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ABSTRACT

The N = 3 string models are special solutions of the type II per-
turbative string theories. We present explicit expressions for the helicity
supertraces, which count the number of the perturbative BPS multiplets.
Assuming the non-perturbative duality (S ↔ T ) of the heterotic string
on T 6 and type II on K3 × T 2 valid in N = 4 theories, we derive the
N = 3 non-perturbative BPS mass formula by “switching off” some of the
N = 4 charges and “fixing” to special values some of the N = 4 moduli.
This operation corresponds to a well-defined Z2 projection acting freely
on the compactification manifold. The consistency of this projection and
the precise connection of the N = 4 and N = 3 BPS spectrum is shown
explicitly in several type II string constructions. The heterotic N = 3 and
some asymmetric type II constructions turn out to be non-perturbative
with the S moduli fixed at the self-dual point S = i. Some of the non-
perturbative N = 3 type II are defined in the context of F-theory.

The bosonic sector of theN = 3 string effective action is also presented.
This part can be useful for the study of 4d black holes in connection with
the asymptotic density of BPS states in N = 3 string theory.
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1 Introduction

Recently significant progress has been made in the study of the non-perturbative
aspects of string theory. One of the major steps in this direction has been the iden-
tification of the solitonic states, predicted through BPS mass formulae, with the
D-brane states in string theory [1]. The counting of these states, through an open
string construction with Dirichlet boundary condition, has been shown to give ex-
pressions for the black hole entropy, in a number of cases from the microscopic point
of view, which match the macroscopic description. As a result, apart from having
possible interesting phenomenological applications, these developments also have a
potential to solve the Hawking paradox for the black-hole information loss.

A major requirement in the study of the non-perturbative aspects of string theory
is the preservation of a part of the original supersymmetry. This, in many cases,
protects the physical quantities from receiving quantum corrections, through non-
renormalization theorems and a semi-classical analysis is sufficient for getting exact
results.

However, the major thrust of these studies has been restricted to the case of
N = 4 [2, 3] and N = 2 [4] space-time supersymmetries. The N = 4 string theories
provide the simplest non-trivial possibilities, since the only allowed massless matter
multiplets in this case are the vectors. The perturbative moduli space is parametrized
by a coset, SO(6, 22)/SO(6)×SO(22). This coset gives a complete classification of the
perturbative string spectrum with N = 4 supersymmetry. There are, in addition, the
axion-dilaton moduli as well, which parametrize a coset space, SU(1, 1)/U(1). The
SU(1, 1) symmetry mixes the electric charges with the magnetic ones and turns the
weak-coupling string theory into a strong-coupling one. The BPS states of the N = 4
theory preserve either one-half or one-quarter of the supersymmetry. For instance,
the extremal black holes of [5] are examples of BPS states preserving one-half of the
supersymmetry. On the other hand, N = 2 supersymmetric theories have a much
richer moduli structure which can among other things account for the confinement in
the supersymmetric gauge theories.

In this paper, we discuss some aspects of a similar study for N = 3 superstring
theories [6]. Although, these theories have attracted much less interest, compared
with the ones discussed above, they seem to possess in some ways interesting features
of both of N = 2 and N = 4 theories. Since the physical degrees of freedom in a
vector multiplet of an N = 3 theory are the same as those in an N = 4 one, the
moduli space of the two theories share similar universal properties. In particular, the
number of vectors in the spectrum still determines the scalar manifold uniquely. Due
to a similarity in vector multiplets in the two cases, the N = 3 theories with global
supersymmetries get automatically extended to N = 4. This is one of the reasons for
comparatively less attention being paid to them. On the other hand, the supergravity
sector of an N = 3 theory resembles that of the N = 2 case, as there are no scalars
in this sector in both cases. The full moduli space for N = 3 theories for n matter
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multiplets, at a generic point, has the form SU(3, n)/U(1) × SU(3) × SU(n). The
supergravity couplings therefore clearly distinguish the N = 4 and N = 3 cases. The
present study highlights some of these similarities and differences. In particular, in
section 2 of this paper, we study the particle spectrum of N = 3 string theory with
an emphasis on the BPS states. We present the N = 3 constructions and derive the
expressions for various helicity-supertraces that count the number of these multiplets.

In the N = 2 models, it is known that, depending on the details of the string
construction, the dilaton belongs either to a vector or to a hyper-multiplet [9]. In the
N = 3 case also, as we will discuss, there are two allowed projections for constructing
models. The first possibility is to carry out a Z2 projection either in the heterotic
or the (4, 0) type II models, in which the dilaton is projected out. This is possible,
provided one is at a self-dual point on the space of string coupling for N = 4. Such
theories therefore are only defined at a non-perturbative level. However, we would
like to emphasize that our projection can be used to find out both the massless and
the massive BPS spectra in these cases. One can also use a Z2 projection in the type
II models with (2, 2) supersymmery; in this case the dilaton survives the projection
and belongs to the vector multiplet. We show the exact connection between these
two projections, through a known prescription for the construction of type II dual
pairs [10]. The action of the projections on the 16 extra right-moving coordinates of
the heterotic string theory is also obtained by examining the transformation of the
twisted sector states in the original (2, 2), type II, model.

Our results therefore provide an example of duality in the N = 3 context. This is
similar to the F-theory/heterotic string duality [11] discussed in the literature. There
are many known examples in the F-theory side, which are only non-perturbatively
defined [12], but can still be shown to be dual to a heterotic string construction.
In those cases, as in ours, the coupling constants are frozen to a fixed value in the
orbifold limit. Following a similar line of study, it may also be possible to define
the N = 3 model as a geometric compactification of a “hidden” theory, which would
allow us to study their non-perturbative aspects.

After the identification of the projection in the heterotic (or (4, 0) type II) models,
the BPS mass formula for N = 3 string theory is obtained through a projection of
the N = 4 formula. We show that the expressions for the BPS formula for the
N = 4 string have a unique truncation, which defines the N = 3 case, irrespective of
whether the BPS states preserve the 1/2 or the 1/4 of the original supersymmetry.
This uniqueness is explained by the fact that the states of the N = 3 strings are
classified by a single central charge, whereas in the N = 4 case there are two such
charges. As a result, the projection acting on both these states gives the unique
short-multiplet of an N = 3 theory. This multiplet preserves 1/4 of the original
N = 4 supersymmetry. The final mass formula is U(3, n)-invariant and formally has
a structure similar to the the one used in writing down the black-hole entropy [13].

The derivation of the BPS mass formula in theories with lesser supersymmetries,
obtained by projection of a theory with a larger number of supersymmetries, has been
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discussed earlier in a different context [14]. In our case, these projections can also
be used to obtain the number of BPS states with given quantum numbers, from the
knowledge of the degeneracy of such states in the original N = 4 theory.

Another application of our results is to write down the N = 3 string effective
action. In this paper we present the bosonic part of this effective action. The effective
action is also invariant under a U(3, n) symmetry, which can be used as a solution-
generating technique for these models. In particular the black-hole solutions forN = 3
theories, carrying 14 electric charges, can be obtained along a line similar to the one
in [5] for the N = 4 case.

2 N = 3 Constructions

2.1 (2,1)–Type II Models

We now start by presenting the type II N = 3 string models [6] and write down their
partition function. All the models of [6] have been obtained by applying projections
to the N = 8 string theories, which preserve modular invariance as well as the con-
formal symmetries on the string worldsheet. The N = 8 model is described in the
bosonic language, in the light-cone gauge, by 8 worldsheet left/right-moving bosonic
and fermionic coordinates, ψL,Ri and XL,R

i (i = 1, ..., 8). In our notation, the coordi-
nates ψL,Rµ and XL,R

µ (µ = 1, 2) represent the space-time degrees of freedom, whereas
the remaining ones correspond to the internal degrees of freedom. This bosonic de-
scription will be appropriate for the asymmetric orbifold construction in section 3
where we will discuss various issues related to the non-perturbative BPS spectrum.

