation (9) suggests the following change of auxiliary variables:

1
√

2
(Ãµ + B̄µ) = Aµ, (13)

1
√

2
(Ãµ − B̄µ) = Bµ. (14)

From now on we shall restrict our study to the case in which the bilocal
functions V(µ) and b(µ) are symmetric. Under these conditions the partition
function of the system is given by

Z = N1

∫
DAµDBµ det(i/∂ + g/A)e−S[A,B], (15)

where S[A,B] is such that A and B are decoupled. Moreover, B is not coupled
to fermionic fields either, and can then be absorbed in the normalization
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constant. (Besides, B has negative metric and must be eliminated in order
to have a good Hilbert space. The appearence of this ghost is not due to
non-locality, it is already present in the local model [11]). Thus we have been
able to express Z in terms of a fermionic determinant:

Z = N2

∫
DAµdet(i/∂ + g/A)e−S[A], (16)

where N2 includes the contribution of the ”non-local ghost” Bµ and S[A] will
be rewritten in terms of two new scalars Φ and η by using

Aµ(x) = εµν∂νΦ(x) + ∂µη(x). (17)

At this stage one can employ the machinery of the path-integral approach to
bosonization, based on a chiral change in the fermionic path-integral measure
with Φ and η as parameters. Taking into account the corresponding Jacobian
we finally get

Z = N
∫
DΦDη e−Seff (18)

where

Seff =
g2

2π

∫
d2x (∂µΦ)2 +

+
1

2

∫
d2xd2y[b(0)(y, x)∂1Φ(x)∂1Φ(y) + b(1)(y, x)∂0Φ(x)∂0Φ(y)] +

+
1

2

∫
d2xd2y[b(0)(y, x)∂0η(x)∂0η(y) + b(1)(y, x)∂1η(x)∂1η(y)] +

+
∫
d2xd2y[b(0)(y, x)∂0η(x)∂1Φ(y)− b(1)(y, x)∂1η(x)∂0Φ(y)] (19)

Equations (18) and (19) constitute the main result of this Section. Thus,
we have been able to extend the path-integral approach to bosonization,
previously applied to the solution of local QFT’s, to a Thirring-like model
of fermions with a non-local interaction term. More specifically, we have
shown the equivalence between the fermionic partition function (1) and the
functional integral (18) corresponding to the two bosonic degrees of freedom
Φ and η with dynamics governed by (19). The contribution to this action
coming from the fermionic Jacobian (the first term in the r.h.s of (19)) exactly
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coincides with the one which is obtained in the local case. On the other hand,
the effect of non-locality is contained in the remaining terms, through the
inverse potentials bµ(x, y). Note that, even in the non-local case, Φ and η
become decoupled for b(0) = b(1). Of course, when b(0) = b(1) = δ2(x−y), one
recovers the bosonic version of the local Thirring model.

The spectrum of this bosonic model can be more easily analyzed in mo-
mentum space. Indeed, by Fourier transforming (19) one obtains

Seff =
1

(2π)2

∫
d2p{Φ̂(p)Φ̂(−p)A(p)

+ η̂(p)η̂(−p)B(p) + Φ̂(p)η̂(−p)C(p)}, (20)

where

A(p) =
g2

2π
p2 +

1

2
[̂b(0)(p)p

2
1 + b̂(1)(p)p

2
0], (21)

B(p) =
1

2
[̂b(0)(p)p

2
0 + b̂(1)(p)p

2
1], (22)

C(p) = [̂b(0)(p)− b̂(1)(p)]p0p1, (23)

and Φ̂, η̂ and b̂(µ) are the Fourier transforms of Φ, η and b(µ) respectively.
Eq. (20) can be easily diagonalized through the change

Φ̂ = ζ̂ −
C

2A
ξ̂

η̂ = ξ̂. (24)

We then have the following propagators for ζ̂ and ξ̂:

G−1
ζ (p) = λp2 +

1

2
[̂b(0)p

2
1 + b̂(1)p

2
0] (25)

G−1
ξ (p) =

λp2 [̂b(0)p
2
0 + b̂(1)p

2
1] +

b̂(0) b̂(1)

