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Abstract

We compute the improvement coefficient csw that multiplies the Sheikholeslami-Wohlert

term as a function of the bare gauge coupling for two flavour QCD. We discuss several

aspects concerning simulations with improved dynamical Wilson fermions.

1 Introduction

The standard formulation of lattice QCD by Wilson has been used since the early days of lattice

gauge theory. However, it is known that in this formulation the leading discretization errors

∗Talk given by K.J. at the International Symposium on Lattice Field Theory, 21−27 July 1997, Edinburgh,

Scotland
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are linear in the lattice spacing a. Moreover, by testing the PCAC relation on the lattice, it

could be demonstrated that the effects of these discretization errors are most severe and can

influence values of physical observables strongly [1].

In a series of papers [2, 3, 4] it was shown that, by implementing Symanzik’s improvement

programme [5] for QCD on-shell and non-perturbatively, one can reach a complete cancellation

of the O(a) effects. The advantages of this procedure are obvious, and this conference has seen

the improvement programme successfully at work [6]. The complete improvement programme

demands as a first step a computation of the parameter csw that multiplies the Sheikholeslami-

Wohlert term [7] in the improved action. In addition, also the coefficients that enter the

improved operators have to be determined. By now, in the quenched approximation, a number

of these parameters are known as a function of the bare gauge coupling g0 [4, 8, 9].

In this contribution we want to initiate the computation of the improvement coefficients for

two flavours of dynamical fermions. As a first step we will compute the coefficient csw. As is well

known, dynamical fermion simulations are very demanding even with today’s computers and

algorithms [10]. On the other hand, knowing the improvement coefficients will substantially

reduce the computational cost, since one is allowed to choose larger lattice spacings.

2 The improvement condition

The idea of testing the lattice artefacts is to probe the PCAC relation, which should hold, up

to O(a) corrections:

∂µA
a
µ(x) = 2mP a(x) + O(a) , (1)

where Aaµ(x) denotes the isovector axial current and P a(x) the corresponding density. The

quark mass that appears in eq. (1) is a bare current quark mass at scale 1/a. The important

point to notice here is that the PCAC relation is an operator identity that can be inserted into

arbitrary correlation functions.

One can make use of this fact to improve the theory: one tests the PCAC relation in

different correlation functions and demands to obtain always the same value of m. Using the

Schrödinger functional, it was demonstrated in ref. [4] how this strategy can be efficiently

implemented to determine csw. Here we follow ref. [4] closely and impose exactly the same

improvement condition:

a∆M = 0.000277 (2)

at L/a = 8, with ∆M as introduced in ref. [4].

The improvement condition eq. (2) can in principle be imposed at any (not too large) value

of M , where M is a specific definition of the current quark mass [4] derived from eq. (1). In

order to guarantee a smooth behaviour of csw(g0) one should, however, make a definite choice,

where a natural value is M = 0. Since ∆M turns out to be a very weak function of the quark
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mass M [4, 11], one may also compute ∆M for |aM | � 1. In particular, for the values of aM

chosen, here, the error introduced is negligible compared with the statistical one.

3 The simulations

The numerical simulations are performed on 16 × 83 lattices, with boundary conditions as

detailed in [4]. We use the Hybrid Monte Carlo (HMC) algorithm with the Sexton-Weingarten

scheme to integrate the classical equations of motion [12]. Our implementation of the HMC

algorithm is described in detail in ref. [13]. All simulations are performed on the massively

parallel Alenia Quadrics (APE) computers. On the two versions of these machines that we have

used with 256 and 512 nodes, we ran 32 and 64 independent simulations in parallel. Combined

with a jack-knife method, this allows for a realistic error estimate on our observables.

We have run simulations at eight values of β = 6/g2
0 in the range 5.2 ≤ β ≤ 12.0. Each

simulation has at least 1280 molecular dynamics trajectories and typically 2500. Keeping the

trajectory length fixed to 1, we reach typical acceptance rates of 95%. Despite the relatively

large acceptance rates, we noticed that sometimes a system can get stuck and does not accept

a number of (larger than, say, 10) trajectories. The problem is easily overcome by performing

every n number of trajectories one with a much smaller step size. Of course, in order to

be able to show that one generates the correct distribution, the value of n has to be chosen

independently of the Monte Carlo history. We simply kept n fixed in each simulation.