In the fermionic construction [7], [8], XL,R
i ’s (i = 3, ..., 8) are replaced by a pair

of Majorana–Weyl spinors ωL,Ra and yL,Ra , (a = 1, ..., 6). To follow the standard
notation of the fermionic construction [6], we also rename the internal components of
the field ψL,Ri ’s as χL,Ra ’s. The construction of string models amounts to a choice of
boundary conditions for these fermions, which satisfies local and global consistency
requirements. The N = 8 model, constructed in this manner, have four space-time
supersymmetries originating from the left-moving sector and another four from the
right-moving sector. In the language of the fermionic construction [7], this model is
constructed by introducing three basis sets, namely F , which contains all the left-
and the right-moving fermions:

F = [ ψLµ , χ
L
a , y

L
a , ω

L
a | ψ

R
µ , χ

R
a , y

R
a , ω

R
a ] (µ = 1, 2; a = 1, .., 6), (2.1)

and the basis sets S and S̄, which contain only eight left or right-moving fermions:

S = [ ψLµ , χ
L
a ] S̄ = [ ψRµ , χ

R
a ]. (2.2)

Four of the gravitinos of the N = 8 model belong to sector S and the other four to S̄.
Then by applying appropriate projections one obtains the N = 3 superstring model
with gauge groups of various ranks.
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First, to keep the discussion simple, we avoid those models that make a contri-
bution to the massless particle spectrum from the twisted sectors of new basis sets.
As a result, all the states in these models are a subset of those in the N = 8 case.
For example, the first projection for constructing an N = 3 model with three matter
multiplets, is specified by a choice of fermion basis bH3 :

bH3 = [ ψLµ , χ
L
1,2, y

L
3,...,6, y

L
1 , ω

L
1 | ψ

R
µ , χ

R
1,2, y

R
3,..,6, y

R
1 , ω

R
1 ]. (2.3)

This applies a left–right-symmetric Z2 projection in the planes defined by the coor-
dinates χ3,4 and χ5,6. It breaks half of the supersymmetries in both the sides, by
projecting out two of the gravitinos from each of the sectors S and S̄. The resulting
model has N = 4 supersymmetry with 12 U(1) gauge fields. The local structure of
the moduli space is parametrized by a coset:

SU(1, 1)

U(1)
×

SO(6, 6)

SO(6)× SO(6)
. (2.4)

In terms of orbifold construction, bH3 acts without fixed points, making the twisted
sector states heavy.

A second projection on the N = 8 construction yielding a N = 3 model specified
by the basis set:

bh3 = [ ψLµ , y
L
1,2,3, ω

L
4 , χ

L
5,6, y

L
5 , ω

L
5 | y

R
5 , ω

R
5 ]. (2.5)

This asymmetric projection, which acts as a Z2 twist on the planes defined by χL1,2 and
χL3,4, breaks another one-half supersymmetry from the left-moving sector by projecting
out one more gravitino from S. The resulting model has six U(1) gauge fields and
the structure of the moduli space is now given by the coset structure:

SU(3, 3)

U(1)× SU(3)× SU(3)′
. (2.6)

The massless states of the model constructed above come from various sectors of
the original N = 8 theory. Among these, the bosonic ones are in the sectors classified
by the NS–NS sector φ and the R–R sector SS̄. These massless states can be arranged
in various representations of the subgroups of SU(3, 3), the symmetry group of the
moduli deformations; the subgroup SU(3, 3;Z) ⊂ SU(3, 3) defines the conjectured
U-duality group for this N = 3 string construction. For convenience, we decompose
the compact subgroups SU(3) and SU(3)′ of SU(3, 3) as

SU(3)→ U(1)× SU(2)R, and SU(3)′ → U(1)× SU(2)′R. (2.7)

The group SU(3, 3) can also be decomposed as

SU(3, 3)→ SU(1, 1)× SU(2, 2). (2.8)

The massless scalars from the NS–NS sector then are:
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(i) dilaton and axion, which parametrize the coset

SU(1, 1)

U(1)
, (2.9)

(ii) eight scalars parametrizing

SO(2, 4)

SO(2)L × SO(4)R
≡

SU(2, 2)

SU(2)R × SU(2)′R × U(1)L
. (2.10)

This sector also provides two U(1) gauge fields that transform as a vector of SO(2)L.
We have four additional U(1) gauge fields and four complex scalars transforming as
(2,1) and (1,2) of SU(2)R × SU(2)′R from the R–R sector.

N = 3 string models with a gauge sector of various other ranks, n, have been
presented in [6]. For n > 3 they involve projections whose twisted sectors give extra
contributions to the massless spectrum.

The SU(3,3+8) model

An n = 11 model constructed in [6] uses the projections

bH11 = [ ψLµ , χ
L
1,2, y

L
3,..,6 | ψ

R
µ , χ

R
1,2, y

R
3,..,6 ], (2.11)

bh11 = [ ψLµ , y
L
1,2,3,4, χ

L
5,6, y

L
5,6, ω

L
5,6 | y

R
5,6, ω

R
5,6], (2.12)

and

T = [ yL5,6, ω
L
5,6 | y

R
5,6, ω

R
5,6 ]. (2.13)

The basis T factorizes the (5,6)-torus with independent boundary conditions. The
modular invariant partition function for the above N = 3 model is:

Zstring =
1

Imτ η2η̄2

1

4

∑
(H,G,h,g)

1

4

∑
(γ,δ,γ′,δ′)

eiπ(γ′g+δ′h+gH) ZL ZR , (2.14)

where ZL,R are themselves the products of contributions from worldsheet fields ψL,Rµ ,
χL,Ra , ωL,Ra and yL,Ra written in terms of Riemann theta functions. The boundary
conditions of these fields as specified by the various indices in the sum above. We
then have

ZL = Zψχ
L Zω

L Z
y
L, ZR = Zψχ

R Zω
R Z

y
R , (2.15)

with

Zψχ
L =

1

2

∑
(a,b)

(−)a+b+ab

η4
θ[ab ] θ[

a+h
b+g ] θ[a−H−hb−G−g ] θ[a+H

b+G ] , (2.16)
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Zω
L =

1

η3
θ[γδ ] θ[

γ
δ ] θ[

γ′

δ′ ] , (2.17)

Zy
L =

1

η3
θ[γ+h
δ+g ] θ[γ−H−hδ−G−g ] θ[γ

′+H
δ′+G ] . (2.18)

Similarly the contributions of the right-moving fermions is given as

Zψχ
R =

1

2

1∑
ā,b̄=0

(−)ā+b̄+āb̄

η̄4
θ̄2[āb̄ ] θ̄[

ā−H
b̄−G ] θ̄[ā+H

b̄+G
] , (2.19)

Zω
R =

1

η̄3
θ̄[γδ ] θ̄[

γ
δ ] θ̄[

γ′

δ′ ] , (2.20)

Zy
R =

1

η̄3
θ̄[γδ ] θ̄[

γ−H
δ−G ] θ̄[γ

′+H
δ′+G ] . (2.21)

The partition function written in eqs. (2.14)–(2.21) is only one of the many possi-
bilities arising from a choice of the GSO projection in the string construction. One
can modify these GSO projections by introducing modular invariant phases (discrete
torsions), which appear as coefficients of various terms in the partition function. In
our case we can choose one of the following phases (or any product of them):

eiπ(γg+δh+gh) , eiπ(γ′g+δ′h+gh) , eiπ(γG+δH+GH) , eiπ(γ′G+δ′H+GH) . (2.22)

The projection bH11 in the partition function is represented by the twists H and G,
while bh11 is represented by h and g. It can also be checked that the partition function
of the original N = 8 construction is reproduced from above by setting H = G = h =
g = 0 in the arguments of theta functions. We will now use these results to obtain
an expression of the generating function that counts the number of BPS states in
perturbative N = 3 string theory.

2.2 Perturbative BPS States

We now study the spectrum of the BPS states for the N = 3 model constructed
above. As mentioned before, the N = 3 supersymmetry algebra allows only one
independent central charge. As a result it possesses two allowed representations for
the non-vanishing value of this central charge. The long one is a 26-dimensional
complex representation of SO(12) Clifford algebra and the short one is a complex
representation of dimension 24 [15], [16]. A vacuum configuration in a long multiplet
representation breaks supersymmetry completely. Since the short ones are annihilated
by one of the supersymmetry generators, they preserve a part of the supersymmetry.
The generating functions that count the number of N = 3 BPS states are given as
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trace formula over the supermultiplets. In the N = 3 case, the helicity-generating
function, defined as

ZR(y) = str y2λ = Tr (−)2λ y2λ, (2.23)

with λ denoting the helicity of the states within a multiplet R, is given for a long
multiplet by

Zlong(y) = z[j] (1− y)3 (1− 1/y)3. (2.24)

In eq. (2.24)

z[j] = (−)2j y2j+1 − y−2j−1

y − 1/y
massive, (2.25)

z[j] = (−)2j
(
y2j + y−2j

)
massless, (2.26)

for a particle of spin j. For short multiplets, preserving one of the supersymmetries,
the generating function has a form:

Zshort = 2z[j] (1− y)2(1− 1/y)2. (2.27)

The extra factor of 2 in (2.27) is due to the fact that the central charge is necessarily
non-zero in this case and implies a doubling of the representations. The “helicity
supertrace” over a supermultiplet R is defined as:

B2n(R) ≡ str λ2n = TrR [ (−)2λλ2n ], (2.28)

and can be obtained from the generating functions ZR(y) as:

B2n(R) =

(
y2 d

dy2

)2n

ZR(y)|y=1. (2.29)

For N = 3 supersymmetry, Bn (n < 4) all vanish, B4 is non-zero only for short
multiplets, and B6 is non-zero for both long and short ones. A direct computation of
these quantities gives, for N = 3 massless multiplets:

B4(vector) =
3

2
, B4(sugra) =

15

2
, and

B6(vector) =
15

8
, B6(sugra) =

525

8
. (2.30)

In string theory, the above expressions are further extended to include the infinite
tower of massive states, by defining a modified partition function [16]:

Zstring(v, v̄) = Tr qL0 q̄L̄0 e2πivλL−2πiv̄λR . (2.31)

Such modifications to the partition function have been studied earlier in order to ob-
tain exact solutions of string theory in the background of physical magnetic fields and
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to investigate the associated phase-transition phenomena [17], [16]. In that context
the quantities v and v̄ play the role of the background magnetic field. The physical
helicity is given by λ = λL + λR and the generating function ZR(y) for the N = 3
supermultiplets is obtained through an identification y = eiπ(v+v̄).

The helicity supertrace B2n in the string case can then be derived from the gen-
erating function Zstring(v, v̄) by defining

Q =
1

2πi

∂

∂v
, Q̄ = −

1

2πi

∂

∂v̄
, (2.32)

then

Bstring
2n = str [λ2n] = (Q+ Q̄)2n Zstring(v, v̄) |(v = v̄ = 0). (2.33)

An explicit expression for Zstring(v, v̄) for the N = 3 string model of section 2.1 is
given by an expression that is similar to the v = v̄ = 0 case presented in (2.14)-(2.21),
and has a form:

Zstring(v, v̄) =
1

η2η̄2

1

4

∑
(H,G,h,g)

1

4

∑
(γ,δ,γ′,δ′)

eiπ(γ′g+δ′h+gH) ξ(v) ξ̄(v̄) Z ′L Z
′
R, (2.34)

where

ξ(v) =
∞∏
1

(1− qn)2

(1− qne2πiv)(1− qne−2πiv̄)
=

sinπv

π

θ′1
θ1(v)

, (2.35)

is an even function of v: ξ(v) = ξ(−v). The expressions for Z ′L,R in terms of the

individual contributions of the worldsheet fields, ψ, χ, ω and y, namely Z ′ψχL,R, Z ′ωL,R,

Z ′yL,R, are also identical to the one in (2.15). However, the expressions for Z ′ψχL,R are
now modified by a change in the argument of the theta function:

Z ′
ψχ
L =

1

2

∑
a,b

(−)a+b+ab

η4
θ[ab ](v) θ[a+h

b+g ] θ[a−H−hb−G−g ] θ[a+H
b+G ] (2.36)

and

Z ′
ψχ
R =

1

2

∑
ā,b̄

(−)ā+b̄+āb̄

η̄4
θ̄[āb̄ ](v̄) θ̄[āb̄ ] θ̄[

ā−H
b̄−G ] θ̄[ā+H

b̄+G
] . (2.37)

Modifications in the expression for Zstring(v, v̄) in eq. (2.34), with respect to
the one in eq. (2.14), arise from the change in the contributions of the worldsheet
fermions ψL,Rµ and bosons XL,R

µ , which represent the space-time degrees of freedom.
These modifications, due to fermions, are absorbed in theta functions through an
additional argument (v) and (v̄). The modifications in the oscillator contributions
from X are taken into account through the extra factors ξ(v) and ξ̄(v̄).

To compute the quantities B2n, one can observe that the sum over indices (a, b)
and (ā, b̄) in eq. (2.14) involves only the worldsheet fields ψµ and χa through the
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terms Z ′ψχL,R in the partition function. We now sum over these indices and use the
Riemann identity of theta functions to write

Z ′
ψχ
L =

1

η4
θ[11]

(
v

2

)
θ[1−h1−g ]

(
v

2

)
θ[1+H+h

1+G+g ]
(
v

2

)
θ[1−H1−G ]

(
v

2

)
,

Z ′
ψχ
R =

1

η̄4
θ̄[11]

(
v̄

2

)
θ̄[11]

(
v̄

2

)
θ̄[1+H

1+G ]
(
v̄

2

)
θ̄[1−H1−G ]

(
v̄

2

)
. (2.38)

To evaluate the various derivative terms for obtaining B2n, we also use the properties
that among theta functions, θ1 and its even derivatives with respect to v are odd
under v → −v and vanish at v = 0. The odd derivatives of the remaining theta
functions, as well as that of ξ(v), are also odd under v → −v and vanish at v = 0.
These properties simplify our calculations significantly. For example, the RHS of
(2.38) immediately implies B2 = 0, as expected. The helicity supertrace B4, which
counts the number of short multiplets of N = 3 string theory,

B4 = (Q+ Q̄)4 Z(v, v̄)|v=v̄=0, (2.39)

has a non-zero contribution only from the term 6 Q2Q̄2 Z(v, v̄)|v=v̄=0 in the above
expression. There are two sectors that can give a non-zero result, namely, the two
“N = 4” sectors:

(i) ~h = (h, g) = ~0, ~H = (H,G) 6= ~0 and

(ii) ~h = ~H 6= ~0.
In the first “N = 4” sector the (1,2)-complex plane remains untwisted; the left-

and the right-moving currents J1 = ω1y1 + iω2y2, J̄1 = ω̄1ȳ1 + iω̄2ȳ2 remain untwisted
while the remaining ones J2 = ω3y3 + iω4y4, J3 = ω5y5 + iω6y6, J̄2 = ω̄3ȳ3 + iω̄4ȳ4,
J̄3 = ω̄5ȳ5 + iω̄6ȳ6 are twisted. In the second “N = 4” sector the untwisted planes
are the (3,4)-left and the (1,2)-right with untwisted currents the J2 left and J̄1 right.
The two “N = 4” sectors give identical contributions. For the first case we find:

B
~h=~0
4 =

3

4η6η̄6

1

2

∑
H,G

|θ[1−H1−G ] θ[1+H
1+G ] |2

×
1

2

∑
(γ,δ)

|θ[γδ ] |
4 |θ[γδ ] θ[

γ−H
δ−G ] |2

×
1

2

∑
(γ′,δ′)

|θ[γ
′

δ′ ] θ[
γ′+H
δ′+G ] |2 . (2.40)

This expression is further simplified by using identities involving theta functions [3].
We then get

B
~h=~0

4 = 12
1

2

∑
γ,δ

|θ[γδ ] |
4 ≡ 12 Γ2,2[00] |T=U=i, (2.41)

where in the final step we have written the helicity trace as a lattice contribution
of signature (2, 2) [3]; notice that both T and U moduli are fixed at their self-dual
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points (T = U = i). Adding the contributions of the two N = 4 sectors (~h = (h, g) =
~0, ~H = (H,G) 6= ~0 and ~h = ~H, ~H 6= ~0), we have

Btotal
4 = B

~h=~0, ~H 6=~0
4 +B

~h= ~H 6=~0
4

= 12Γ2,2[00] |T=U=i + 12Γ′2,2[00] |T=U=i = 24
1

2

∑
γ,δ

|θ[γδ ] |
4. (2.42)

At the massless level, eq. (2.42) implies B4(massless) = 24, which matches with the
combined contributions from the supergravity sector and 11 vector muliplets, written
earlier in eq. (2.30); B4(massless) = 15/2 + 11× 3/2 = 24.