2
p4

2λp2 + b̂(0)p
2
1 + b̂(1)p

2
0

, (26)
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where λ = g2

2π
and b̂(0), b̂(1) are functions of p. These expressions are further

simplified in the case b̂(0) =b̂(1). In particular, when b̂(0) =b̂(1) ∝
1
p2 the ζ̂ field

acquires a mass, whereas ξ̂ becomes a non propagating field.
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3 The Tomonaga-Luttinger model

The approach depicted above will be now applied to the TL model [5] [6]
[7]. This model describes a non-relativistic gas of spinless particles (electrons)
in which the free dispersion relation is taken to be linear. The free-particle
Hamiltonian is given by

H0 = vF

∫
dxΨ†(x)(σ3p− pF )Ψ(x) (27)

where vF and pF are the Fermi velocity and momentum respectively (vFpF
is a convenient origin for the energy scale). σ3 is a Pauli matrix and Ψ is a
column bispinor with components Ψ1 and Ψ2 (Ψ† = (Ψ†1 Ψ†2)). The func-
tion Ψ1(x) [Ψ2(x)] is associated with the motion of particles in the positive
[negative] x direction. The interaction piece of the Hamiltonian, when only
forward scattering is considered, is

Hint =
∫
dx
∫
dy
∑
a,b

Ψ†a(x)Ψa(x)Vab(x, y)Ψ†b(y)Ψb(y) (28)

where a, b = 1, 2, and the interaction matrix is parametrized in the form

Vab =

(
v1 v2

v2 v1

)
. (29)

Using the imaginary-time formalism one can show that the finite-temperature
[12] [13] action for this problem becomes

STL =
∫ β

0
dτ
∫
dx {Ψ̄γ0(∂τ − vppF )Ψ + vF Ψ̄γ1∂xΨ}

+
∫ β

0
dτ
∫
dx
∫
dy
∑
a,b

Ψ†aΨa(x, τ)Vab(x, y)Ψ†bΨb(y, τ). (30)

For simplicity, in this Section we shall set vF = 1 and consider the case
v1 = v2 in (29) [5]. We shall also restrict ourselves to the zero temperature
limit (β → ∞). Under these conditions it is easy to verify that STL coin-
cides with the non-local Thirring model discussed in the precedent Section,
provided that the following identities hold:
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g2 = 2

V(0)(x, y) = v1(x, y) = v2(x, y) = v(x1 − y1)δ(x0 − y0)

V(1) = 0 (31)

Of course one has also to make the shift Ψ̄γ0∂0Ψ → Ψ̄γ0(∂0 − pF )Ψ and
identify x0 = τ , x1 = x.

One then can employ the method described in the precedent Section in
order to study the Tomonaga-Luttinger model. This model has been previ-
ously studied, through a different functional approach, by D.K. Lee and Y.
Chen [14]. These authors, however, avoided the use of the decoupling tech-
nique presented here. Our approach is particularly useful when considering
spin-flipping interactions, i.e. the non-Abelian extension of the model. For
simplicity I will not consider this case in this work, but the interested reader
will find related discussions in refs. [1] and [2].

Let us first focus our attention to the dispersion relations corresponding
to the elementary excitations of the model at hand. These states correspond
to the normal modes whose dynamics is governed by the action (20). As
it is well-known, the spectrum of these modes is obtained from the poles
of the corresponding propagators. Alternatively, one can write the effective
Lagrangian as

Leff =
1

(2π)2

(
Φ̂ η̂

)( A C/2
C/2 B

)(
Φ̂
η̂

)
(32)

(with A, B and C defined in (21)-(23)) and solve the equation

∆(p) = 0, (33)

with ∆(p) = C2(p) − 4A(p)B(p). Going back to real frecuencies : p0 = iω,
p1 = q, (33) yields a biquadratic equation for ω. The relevant solution is

ω2
−(q) =

b̂(1)

b̂(0)

2λ+ b̂(0)

2λ+ b̂(1)

q2. (34)

Inserting now the identities (31) in ( 34) (λ = g2

2π
) we obtain
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ω2
−(q) = q2{1 +

2v(q)

π
} (35)

which is the well-known result for the spectrum of the charge-density exci-
tations of the TL model in the Mattis-Lieb version [5].