We applied the improvement condition eq. (2) in the small quark mass region, |aM | < 0.01.1

With Schrödinger functional boundary conditions, simulations at such small quark masses are

unproblematic, since the massless Dirac operator of the Schrödinger functional with time extent

T has a lowest eigenvalue with magnitude λmin = const./T + O(g2) + O(M).

Owing to the O(g2) terms in λmin, the simulations slow down, when β is decreased. In detail

the reason for this is threefold. First, going to smaller values of β we have to decrease the step

size dt from, as an example, dt = 0.066 at β = 7.4 to dt = 0.027 at β = 5.4. Second, the

condition number k of the preconditioned fermion matrix Q̂2 (see e.g. ref. [13] for a definition

of Q̂) increases with decreasing β, as can be seen in fig. 1. The increasing values of k result

in a growing number of conjugate gradient (CG) iterations when going to smaller β. Third,

we find an increase of the autocorrelation time τ with decreasing β for observables such as the

lowest eigenvalue of Q̂2 or quark correlation functions at a given distance. Fortunately, it turns

out that the autocorrelation time for ∆M is small, τ ≈ 2–4, and shows only a weak dependence

on β.

As a rule, we find that the performance of the simulation algorithm does not significantly

depend on the value of csw. The only exception are the autocorrelation times τ for which there

are indications that they are particularly large when both csw and β are small.

1There is one data point where aM = 0.023.
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Figure 1: The condition number k of the preconditioned fermion matrix Q̂2. Different values

of k at the same bare gauge coupling g2
0 correspond to different values of csw.

4 Results

We determined ∆M at fixed β for various values of csw. From the –linear– dependence of ∆M

on csw we can then extract the slope s = d∆M/dcsw. We found in practice that the slope is well

described by a linear function of g2
0. In order to extract the desired improvement coefficients

cimpr
sw (gi0) at the eight values of gi0 , i = 1, ..., 8, where the simulations are performed, we fit all

our data for ∆M to the form

a∆M = s(g0) · (csw − c
impr
sw (gi0)) = 0.000277 , (3)

where

s(g0) = −0.015 · (1 + s1g
2
0) (4)

and s1 as well as cimpr
sw (gi0) are fit parameters. The results for cimpr

sw are displayed as the full

symbols in fig. 2. The solid line is a representation of these data, given by

csw =
1− 0.454g2

0 − 0.175g4
0 + 0.012g6

0 + 0.045g8
0

1− 0.720g2
0

(5)

As already mentioned, for small values of β the simulations become very costly, and we were

not able to perform simulations at β = 5.2 and small quark masses. We therefore switched to
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Figure 2: The improvement coefficient csw as a function of the bare gauge coupling g2
0. The

solid line represents eq. (5). The dotted line is the 1-loop result [3, 14] and the dashed line is

the result in the quenched approximation [4].

the following strategy: we take the parameterization eq. (5) to extrapolate a little bit further

in β, to β = 5.2. At the value of csw determined in this way, we then select a large quark mass,

aM = 0.1 and try to verify that improvement is at work. Indeed, we find for β = 5.2 and

csw = 2.02 that a∆M = −0.0006(9). This indicates that our final result eq. (5) can safely be

used for β ≥ 5.2. Preliminary studies of the hadron spectrum in the improved theory suggest

that β ≥ 5.2 yields the range of lattice spacings that is of interest to computations of hadronic

properties [15].

We want to emphasize that although, with our values of csw, the O(a) terms are cancelled,

O(a2) effects remain and are not negligible for β ≈ 5.2, as will be discussed elsewhere [11].

This work is part of the ALPHA collaboration research programme. We thank DESY for

allocating computer time to this project.
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