The helicity supertrace B6 can also be computed in a similar way. In this case an
analysis of the terms in the generating function Zstring(v, v̄):

B6 = (Q+ Q̄)6 Zstring(v, v̄) |(v=v̄=0), (2.43)

shows that there are contributions from various sectors:
• The two “N = 4” sectors,

(i) B
~h=~0, ~H 6=~0

6 and (ii) B
~h= ~H 6=~0

6 ,

which give a non-vanishing contributions from the terms 15 Q2Q̄2 (Q2 + Q̄2) in eq.
(2.43).
• The “N = 6” sector,

(iii) B
~h 6=~0, ~H=~0

6 ,

which gives a non-vanishing contribution from the term 15 Q2 Q̄4 in eq. (2.43).
The extra derivative (Q2 + Q̄2) on B4(v, v̄) ≡ Q2Q̄2 Zstring(v, v̄) in the two N = 4

sectors give rise to a multiplicative factor
(

4 + χ[HG ] + χ̄[HG ]
)

where χ[HG ] are defined
as:

χ[HG ] ≡
12

iπ
∂τ log

θ[1+H
1+G ]

η
=

1

2

∑
γ,δ

θ4[γδ ]
[
eiπ(H+Gγ ) − eiπ(G+ Hδ)

]
. (2.44)

We will give our result for B6 in terms of the above functions χ[HG ] and in terms of
the “shifted” lattice Γ2,2[HG ] |T=U=i:

Γ2,2[HG ] |T=U=i =
1

2

∑
γ,δ

| θ[γ+H
δ+G ] |4 eiπ [δH+γG+GH]. (2.45)

In terms of χ[HG ] and Γ2,2[HG ] the contribution of the two N = 4 sectors is:

B
~h=~0, ~H 6=~0

6 = B
~h= ~H 6=~0

6 = (2.46)

10



=
15

2

∑
(H,G)6=(0,0)

(
1 +

χ[HG ] + χ̄[HG ]

4

)(
Γ2,2[00] + Γ2,2[HG ]

)
|T=U=i

= 30 Γ2,2[00] |T=U=i +
15

2

∑
(H,G)6=(0,0)

χ[HG ] + χ̄[HG ]

4
Γ2,2[HG ] |T=U=i. (2.47)

The final equality in the above equation follows from the identities:∑
(H,G)6=(0,0)

χ[HG ] = 0,
∑

(H,G)6=(0,0)

Γ2,2[HG ] = Γ2,2[00] |T=U=i . (2.48)

Finally the contribution from the N = 6 sector is:

B
~h 6=~0, ~H=~0

6 =
45

4

∑
(h,g)6=(0,0)

χ̄[hg ]

2
Γ2,2[hg ] |T3 U3 , (2.49)

where T3, U3 are the moduli of the third complex plane. In the fermionic construction
the moduli (T3, U3) are fixed to their self dual points T3 = U3 = i. In the above
expression we have extended the validity of the model for arbitrary T3, U3 moduli:

Γ2,2[hg ] |T U =
∑
mi,ni

exp
[
iπτ |PL(h)|2 − iπτ̄ |PR(h)|2 + iπ g m1

]
|PL(h)|2 =

|m1 U + (n1 + h
2
) T −m2 + n2 TU |2

2ImT ImU
,

|PL(h)|2 − |PR(h)|2 = 2m1

(
n1 +

h

2

)
+ 2m2 n2 . (2.50)

Note that χ̄[hg ] in the N = 6 sector originates from the contribution of the 1st and
2nd right-moving complex planes; these two planes are “untwisted” on the right and
“twisted” on the left. The combination of the left-twisted and right-untwisted is
proportional to χ̄[hg ]. In the N = 4 sectors χ[hg ] and χ̄[hg ] have a different origin; they
appear because of the extra derivative operation Q2 + Q̄2 on B4(v, v̄).

The total B total
6 is the sum of all contributions:

B total
6 = B

~h=~0, ~H 6=~0
6 + B

~h= ~H 6=~0
6 + B

~h 6=~0, ~H=~0
6 . (2.51)

In the infrared limit Im τ →∞ only the massless states give a non-zero contribution.
In this limit∑

(h,g)6=0

χ[hg ] Γ[hg ] |T,U → 2, Γ2,2[00] |T,U → 1,

B
~h=~0, ~H 6=~0

6 →
75

2
, B

~h= ~H 6=~0
6 →

75

2
, B

~h6=~0, ~H=~0
6 =

45

4
. (2.52)

Then B total
6 (Im τ → ∞) = 345/4, which corresponds to the contribution of the

massless fields of the N = 3 supergravity together with the contribution of 11 N = 3
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massless vector multiplets; B6(massless) = 525/8 + 11× 15/8 = 345/4. Furthermore,
the contribution of the N = 6 sector matches (up to a factor of 2), the contribution
of the massless fields of the N = 6 supergravity:

B6(N = 6, sugra) = 2B
~h6=~0, ~H=~0

6 =
45

2
. (2.53)

The factor of 2 is due to the extra projection (H,G) in N = 3 theory. In N = 6
supergravity the massless sector is uniquely determined by the supergravity multiplet.

Both Btotal
4 and Btotal

6 are then consistent with an N = 3 supersymmetric structure
with 11 vector multiplets. The moduli space of the scalars form the Kähler manifold

SU(3, 3 + 8)

U(1)× SU(3)× SU(3 + 8)
with Kahler potential : (2.54)

K = −log det
[
i(Tij̄ − T̄ij̄) − Wik̄W̄k̄j

]
. (2.55)

In our case the moduli Tij̄ correspond to the following type II fields:
• the type II dilaton: S = T11,
• the moduli of the 3rd complex plane:

T3 = T22 and U3 = T33 ,

• the Wilson lines corresponding to the marginal deformations of the currents
associated to the (3L, 2R)-complex plane:[

(J3)L and/or (J̄3)L

]
×
[
(J2)R and/or (J̄2)R

]
→ Y1, iY2:

T23 = Y1 + iY2, T32 = Y1 − iY2 ,

• the untwisted R–R scalars: → T12, T21, T13, T31 ,
• the twisted R–R scalars: → W1,k̄ ,
• the twisted scalars: → W2,k̄, W3,k̄ .

The perturbative string spectrum varies with the values of T3, U3 moduli and
with the values of the two Wilson lines Y1, Y2. On the other hand the perturbative
spectrum does not depends on the values of all other moduli. As we will see in
the next chapter, using the heterotic–type II and type II (4,0)–type II (2,2) non-
perturbative U-duality map, we find that the heterotic dilaton is frozen at the fixed
non-perturbative value SH = i. In type II theory SH is mapped to the frozen T0 = i
moduli of the first complex plane. Indeed, all N = 3 perturbative BPS states are
selected by the B4 helicity supertrace, which, as we have shown, does not display any
dependence on the perturbative moduli; it depends only on the radii of the complex
planes [(1L, 1R) + (2L, 1R)]; the values of these radii are fixed at special points in

such a way that the left-right-asymmetric projection defined by ~h is compatible with
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modular invariance. Only in B6 is there a non-trivial dependence on the perturbative
moduli; it comes from the N = 6 sector in which the 3rd complex plane is untwisted.
In the example we gave above the moduli dependence of B6 is through the “shifted”
lattice Γ2,2[hg ] |T3 U3 . Our result can be easily generalized to include the presence of
non-zero Wilson lines Y1 and Y2. In order to do that we must perform the following
replacement in Btotal

6 in eq. (2.49):

1

2

∑
(h,g)6=(0,0)

χ̄[hg ] Γ2,2[hg ] →
1

2

∑
(h,g)6=(0,0)

∑
ε, ξ

ρ̄[εξ] Γ2,4[h, εg, ξ] |T,U,Yi , (2.56)

where the shifted Γ2,4[h, εg, ξ] lattice and the function ρ[ε, ξ] are defined as:

ρ[h, εg, ξ] =
1

2

∑
ε, ξ

θ2[1−ε1−ξ] e
iπε

[
eiπξ h − eiπε g

]
(2.57)

Γ2,4[h, εg, ξ] =
∑
mi,ni

exp

[
iπτ |PL|

2 − iπτ̄
4∑
1

(P I)2
R + iπ(gm1 + ξ(Q1 −Q2))

]
, (2.58)

with

|PL|
2 =
|m1U + (n1 + h

2
)T −m2 + n2(TU − 1

2
~Y ~Y ) + (Q1 + ε

2
)Y1 + (Q2 −

ε
2
)Y2|2

2ImT ImU − Im~Y Im~Y

and

|PL|
2 −

4∑
1

(P I)2
R − (Q1 +

ε

2
)2 − (Q2 −

ε

2
)2 =

= 2m1(n1 +
h

2
) + 2m2n2 −Q

2
1 −Q

2
2 −

ε2

2
. (2.59)

We have therefore presented the explicit form of the helicity supertrace formulae
for an N = 3 string construction. Our study has been restricted to a particular N = 3
model with 11 vector multiplets. However similar results can be derived for N = 3
models with a lower number of gauge fields. We give below N = 3 models with 7, 4,
3 and 1 gauge fields.