The next step is to compute the electron propagator. To this end, having
established the correspondence between the TL and NLT models, we can use
the decoupling technique at the level of the 2-point function. As usual, the
non-vanishing components of the fermionic 2-point function are factorized
into fermionic and bosonic contributions. Carefully taking into account the
Fermi momentum in the free-fermion factor one gets

G0
±(z) =

e±ipF z1(z0 ± iz1)

2π | z |2
(36)

whereas the bosonic factor becomes

B±(z) = exp[
1

π2

∫
d2p

v(p)

p2

sen2(p.z
2

)(p0 ± ip1)2

p2
0 + (1 + 2v/π)p2

1

]. (37)

The momentum distribution for branch 1 (2) electrons is given by

N1
2
(p1) = C(Λ)

∫ ∞
−∞

dz1 e
−ip1z1 lim

z0→0
G±(z0, z1) (38)

Replacing ( 36) and ( 37) in ( 38) we get

N1
2
(p1) = ±

C(Λ)i

2π

∫ ∞
−∞

dz1 e
−iz1(p1∓pF ) ×

×
1

z1
exp{

1

π2

∫
d2p v(p)

p2
sen2(

p1z1

2
)

(p2
0 − p

2
1)

p2
0 + [1 + 2v(p)/π]p2

1

}. (39)

Here C(Λ) is a normalization constant depending on an ultraviolet cutoff Λ.
In the local limit, in which v(p) = const, the integrals in the momentum can
be easily evaluated and one obtains

N1
2
(p1) = ±

i

2π
C(Λ)

∫ ∞
−∞

dz1
e−i(p1∓pF )z1

z1+σ
1

(40)

with
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σ =
1

2
{(1 +

2v

π
)1/2 + (1 +

2v

π
)−1/2 − 2} (41)

Note that in the free case v → 0 one gets σ = 0, which leads to the well-known
normal Fermi-liquid behavior,

N1
2
∝ θ(p1 ± pF ). (42)

As soon as the interaction is switched on, one has σ 6= 0 and the Fermi
edge singularity is washed out, giving rise to the so called Luttinger-liquid
behavior [8]. It has been emphasized recently [15] that the experimental data
obtained for one-dimensional structures can be succesfully explained on the
basis of standard Fermi-liquid theory. We believe that our approach could be
useful to explore some modifications of the TL model to take into account, for
instance, the presence of impurities or defects, that might yield a restoration
of the edge singularity. The issue of how to incorporate impurities in our
framework will be briefly addressed in the next Section.
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4 Fermionic impurities

The main purpose of this Section is to comment on the extension of the path-
integral approach to non-local bosonization proposed in [1], to the case in
which an interaction between the electrons and a finite density of fermionic
impurities is included in the action. This generalization of the non-local
bosonization procedure provides a new way to examine the low-energy physics
of the TL model in the presence of localized impurities, that could allow to
make contact with recent very interesting studies [16],[17] on the response of
a Luttinger liquid to localized perturbations.

We describe the impurities following the work of Andrei [18], who intro-
duced a new fermionic field with vanishing kinetic energy to represent a finite
density of impurities, arbitrarily (not randomly) situated. This treatment has
been previously employed, for example, in the path-integral bosonization of
the Kondo problem [19].

We introduce a non-local diagonal potential matrix binding impurities
and electrons through their corresponding fermionic currents. This proce-
dure allows to treat a wide range of possible interactions, depending on the
precise functional form of the potential matrices. The complete coupling
term includes interactions between charge, current, spin and spin-current
densities. Our functional approach enables us to obtain an effective action
governing the dynamics of the collective modes, providing then a practical
framework to face a non-perturbative analysis of bosonic degrees of freedom
in the presence of impurities.

We start from the partition function

Z =
∫
DΨ̄ DΨ Dd̄ Dd e−S, (43)

where the action S can be splitted as

S = S0 + Sint, (44)

with
S0 =

∫
d2x [Ψ̄i/∂Ψ + d†i∂td] (45)

and

Sint = −
∫
d2x d2y [Jaµ(x)V ab

(µ)(x, y)Jbµ(y) + Jaµ(x)Uab
(µ)(x, y)Sbµ(y)], (46)
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where the electron field Ψ is written as

Ψ =

(
Ψ1

Ψ2

)
,

with Ψ1 (Ψ2) in the fundamental representation of U(N), describing right
(left) movers, whereas the impurity field d is given by

d =

(
d1

d2

)
.