The SU(3,3+4) model

In the fermionic construction one uses the basis vectors F, S, S̄, and bH7 = bH11, as
previously [see eqs. (2.1) and (2.2)]. The vector bH7 implies the symmetric projection

that is defined by ~H [see eqs. (2.1) and (2.2)], while the additional vector

bh7 = [ ψLµ , y
L
1,2,3, ω

L
4 χ

L
5,6, y

L
5,6, ω

L
5,6 | y

R
5 , ω

R
5 , y

R
1 , ω

R
1 ] (2.60)

defines the asymmetric projection denoted by ~h.
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As in the rank 11 model, there are two N = 4 sectors and one N = 6 sector, which
give non-zero contributions to B4 and B6 supertraces.

For B4 we have the following results:

B
~h=~0, ~H 6=~0

4 = 12
1

2

∑
γ,δ

|θ[γδ ] |
4 = 12Γ2,2[00] |T=U=i

B
~h= ~H 6=~0

4 = 6
1

2

∑
γ,δ

∑
(H,G)6=(0,0)

|θ[γδ ] |
2|θ[γ+H

δ+G ] |2

= 12 Γ2,2[00] |T=i,U=2i − 6 Γ2,2[00] |T=U=i. (2.61)

At the massless level, Btotal
4 = B

~h=~0
4 + B

~h= ~H 6=~0
4 → 12 + 6 = 18, which matches

the combined contributions from the supergravity sector and 7 vector multiplets,
B4(massless) = 15/2 + 7× 3/2 = 18.

For B6 we find:

B
~h=~0, ~H 6=~0

6 = 30 Γ2,2[00] |T=U=i +
15

2

∑
(H,G)6=(0,0)

χ[HG ] + χ̄[HG ]

4
Γ2,2[HG ] |T=U=i,

B
~h= ~H 6=~0

6 =
15

2

∑
(H,G)6=(0,0)

4 + χ[HG ] + χ̄[HG ]

4

∑
γ,δ

|θ[γδ ] |
2 , |θ[γ+H

δ+G ] |2 ,

B
~h 6=~0, ~H=~0

6 =
45

4

∑
(h,g)6=(0,0)

χ̄[hg ]

2
Γ2,2[hg ] |T3 U3 . (2.62)

Some comments are in order:
• In the limit Im τ → ∞, B

~h=~0, ~H 6=~0
6 → 75/2, B

~h= ~H 6=~0
6 → 30 and B

~h 6=~0, ~H=~0
6 →

45/4. Then B total
6 (Im τ → ∞) = 315/4 corresponds to the contribution of the

massless fields of the N = 3 supergravity together with the contribution of 7 N = 3
massless vector multiplets; B6(massless) = 525/8 + 7× 15/8 = 315/4 as expected.

• B
~h6=~0, ~H=~0

6 is identical to the rank 11 model due to the universal behaviour of
the N = 6 sector.
• The T -moduli of the first and second complex planes is always fixed at the

self-dual point T = i. The U moduli of the same planes may take several discrete
values.
• In the rank 7 model the H = h = 1 twisted sector is massive.

The SU(3, 3) model

In this model there are no extra vector multiplets from the twisted sectors. In
the fermionic construction one uses the basis vectors F, S, S̄ as before, plus two extra
basis vectors defining the symmetric projection ( ~H):

bH3 = [ ψLµ , χ
L
1,2, y

L
3,..,6, y

L
1 , ω

L
1 | ψ

R
µ , χ

R
1,2, y

R
3,..,6, y

R
1 , ω

R
1 ],
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and the asymmetric projection ~h:

bh3 = [ ψLµ , y
L
1,2,3, ω

L
4 χ

L
5,6, y

L
5 , ω

L
5 | y

R
5 , ω

R
5 ]. (2.63)

Here also there are two N = 4 sectors and one N = 6 sector. Their contributions
to B4 and B6 supertraces are as follows.

• For B4 we find:

B
~h=~0, ~H 6=~0

4 = B
~h= ~H 6=~0

4 = 6
1

2

∑
γ,δ

∑
(H,G)6=(0,0)

|θ[γδ ] |
2|θ[γ+H

δ+G ] |2

= 12 Γ2,2[00] |T=i,U=2i − 6 Γ2,2[00] |T=U=i . (2.64)

At the massless level, Btotal
4 = B

~h=~0
4 + B

~h= ~H 6=~0
4 → 6 + 6 = 12, which matches

the combined contributions from the supergravity sector and three vector multiplets,
B4(massless) = 15/2 + 3× 3/2 = 12.

• For B6 we find:

B
~h=~0, ~H 6=~0

6 = B
~h= ~H 6=~0

6 =
15

2

∑
(H,G)6=(0,0)

4 + χ[HG ] + χ̄[HG ]

4

∑
γ,δ

|θ[γδ ] |
2 |θ[γ+H

δ+G ] |2

B
~h 6=~0, ~H=~0

6 =
45

4

∑
(h,g)6=(0,0)

χ̄[hg ]

2
Γ2,2[hg ] |T3 U3 (2.65)

At the massless level, Btotal
6 = B

~h=~0
4 +B

~h= ~H 6=~0
6 +B

~h 6=~0, ~H=~0
6 → 30 + 30 + 45/4 =

285/4, which matches the combined contributions from the supergravity sector and
three vector multiplets, B6(massless) = 525/8 + 3× 15/8 = 285/4.

Here again the contribution of the N = 6 sector is the same as in the previous
models, thanks to the uniqueness of the N = 6 sector. Notice also that the T moduli
of the first and second complex plane are fixed to their self-dual value.

The SU(3,1) model

This model is somewhat different from the previous ones in the sense that it is
defined by three asymmetric projections, of which two are acting on the left-moving
gravitinos h1, h2 while the other is acting on the right-moving ones h3. All projections
are freely acting and thus there is no extra massless states coming from the twisted
sectors. The h1 acts on the 2nd and 3rd left moving complex planes, h2 acts on the
1st and 3rd left-moving complex planes and h3 acts on the 2nd and 3rd right-moving
complex planes. In the fermionic construction one uses the basis vectors F, S, S̄ as
before, as well as the three asymmetric basis vectors, which define the asymmetric
projections hi:

bh1 = [ ψLµ , χ
L
1,2, y

L
3,4,5,6, y

L
1 , ω

L
1 |y

R
1 , ω

R
1 ],
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bh2 = [ ψLµ , y
L
1,2, χ

L
3,4, ω

L
5,6, y

L
3 , ω

L
3 | y

R
3 , ω

R
3 ],

bh3 = [ ψRµ , χ
R
1,2, y

R
3,4,5,6, y

R
2 , ω

R
2 | y

L
2 , ω

L
2 ]. (2.66)

In this model there are three N = 4 and four N = 6 sectors, which give non-zero
contributions to the B4 and B6 supertraces. Namely, the three N = 4 sectors are:

1) ~h1 = ~0, ~h2 = ~h3 = ~H 6= ~0,

2) ~h2 = ~0, ~h1 = ~h3 = ~H 6= ~0,

3) ~h1 + ~h2 = ~0, ~h1 = ~h2 = ~h3 = ~H 6= ~0.

Whereas the four N = 6 sectors are:

1) ~h1 = ~h 6= ~0, ~h2 = ~h3 = ~0

2) ~h2 = ~h 6= ~0, ~h1 = ~h3 = ~0

3) ~h3 = ~h 6= ~0, ~h2 = ~h1 = ~0

4) ~h1 = ~h2 = ~h 6= ~0, ~h3 = ~0

All N = 4 sectors give equal contributions to B4:

B1
4 = B2

4 = B3
4 = 3

1

2

∑
γ,δ

∑
(H,G)6=(0,0)

|θ[γδ ] |
2|θ[γ+H

δ+G ] |2

= 6 Γ2,2[00] |T=i,U=2i − 3 Γ2,2[00] |T=U=i . (2.67)

In the limit Im τ → ∞, Btotal
4 = B1

4 + B2
4 + B3

4 → 3 × 3 = 9, which corresponds
to the contribution of the massless fields of the N = 3 supergravity together with the
contribution of one N = 3 massless vector multiplet; B4(massless) = 15/2+1×3/2 =
9.