Note the absence of a spatial derivative in the free piece of the impurity
action, meaning that the corresponding kinetic energy is zero. Concerning
the electronic kinetic energy, we have set the Fermi velocity equal to 1.
The interaction pieces of the action have been written in terms of U(N)
currents Jaµ and Saµ, defined as

Jaµ = Ψ̄γµλ
aΨ,

Saµ = d̄γµλ
ad, a = 0, 1, ..., N2 − 1, (47)

with λ0 = I/2, λj = tj , tj being the SU(N) generators normalized according
to tr(titj) = δij/2. V ab

(µ)(x, y) and Uab
(µ)(x, y) are N2 × N2 matrices whose

elements are symmetric bilocal arbitrary potentials describing the electron-
electron (e-e) and the electron-impurity (e-i) interactions, respectively.

Although we have obtained a bosonized effective action for the general
(non-abelian, spin-flipping) problem (See [2] for details), here I shall restrict
myself to the maximal abelian subgroup of U(2). In this case the model
describes a many-body system of spin-1

2
fermions when spin-flipping processes

are not allowed. Now, the potential matrices are diagonal whose elements
can be written in terms of the g-functions defined by Sólyom [20] as

V 00
(0) =

1

4
(g4‖ + g4⊥ + g2‖ + g2⊥),

V 11
(0) =

1

4
(g4‖ − g4⊥ + g2‖ − g2⊥),

V 00
(1) =

1

4
(−g4‖ − g4⊥ + g2‖ + g2⊥),

V 11
(1) =

1

4
(−g4‖ + g4⊥ + g2‖ − g2⊥). (48)
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It is straightforward to verify that the e-e interaction term in (46) contains
the whole set of diagrams associated to forward scattering processes without
spin-flips. Let us recall that the coupling constants for incident fermions
with parallel spins are denoted by the susbscript ‖ and that for fermions
with opposite spins by the subscript ⊥. In the g2 processes the two branches
(left and right moving particles) are coupled, while in the g4 processes all four
participating fermions belong to the same branch. The Tomonaga-Luttinger
model, with charge-density fluctuations only, corresponds to V 11

(0) = V 11
(1) =

0. In a completely analogous way we introduce the potentials that couple
electron and impurity currents in the form

U00
(0) =

1

4
(h4‖ + h4⊥ + h2‖ + h2⊥),

U11
(0) =

1

4
(h4‖ − h4⊥ + h2‖ − h2⊥),

U00
(1) =

1

4
(−h4‖ − h4⊥ + h2‖ + h2⊥),

U11
(1) =

1

4
(−h4‖ + h4⊥ + h2‖ − h2⊥).

This description includes both charge and spin density interactions, as well as
spin-current interactions. A Kondo-like interaction, i.e. the coupling between
spin densities only, corresponds to the case U00

(0) = U00
(1) = 0.

In order to carry out the bosonization of the model one has to face some
technical difficulties that we shall not describe here (Again, see [2] for details).
Let me say that, in this case one has two fermionic determinants in the
partition function, one associated to electrons and a new one, related to
the impurity degrees of freedom. When they are conveniently decoupled, an
effective action for the collective modes of the system is again obtained. In
other words, one is left with a partition function in terms of bosonic fields
Φi and ηi which, by comparison with the impurity-free case, one naturally
identifies with the collective modes of the system. The result is

Z =
∫
DΦi Dηi exp−

{
S00
eff + S11

eff

}
, (49)

where the actions, in Fourier space, are given by
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Siieff =
1

(2π)2

∫
d2p[Φ̂i(p)Aii(p)Φ̂i(−p) + η̂i(p)Bii(p)η̂i(−p) +

+ Φ̂i(p)
Cii(p)

2
η̂i(−p) + η̂i(p)

Cii(p)

2
Φ̂i(−p)], (50)

where

A(p) =
1

∆(p)

{
p2

π
∆− a0a1

p2
1

π
+

1

2π
(a2

0p
2
1 − a

2
1p

2
0)− 2a2

0a
2
1(
p2

1

b1
+
p2

0

b0
)

}
,

B(p) =
1

∆(p)

{
p2

1

π
a0a1 +

1

2π
(a2

0p
2
0 − a

2
1p

2
1)− 2a2

0a
2
1(
p2

1

b0

+
p2

0

b1

)

}
,

C(p) =
1

∆(p)

{
a0a1

π
(
p3

1

p0
− p0p1) +

p0p1

π
(a2

0 + a2
1) + 4p0p1a

2
0a

2
1(

1

b0
−

1

b1
)

}
,

∆(p) =
p2

1

4π2p2
0

+ 4(
1

4π
−
a2

1

b1
)(

1

4π
+
a2

0

b0
). (51)

For the sake of clarity we have omitted ii superindices in the above ex-
pressions, which are written in terms of the Fourier transforms of the inverse
potentials. (Note that bµ(p) = V −1

(µ) (p) and aµ(p) = U−1
(µ)(p) ).

This is one of our main results. We have obtained a completely bosonized
action for the collective modes corresponding to a system of electrons which
interact not only between themselves, but also with fermionic localized impu-
rities at T = 0. This effective action describes the dynamics of charge density
(Φ0 and η0) and spin density (Φ1 and η1)fields. As we can see, these modes
remain decoupled as in the impurity free case. Their dispersion relations can
be obtained from the poles of the corresponding propagators. Alternatively,
one can write the effective Lagrangian as

Liieff =
1

2π

(
Φ̂i η̂i

)( Aii Cii/2
Cii/2 Bii

) (
Φ̂i

η̂i

)
, (52)

with A,B and C as defined above, and solve the equation

C2(p)− 4A(p)B(p) = 0. (53)

Going to real frecuencies: p0 = iω, p1 = q, this equation has the following
pair of relevant solutions:

ω2
ρ(q) = q2

1 + 2
π
V 00

(0) + 1
2π2{(U00

(0))
2 − 2U00

(0)U
00
(1)}

1 + 2
π
V 00

(1) −
1

2π2 (U00
(1))

2
, (54)
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ω2
σ(q) = q2

1 + 2
π
V 11

(0) + 1
2π2{(U11

(0))
2 − 2U11

(0)U
11
(1)}

1 + 2
π
V 11

(1) −
1

2π2 (U11
(1))

2
, (55)

The first equation gives the dispersion relation associated to charge-density
fluctuations (Φ̂0, η̂0), whereas the second one corresponds to spin-density
modes (Φ̂1, η̂1).

As a confirmation of the validity of our approach, we note that the above
dispersion relations, involving both e-e and e-i interaction potentials, coincide
with the well-known result for the spectrum of charge and spin excitations in
the TL model without impurities, obtained by choosing V(1) = U(0) = U(1) = 0
and V(0) = v(q), in the above formulae.

Let us now consider the fermionic 2-point function

〈Ψ(x)Ψ̄(y)〉 =

(
o G1(x, y)

G2(x, y) 0

)
(56)

where

G1(2)(x, y) =

(
G1(2)↑(x, y) 0

0 G1(2)↓(x, y)

)
(57)

The subindex 1(2) means that we consider electrons belonging to the branch
1(2), and ↑ (↓) indicates that the field operator carries a spin up (down)
quantum number. Let us recall that in the present case we have disregarded
those processes with spin-flip. This is why the fermionic Green function do
not have non-zero components with mixed spin indices.
To be specific we consider G1↑ (similar expressions are obtained for G2↑, G1↓

and G2↓ ). When the decoupling chiral change is performed, the components
of the Green functions are factorized into fermionic and bosonic contributions
in the form

G1↑(x, y) = < Ψ1↑(x)Ψ†1↑(y) >

= G
(0)
1↑ (x, y) < e{[Φ0(y)−Φ0(x)]+i[η0(y)−η0(x)]} >00 ×

× < e{[Φ1(y)−Φ1(x)]+i[η1(y)−η1(x)]} >11, (58)

where G
(0)
1↑ (x, y) is the free propagator, which involves the Fermi momentum

pF , and is given by

G
(0)
1↑ (x, y) =

eipF z1

2π | z |2
(z0 + iz1). (59)
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The symbol <>ii means v.e.v. with respect to the action (50, 51). Exactly
as we did in the impurity-free case ([1]), the bosonic factors in (58) can be
evaluated by appropriately shifting the fields. Indeed, working in momentum-
space, and defining the non-local operator