The B6 receives contributions from the three N = 4 sectors as well as from the
four N = 6 sectors. We find:

B
N=4,(1)
6 = B

N=4,(2)
6 = B

N=4,(3)
6 =

15

4

∑
(H,G)6=(0,0)

4 + χ[HG ] + χ̄[HG ]

4

∑
γ,δ

|θ[γδ ] |
2 |θ[γ+H

δ+G ] |2

B
N=6,(1)
6 = B

N=6,(2)
6 = B

N=6,(3)
6 =

45

8

∑
(h,g)6=(0,0)

χ̄[hg ]

2
Γ2,2[hg ] |T=U=i

B
N=6,(4)
6 =

45

8

∑
(h,g)6=(0,0)

χ[hg ]

2
Γ2,2[hg ] |T=U=i . (2.68)

In the limit Im τ → ∞, Btotal
6 = B

N=4,(1)
6 + B

N=4,(2)
6 + B

N=4,(3)
6 + B

N=6,(1)
6 +

B
N=6,(2)
6 + B

N=6,(3)
6 + B

N=6,(4)
6 → 3 × 15 + 4 × 45/8 = 135/2, which corresponds to

the contribution of the massless fields of the N = 3 supergravity together with the
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contribution of one N = 3 massless vector multiplet; B6(massless) = 525/8 + 1 ×
15/8 = 135/2.

In the rank 1 model all perturbative moduli are fixed. There is no marginal
deformation in this model and all T and U moduli are fixed in all complex planes; in
particular the T moduli are fixed to their self-dual values T = i.

In the next section we extend these results and write down the non-perturbative
BPS formula for N = 3 string theory. These results can be used for computing the
one-loop corrections to the R4 and R6 terms in string theory as well as for verifying
its duality with the heterotic string theory presented in the next section.

3 Non-perturbative BPS States

3.1 Mapping to (3, 0) Models

In this section the projections, used for (2,1)-superstring constructions in type II mod-
els, are mapped either to the (3,0)–heterotic or (3,0) type II theories. The knowledge
of this mapping defines at the non-perturbative level a specific Z2 projection reducing
the supersymmetries from N = 4 to N = 3 either in (4,0)–heterotic or in (4,0)–type
II theories. As a result, the N = 3 non perturbative BPS mass formula is obtained
from the one which is valid in N = 4 theories via the non-perturbative Z2 truncation
defined by the string–string duality maps.

First we consider the SU(3, 11) model defined in previous section. To derive the
non-perturbative BPS mass formula it is more convenient to use the asymmetric
orbifold language. In this language the bH11 and bh11 act by twisting (asymmetrically)
some of the internal coordinates. Namely,

(i) bH11 : XL,R
i → −XL,R

i , (i = 5, ..., 8),

(ii) bh11 : (XL
3,4,5,6)→ −(XL

3,4,5,6)

XL,R
7 → XL,R

7 + π (3.1)

In order to keep the world-sheet supercurrent invariant, the orbifold projections also
act on the world-sheet fermions. These actions, in this case, are identical to the ones
specified above for the bosons. It is also evident that bh11 acts freely whereas the action
of bH11 has 16 fixed points.

In section 2, several other models with different numbers of gauge fields have been
constructed. As all of them have lower-rank gauge sector, the corresponding BPS
formula is obtained by setting to zero some of the charges in the above model.

The projection bH11 gives a (2, 2) supersymmetric model in four dimensions. This
model also has a space-time interpretation directly in six dimensions and is in fact
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a special case of the type II compactification on K3. In four dimensions, it has
twelve gauge fields, and associated scalars, from the untwisted sector. Out of these,
only four associated with the momentum and winding modes of T 2, specified by the
compactified dimensions X3,4, are from the NS–NS sector and eight from the R–R
sector. In addition, there are sixteen N = 4 vector multiplets from the twisted sectors
as well. These are located at the points Xi = (0, π) along directions i = 5, ..., 8.

The projection bh11 applies an asymmetric twist to break another 1/2 supersym-
metry from the left-moving sector. Moreover, it also applies a half-shift (on a lattice
vector) in the X7 direction. As a result, there are no extra massless states due to this
projection. At the massless level, bh11 projects out half of the vectors from both the
untwisted and the twisted sectors. The numbers of vectors in the untwisted (NS–NS
as well as R–R) sectors decrease, because of the twist part of bh11, since they act as
a Z2 which permutes, in pairs, the eight vectors in the R–R sector. In the NS–NS
sector two vectors are even and the other two are odd under this Z2. The shift part
of bh11, namely X7 → X7 + π permutes the sixteen fixed points of the first projection
(bH11) in eight pairs. Its action on the vectors, through the appropriate twist operators
associated with the fixed points, is by a similar permutation. The shift does not
have any effect on the transformation of the vectors in the untwisted sector. Since
the model constructed by a twist bH11 is dual by standard string-string duality to the
heterotic string, the projection bh11 can be mapped to the heterotic side.

However, before going to the heterotic dual, we use the string duality which is valid
among pairs of type II string constructions, and map the projection bh11 to a model
possessing (4, 0) supersymmetry. The duality between type II string models with
(4, 0) and (2, 2) supersymmetries has been discussed earlier [10], [18]; There, it was
shown that such type II dual pairs can be constructed, and they are related through
an element of the SO(5, 5) U-duality group in six dimensions [10]. In addition, the
relationship between the two models in four dimensions also involves an interchange
between the S and T moduli fields associated with the T 2 specified by X3,4.

We now obtain the mapping of the orbifold element bh11 into the (4, 0) side in the
type II theory. Later on, this will be extended to the heterotic string theory, through
the inclusion of the twisted sector states in the type II models. The transformation
bh11, up to a shift, is represented by a six-dimensional O(4, 4) transformation, in the
choice of metric:

L̄ =
(
−I4

I4

)
, (3.2)

as

Ω̄ =

−I2

I2

I4

 . (3.3)

By complexifying the six internal coordinates as:

Z1 = X3 + iX4, Z2 = X5 + iX6, Z3 = X7 + iX8, (3.4)
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in the notations of [10], Ω̄ can also be alternatively represented as:

Ω̄ = (π, 0; 0, 0), (3.5)

where the entries in the right-hand side of (3.5) denote the rotation in the planes
represented by Z2 and Z3 in the left- and the right-moving sectors, respectively; bh11

also has a part that acts as an O(2, 2) transformation:

ΩD =
(
−I2

I2

)
, (3.6)

in the planes defined by Z1 in the left- and right-moving sectors, for a choice of the
O(2, 2) metric:

LD =
(
−I2

I2

)
. (3.7)

The subscripts in eqs. (3.6) and (3.7) denote the choice of a diagonal metric for
O(2, 2). For later convenience, we will also use an off-diagonal metric:

L =
(

I2

I2

)
. (3.8)

These are related by a map:

LD = ηLηT , (3.9)

with

η =
1
√

2

(
−I2 I2

I2 I2

)
. (3.10)

It has been shown in [10] that the mapping of an O(4, 4) element to the (4, 0)
side involves the use of the triality between the SO(4, 4) representations, such that
Ω̄ transforms to

˜̄Ω = (π/2,−π/2; π/2,−π/2). (3.11)

In the matrix notation, this is written explicitly in a block diagonal form as

˜̄Ω = diag (iσ2,−iσ2; iσ2,−iσ2) (3.12)

with σ2 a Pauli matrix.
In order to map O(2, 2) transformation to the (4, 0) side, we use the metric L in

eq. (3.8). We also use the fact that an O(2, 2) transformation Ω can be identified
with two SL(2) transformations ΛT and ΛU thanks to the equivalence:

O(2, 2) ≡ SL(2)T × SL(2)U . (3.13)
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In particular, when the SL(2, Z) transformations for the moduli T and U are given
as:

ΛT =
(
p1 q1

r1 s1

)
∈ SL(2, Z)T , ΛU =

(
p2 q2

r2 s2

)
∈ SL(2, Z)U , (3.14)

the O(2, 2) transformation is parametrized as [10]

Ω =


p1p2 p1q2 −q1q2 q1p2

p1r2 p1s2 −q1s2 q1r2

−r1r2 −r1s2 s1s2 −s1r2

r1p2 r1q2 −s1q2 s1p2

 . (3.15)

The transformation to the diagonal metric of the form described in eq. (3.7) is through
a map:

ΩD = ηΩηT . (3.16)

It can then be verified that the O(2, 2) transformation (3.6), associated with the
action of the projection element in the two-dimensional space X3,4 can be identified
with the SL(2)T and SL(2)U elements:

ΛT = iσ2, ΛU = −iσ2. (3.17)

For completeness, we also mention that the N = 3 type II construction being com-
pletely perturbative in nature, the S-duality element associated with bh11 is trivial:

ΛS = I2. (3.18)

Now an S ↔ T interchange, together with U → U , implies that the projection
elements: ΛT , ΛU and ΛS transform in the (4, 0) side to

Λ̃T = I2, Λ̃S = iσ2, and Λ̃U = −iσ2. (3.19)

As a result the projection element in the (4, 0) side, b̃h11, now has a non-trivial S-duality
action. The action of Λ̃T and Λ̃U is further combined into an O(2, 2) projection; for
the diagonal choice of the metric L, this now has the form:

Ω̃D =
(
−iσ2

−iσ2

)
. (3.20)

The difference in the form of the O(4, 4) part of the projection elements bh11 and

b̃h11 in the (2, 2) and the (4, 0) side can be understood from the fact that the gauge-
field sectors on the two sides are related through an interchange of the NS–NS gauge
fields with the R-R ones. This is essentially a change from the vector to the spinor

representation of SO(4, 4) and leads to a form of b̃h11 seen above. On the other hand,
the remaining action of the projections in the two sides has its origin in the S ↔ T
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interchange, which has also been used in showing the SL(2, Z) duality of the heterotic
string starting from the string/string-duality conjecture in six dimensions.