D(p; x, y) = e−ip.x − e−ip.y, (60)

the functional integrations can be performed, yielding

< Ψ1↑(x)Ψ†1↑(y) >= G
(0)
1↑ (x, y) exp{−

∫
d2p

(2π)2
D2A

00 − B00 + iC00

4A00B00 − (C00)2
}

exp{−
∫

d2p

(2π)2
D2A

11 − B11 + iC11

4A11B11 − (C11)2
},

(61)

with Aii, Bii and Cii given by (51). In order to continue the calculation one
needs, of course, to specify the couplings and perform the integrals. This
means that our formula could be used to test the effect of different e-e and
e-i potentials on the behavior of the fermionic propagator.

As a final illustration of our procedure, now I will show how to compute
the electronic momentum distribution, for a quite peculiar choice of e-e and
e-i potential matrix elements.
Let us consider the momentum distribution of electrons belonging to branch
1 and with spin-up. This distribution is given by

N1↑(q) = C(Λ)
∫ +∞

−∞
dz1 e

−iqz1 lim
z0→0

G1↑(z0, z1). (62)

We shall set
V 00

(1) = V 11
(1) = 0, V 00

(0) =
π

2
r, V 11

(0) =
π

2
s,

which corresponds to an e-e interaction including only charge-density fluctu-
ations (the usual TL model). Concerning the interaction between electrons
and impurities, we shall take into account only spin-density and spin-current
interactions,

U00
(0) = U00

(1) = 0,
(
U11

(0)

)2
=
(
U11

(1)

)2
= 2π2t.

Note that for repulsive electron-electron interactions one has r > 0 and s > 0,
whereas t > 0 for both ferromagnetic and antiferromagnetic couplings.
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Taking the limit z0 → 0 in (58) and replacing eqs. (58) and (59) in (62) one
gets

N1↑(q) = C(Λ)
∫
dz1

e−i(q−pF )z1

z1

e
−
∫
dp1

1−cosp1z1
p1

Γ(p1)
, (63)

where C(Λ) is a normalization constant depending on an ultraviolet cutoff
Λ, and Γ(p1) depends on p1 through the potentials in the form

Γ(r, s, t) =
(| 1 + r |1/2 −1)2

| 1 + r |1/2
+

(| 1 + s− t |1/2 − | 1− t |1/2)2

| 1 + s− t |1/2| 1− t |1/2
−

−
2t(t− tc)

| 1 + s− t |3/2| 1− t |1/2
. (64)

If we define

f(s, t) =
(| 1 + s− t |1/2 − | 1− t |1/2)2

| 1 + s− t |1/2| 1− t |1/2
, (65)

h(s, t) = t
2t(t− 1) + s(s− 1)

| 1 + s− t |3/2| 1− t |1/2
, (66)

we can write eq. (64) in the form

Γ(r, s, t) = f(r, 0) + f(s, t)− h(s, t). (67)

Once again, in order to go further and make the integration in (63), one
has to specify the functional form of r, s and t. At this point one observes
that we are in a position of discussing, through this simple example, an
interesting aspect of the general model under consideration. Indeed, we can
try to determine under which conditions it is possible to have a restoration of
the Fermi edge. To this end, and as a first approximation, we shall consider
contact interactions (r, s and t constants) and search for those relations
between potentials giving Γ(r, s, t) = 0. In this last case one obtains the
well-known normal Fermi-liquid (FL) behavior

N1↑(q) ≈ Θ(q − pF ). (68)

At this point some remarks are in order. In the impurity free case (t = 0),
Γ(r, s, t) cannot vanish for any value of r and s other than r = s = 0, which
corresponds to the non-interacting Fermi gas. This result is consistent with
the well-known LL behavior of the TL model.
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In order to have collective modes with real frecuencies (ω2 > 0), one finds
two regions where the FL edge could be restored: t > 1 + s and t < 1.
In eq.(65) one can observe that f(r, 0) > 0, thus setting Γ = 0 yields the
condition

F (s, t) = h(s, t)− f(s, t) > 0. (69)

A simple numerical analysis of F (s, t) shows that the above inequality is not
fulfilled for 0 < t < 1. The electron-impurity coupling is not strong enough
in this region as to eliminate the LL behavior. On the contrary, for t > 1 + s
equation (65) can be always satisfied. Moreover, in this region, we obtain
a surface in which the condition Γ = 0 provides the following analytical
solution for r in terms of F (s, t)

r = F 2/2 + 2F + (1 + F/2)(F 2 + 4F )1/2. (70)

The above discussion can be summarized by identifying the following three
regions in the space of couplings:
Region I, given by 0 ≤ t < 1, in which one necesarilly has LL behavior.
Region II, with 1 ≤ t < s + 1, in which the frecuency of the spin density
excitations becomes imaginary; and region III, given by t > s + 1, where
the FL behavior is admitted. In this region Eq(66) defines a surface in the
space of potentials on which FL behavior takes place. One particular solution
belonging to this surface is obtained by choosing s = 0 in (70), which yields

r(t) =
2t(3t− 2) + 2(2t− 1)

√
3t2 − 2t

(t− 1)2
.

corresponding to the case in which the dispersion relation of the spin density
excitations is given by ω2 = q2. For t large, r approaches a minimum value
rmin = 6 + 4

√
3, a feature that is shared with each curve s = constant on

the ”FL surface”.
In summary, we have shown how the e-i couplings can be tuned in order

to have a restoration of the Fermi edge in a TL model of electrons interacting
with fermionic impurities. Unfortunately, we could analytically work out this
mechanism only for a very peculiar choice of the e-i couplings, which evidently
weakens its experimental relevancy. Besides, a more realistic study should
include at least the backward-scattering processes. However, we think this
discussion deserves attention as a first step towards a possible reconciliation
between the standard TL model and the FL phenomenology.
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5 Comments on further developments

I would like to end by making some remarks on recent works that help to
improve our present understanding of the Thirring-like model discussed in
this talk.

In ref.[3] we addressed our attention to the vacuum properties of the
above mentioned model. As it is well-known, ground-state wave functionals
(GSWF’s) have in general very complex structures. Due to this fact, their
universal behavior has been seldom explored in the past. Fortunately, in a
recent series of papers, an alternative way to compute GSWF’s was presented
[21] [22] [23]. By conveniently combining the operational and functional
approaches to quantum field theories, these authors provided a systematic
path-integral method that, at least in the context of 1 + 1 systems, seems to
be more practical than the previously known semiclassical and Bethe ansatz
techniques. We take advantage of these advances and applied them to shed
some light on the vacuum structure of the NLT. In particular we got a closed
formula that gives the probability of the vacuum state as a functional, not
only of the density configuration but also of the potentials that bind the
original fermionic particles of the system. This result allowed us to find
a non-trivial symmetry of this vacuum with respect to the interchange of
density-density and current-current potentials. Of course, this symmetry
does not persist at the level of the dispersion relations of the collective modes
(plasmons), to which the excited states are expected to contribute. We have
also computed the general electromagnetic response of the model and the
asymptotic behavior of GSWF’s and density-waves frequencies for a wide
variety of power-law potentials. This allowed us to identify different phases
contained in the non-local Thirring model.

In ref.[4] we studied the non-local Thirring model with a relativistic
fermion mass term included in the action. Performing a perturbative ex-
pansion in the mass parameter, we found that the NLT is equivalent to
a purely bosonic action which is a simple non-local extension of the sine-
Gordon model. Thus, we have generalized Coleman’s equivalence [24] to the
case in which the usual Thirring interaction is point-splitted through bilocal
potentials. In the language of many-body, non-relativistic systems, the rel-
ativistic mass term can be shown to represent not an actual mass, but the
introduction of backward-scattering effects [25]. Therefore, our result could
provide an alternative route to explore the non-trivial dynamics of (gapped)
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collective modes.
Finally, using the results of ref.[26] we have recently examined the finite-

temperature extension of the NLT, which allowed us to discuss termodynam-
ical and transport properties of the 1d electronic system [27].
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