To promote the above mapping to the full heterotic string theory, one has to
analyse the action of bh11 on the twisted sector states in the type II side with (2, 2)
supersymmetry and use a mapping of the massless fields from the type II (on K3)
to the heterotic string (on T 4). This map transforms the various 6-dimensional fields
as [19]:

φ′ = −φ, G′µν = e−φGµν ,

M ′ = M, A′aµ = Aaµ,√
−Ge−φHµνρ = 1

6
εµνρστεH ′στε, (3.21)

where prime and unprime variables denote the fields in the type II side, compactified
on K3 and the heterotic side, compactified on T 4.

Now, in the type II side with (2, 2) supersymmetry, the action of bh11 on the sixteen
vectors from the twisted sectors of bH11 can be written as an O(16) matrix in a block
diagonal form:

Ω̃T = diag(iσ2, iσ2, ..., iσ2). (3.22)

This is because the shift part of the projection bh11 transforms the X7 = 0 fixed points
to that of X7 = π and vice versa. The mapping of these transformations to the
heterotic side is then achieved through eq. (3.21). The relative minus sign in the
transformation of the twisted sectors, within a pair, can be explained from the fact
that, although the twist fields associated with the vertex operators of these gauge
fields have identical weights at the fixed points X7 = 0 and X7 = π, the U(1) vacuum
charges are opposite and give a relative minus sign in the transformations.

Since the projection bh11 acts freely, the twisted sector states, from this particular
projection, in the (2, 2) side are heavy. This also holds in the (4, 0) side, where the

projection b̃h11 introduces non-zero R–R gauge field flux at the new fixed points and
makes them heavy.

We have therefore identified, through the type II/heterotic map, the appropriate
transformations in the heterotic side, which will give an N = 3 supersymmetric model.
We notice that, unlike in the type II side, in the heterotic case, the projection acts
non-perturbatively. However, this map does define a consistent model and allows
us to write down the expression for the masses of the BPS states. We would once
again like to mention the similarity between this N = 3 model and the orbifold limit of
certain F -theory constructions. In the F -theory context, the orbifold limit is identified
with the degeneration of the fibre through appropriate Weierstrass equations, and in
this limit the moduli on the base remain constant, modulo the monodromies around
certain points, which are identified with the fixed points of the orbifold group. A Z4

projection, which forces the 10-dimensional type IIB axion-dilaton moduli to be fixed
to its value at the self-dual point, was also identified in the F -theory context [12]. It
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may be of interest to examine whether such a similarity between the two cases also
leads to an understanding of certain non-perturbative aspects in our case.

We conclude this subsection by summarizing the action of the N = 3 projection

b̃h11 in the heterotic side. This is given by eqs. (3.19), (3.20) on the coordinates X3,4,

by ˜̄Ω in eq. (3.12) on the coordinates X5,6,7,8, and by Ω̃T in eq. (3.22) on the extra
sixteen right-moving coordinates of the heterotic string. Since these projections act
as an exchange of internal coordinates, they reduce the rank of the gauge group by
half. In the next subsection we will see the same phenomena from a different point of
view. The S-duality projection Λ̃S will be shown to preserve only half of an N = 4
vector multiplet. These exchange operations then combine two such half-multiplets
to construct a self-conjugate vector multiplet of N = 3.

3.2 Massless States

After having identified the projection in the heterotic side, we now obtain the spec-
trum of the heterotic string theory, when the above projection is applied. We show
that there are three surviving supersymmetries, and at the massless level, we get a
correct spectrum for the N = 3 string theory. In an N = 4 theory, the supersymmetry
algebra and representations are specified by a group structure, SO(2)×SU(4)×U(1)S,
where SO(2) is the little group of the Lorentz group and U(4) ≡ SU(4) × U(1)S is
the R-symmetry for the N = 4 theory. Gravitinos transform as 4 and the U(1) gauge
fields of the supergravity multiplet transform as a 6 of SU(4). In addition, N = 4
supergravity multiplet also has two scalars, which are neutral under SU(4). In het-
erotic string theory, the SU(4) symmetry can be identified with the SO(6)L subgroup
of the SO(6, 22) T -duality group, which originates from its left-moving sector. U(1)S
is the maximal compact subgroup of the S-duality group: SL(2, R).

For the projection b̃h11, the SU(4) element is given by the diagonal U(1) subgroup
of SO(6)L: ΩL ≡ diag(−iσ2, iσ2,−iσ2). In this case, we also have, in the right-
moving sector, a projection given by the diagonal U(1) element of SO(22)R, given
by ΩT in eq. (3.22) together with ΩR, which acts on the right-moving part in the
6-dimensional internal space and is identical to ΩL. In addition, as mentioned before
the U(1)S element is specified by the matrix Λ̃S given in eq. (3.19).

This projection breaks SU(4)×U(1)S to its subgroup SU(3)× U(1)V , where the
U(1)V that remains unbroken is a combination of the U(1)S and U(1)I , with U(1)I as
the diagonal U(1) subgroup of SU(4): SU(3)×U(1)I ⊂ SU(4). The four supercharges
and their CPT conjugates transform, under SU(4)× U(1)S as:

Q1/2 = 4(1/2,1) + 4̄(−1/2,−1), (3.23)

where the first entry in the bracket shows the helicity of the state. By decomposing
the supercharges in the representation of SU(3) × U(1)I , the three supersymmetry
generators that survive the projection are: 3[1/2,−1/3,1] and its complex conjugate.
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In the following, the entries in the curly brackets “(·, ·)” denote helicity and U(1)S
charges while the quantities in the square brackets “[·, ·, ·]” denote helicity, U(1)I and
U(1)S charges. The supercharge transforming as a singlet of SU(3) is projected out.
As a result we are left with N = 3 supersymmetry.

The states that survive the above projection also belong to a representation of the
residual supersymmetry. The N = 4 gravity multiplet is constituted out of helicity
±2 supermultiplets of the N = 4 supersymmetry, which are complex conjugates of
each other. They have the transformation property: 1(−2,0) + 4(−3/2,1) + 6(−1,2) +
4̄(−1/2,3) + 1(0,4), together with the complex-conjugate representation. The N = 3
projection then selects out of the above, the 1[2,0,0] and 3̄[−1,−2/3,2] states among the
bosonic ones, due to the decomposition of SU(4)→ SU(3)× U(1)I . These, together
with their CPT conjugates, give us gµν and three Aµ’s, which is the correct spectrum
for the N = 3 supergravity sector.

The vector multiplet of N = 4 supersymmetry is self-conjugate under CPT,
whereas the N = 3 one is constructed out of two different multiplets containing
helicity −1 and +1 states and are conjugate to each other. The N = 3 projection
mentioned above does not leave the complete vector multiplet of the N = 4 theory
invariant. Instead, it projects out some of the states and leaves only an N = 3 mul-
tiplet, of either +1 or −1 helicity invariance. However, as seen before, the N = 3
projection also permutes the internal indices of the heterotic string theory in the
right-moving sector. As a result, the complete N = 3 vector multiplet is a linear
combination of two half-vectors from N = 4. The final spectrum is CPT-invariant.
But the rank of the gauge group is reduced by a factor 1/2.

3.3 Mass Formula

After identifying the correct N = 3 massless spectra from the projection of the
heterotic strings, we now proceed to write down the BPS mass formula in this theory.
In this context, the starting point is the N = 4 BPS formula, which can be written in
terms of six “electric” and six “magnetic” charges, associated with the supergravity
sector, as [3]:

M2
BPS =

[(Pm + SQm)(Pm + S̄Qm)]

4 Im S
+

1

2

√
(PmPm)(QmQm)− (PmQm)2

, (3.24)

where the contractions of the indices are defined with respect to the internal metric
on T 6, namely Gmn. The quantities Pm and Qm are defined in terms of the integer
valued electric charges (αL, αR, αI) and magnetic charges (α̃L, α̃R, α̃I) of the heterotic
string theory as:

P = αL + (G+B + C)αR +AαI

Q = α̃L + (G+B + C)α̃R +Aα̃I . (3.25)
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Here C = 1
2
AAT , G and B are the moduli fields associated with the internal T 6, and

the A’s are the Wilson-line moduli.
The square-root factor in the BPS formula is proportional to the square of the

difference in the two N = 4 central charges. This term vanishes for the states preserv-
ing 1/2 supersymmetry. Such states belong to the “short” multiplets of the N = 4.
The non-zero contribution comes from the states belonging to the intermediate mul-
tiplets of N = 4 and preserve the 1/4 of the supersymmetry. The BPS states in
the perturbative construction of the heterotic string theory are examples of “short”
multiplets.

To obtain the BPS formula for the N = 3 case, using the Z2 projection mentioned
before, we must set at the beginning first the “dilaton-axion” moduli of the N = 4
theory to the value S = i. This is due to an observation that we made earlier,
namely a transformation by Λ̃S in eq. (3.19) is a symmetry of the N = 4 theory,
for a given coupling, only for this value of the S field. In other words, the N = 3
projection transforms the strong coupling to the weak one, and can therefore be
applied consistently only for its fixed value at the self-dual point. Furthermore,
since the gauge fields, associated with the charges mentioned above, transform under
SU(4) × U(1)S as 6(−1,2) and 6(1,−2), only those belonging to the SU(3) × U(1)V
representations, 3[1,2/3,−2] and 3̄[−1,−2/3,2], survive the N = 3 projection. To select the
appropriate combinations that remain invariant under this projection, we define:

Πm = (Pm + iQm), Π̄m̄ = (Pm − iQm). (3.26)

We also use the complexifications of the coordinates introduced in eq. (3.4) and note
that out of the original twelve charges, those existing after the projection are six
charges Πm and Π̄m̄. With this projection, both the terms in the N = 4 mass formula
give identical contributions, and one gets

M2
BPS =

1

2
Πm Gmm̄ Π̄m̄. (3.27)

In obtaining the N = 3 mass formula from N = 4 in eq. (3.27), we have also used the
fact that the internal space for N = 3 is parametrized by a Kähler metric. This can

be observed independently of the action of b̃h11 on the moduli fields. In particular, only
the components Gmm̄, Bmm̄, AI

+

m and AI
−

m̄ , with I± being the complexifications of the
sixteen right-moving coordinates, survive the N = 3 projection. The mass formula
(3.27) is also the unique quadratic invariant of the charges, the latter transforming
as 3 and 3̄ under the residual U(3) symmetry.

We now rewrite the BPS mass formula (3.27) in terms of the physical charges
associated with the gauge fields in the theory. This is also given by a projection
over the charges Πm, defined in terms of the physical charges of N = 4 theory, using
eqs. (3.25) and (3.26). The final expression has a form similar to that of eq. (3.25):

Πm = αLm + (G+B + C)mm̄α
R
m̄ +AI

+

m αI+ . (3.28)
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The mass formula (3.27) can now be rewritten in an SU(3, n)-invariant form3:

M2
BPS = q† · (M + L) · q, (3.29)

with q denoting the column vector:

q =

 αLm
αRm
αI

+

 . (3.30)

The SU(3, n) matrix M has the standard expression in terms of the Wilson-line
moduli AI

±

zi
and the Hermitian and anti-Hermitian matrices G and B, respectively: G−1 G−1(B + C) G−1A

(−B + C)G−1 (G− B + C)G−1(G +B + C) (G− B + C)G−1A
A†G−1 A†G−1(G+B + C) I8 +A†G−1A

 , (3.31)

with C = 1
2
AAT and the SU(3, n) metric L having the form:

L =

 0 I3 0
I3 0 0
0 0 −I8

 . (3.32)

It can be verified that the matrix M is Hermitian and satisfies the SU(3, n) property:
M†LM = L.

In this section we have presented the SU(3, n)-invariant BPS mass formula for the
N = 3 string theories in four dimensions. There can be many applications of these
results, including black-hole physics. The entropy formula for the N = 3 case has
already been presented in the literature [13]. Our results can be used to obtain these
expressions from a microscopic description through an appropriate truncation of the
type II or heterotic string models.

4 N = 3 String Effective Action

The projections applied to the N = 4 theory, in the previous section, can also be used
for writing down the N = 3 effective action. By restricting this to the bosonic sector,
the N = 4 effective action, at a generic point M̂ in the moduli space of the heterotic
string has a form:

Ŝ = 1
32π

∫ √
−g

[
R− 1

2(λ)2 g
µν∂µλ∂ν λ̄− λ2F

(a)
µν (L̂M̂L̂)F (b) µν+

λ1F
(a)
µν L̂abF̃

(b) µν + 1
8
gµν Tr(∂µM̂L̂∂νM̂L̂)

]
, (4.1)

3In the present case n = 11. But the general structure of the invariant expressions is preserved
for other values of n as well.
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where (a = 1, ..., 28) and L̂ is an SO(6, 22) metric:

L̂ =

 0 I6 0
I6 0 0
0 0 −I16

 . (4.2)

By taking into account the fact that the axion-dilaton moduli of the heterotic string
are fixed to the self-dual point, the N = 3 projection then leads to an action of the
form:

S =
1

32π

∫
d4x
√
−g

[
R− F+

µν(LML)F−µν +
1

8
gµνTr(∂µML∂νML)

]
, (4.3)

where M denotes the SU(3, n) moduli (3.31), L is the SU(3, n) metric (3.32) and
F± = F ± iF̃ . In obtaining action (4.3) from (4.1), we expanded various terms of the
N = 4 action and then recombine them after collecting the invariants.

It is observed that the action (4.3) is manifestly invariant under the U(3, n) sym-
metry. The manifest invariance of the action is due to the fact that the N = 3
projection on the heterotic strings leaves only perturbative moduli in the spectrum.
The above reduction of N = 4 effective action to N = 3 can also be seen at the level
of the equations of motion, which for the N = 3 case can be written, starting from
the N = 4 one, as:

Rµν = 2F+
µν(LML)F ρ

ν −
1

2
gµνF

+
ρσ(LML)F−ρσ

Dµ(MLF+µν) = 0 (4.4)

It will be of interest to study the solutions of these equations of motion, in order
to obtain the classical background configurations that are consistent with N = 3
supersymmetry. Among them, those that preserve 1/2 of the supersymmetry, such as
extremal black-hole configurations, are of particular interest. They will provide the
examples of the N = 3 BPS states found in the previous sections.

5 Conclusions

We have presented an explicit expression for the N = 3 BPS formula. It was also
shown how the known N = 3 models are incorporated in this picture. The BPS states
associated with the perturbative spectrum of the known N = 3 string theory were
also described. It will be of interest to further study compactification of the N = 3
effective action to 2- and 3-dimensional space-times. In particular, it is expected that
the effective action in three dimensions will possess an SU(4, n+ 1) symmetry. The
coset structure SU(4, n+1)/SU(4)×SU(n+1)×U(1) can be seen by a direct counting
of the matter degrees of freedom, which in the bosonic sector contains only scalars, in
three dimensions. Our results, through a duality between the type II and the heterotic
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sides, also indicate that type II string models with N = 3 supersymmetry and non-
Abelian gauge symmetries can be obtained at special points of the moduli space. It
may be interesting to examine whether some of these symmetry enhancements in the
type II case can take place at special values of the perturbative type II moduli as
well. One will then be able to study them using conformal field-theory techniques.

It will also be of interest to directly construct N = 3 orientifold models in four
dimensions, whose open string sectors, with Dirichlet boundary conditions, can be in-
terpreted as BPS states appearing in the mass formulae derived earlier. This turns out
to be a difficult exercise due to the asymmetric nature of the N = 3 construction on
the one hand and to the requirement of the left-right symmetry for the orientifolding
operation on the other. In order to achieve the desired results, the orientifolding op-
eration must therefore be combined with appropriate operation on the internal space.
Although the orientifolding operation seems difficult in four dimensional models, it
becomes much simpler in two dimensions where models preserving 3/8 supersymme-
try can be easily constructed.
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