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ABSTRACT

A study is made of the feasibility of maximum likelihood fits to determine MW and triple gauge
boson couplings using only those experimental kinematical variables that are well measured.
A computational tool to calculate theoretical probabilities for those kinematical variables is
discussed and then applied to samples of unweighted events produced by an event generator.
Detailed results on the MW determination for semileptonic final states in W -pair production
show the feasibility of the method. For TGCs one result is presented as an illustration.
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At LEP 2, measurements of W -pair production and the subsequent decay of the W -bosons
are primarily used to determine the W -mass and the triple gauge boson coupling (TGC). The
theoretical description of the four fermions produced in W -pair production leads to natural
variables for these measurements: invariant masses M1,M2 of the W± decay products for
the MW determination and a set of five angles for the TGC determinations. The latter are
the production angle Θ of W+ in the laboratory system and the decay solid angles Ω1,Ω2

of an antifermion or fermion in the rest frames of a W+ or W−. On the other hand, from
the experimental point of view the well-measured variables are energies and angles of charged
leptons and angles of jets, all in the laboratory system. The experimental resolution of these
variables is also well known. The set of these variables will henceforth be denoted as {φ}. To
this set one might want to add the total hadronic energy as an additional variable. Momenta of
photons, mainly caused by initial-state radiation (ISR), are also usually not accurately known
experimentally. So the reconstruction of the theoretically natural variables from the well-
measured experimental quantities poses a problem. One often has to rely on some input from
event generators for four-fermion production (for a review on these generators, see [1]). Detailed
accounts of a direct reconstruction method for the MW determination [2] and a maximum
likelihood method for the determination of TGCs [3] have been given in the final report of the
Workshop on Physics at LEP 2.

Besides the complication of reconstructing natural variables, the maximum likelihood method
for TGCs poses another problem. The theoretical differential cross-section with respect to the
above-mentioned five angles is a natural quantity when the TGC effects are evaluated in a
zero-width approximation and without taking ISR into account. When these approximations
are not made, the evaluation of this five-dimensional differential cross-section, or in other words
the probability P (Θ,Ω1,Ω2, {α}) to find an event with Θ,Ω1,Ω2 for a set {α} of anomalous
TGCs, requires a fourfold integration. In fact, one has to integrate over the invariant masses
M1,M2 and over the arguments x1, x2 of the e± structure functions for the ISR (for the case of
ISR in W -pair production, see [4]).

This means that an efficient integration over these variables should be done. Recently, the
strategy of the TGC determination [5] has been discussed in a working group at the Oxford
LEP 2 Workshop. The above-mentioned problems of reconstructing natural variables and of
required integrations led to a more general question: Can one successfully determine anoma-
lous couplings {α} from a maximum likelihood fit, using for every event i, characterized by
the experimentally well-determined values {φi} of the kinematical variables {φ}, a theoretical
probability p({φi}, {α})? In order to answer this question, one first needs an efficient way to
calculate for an input {α} and {φi} the multidifferential cross-section dσ/dφ and secondly one
has to show that for variables {φ} one can actually determine {α} by a maximum likelihood
fit.

It is the purpose of this letter to study the feasibility of this approach. Although strictly
speaking only the TGC strategy was discussed in [5], it is clear that the maximum likelihood
method could also be investigated for the MW determination. In fact, the methods to calculate
p({φi}, {α}) for the TGC set {α} or p({φi},MW ) for a mass determination, are the same.
The only difference is that for the first case one needs the matrix element as a function of
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{α}, whereas in the second case only the Standard Model matrix element is required. Thus
the building of the analysing tool for the extraction of MW or TGCs is in essence the same.
Whether the tool gives a good determination of MW or certain TGCs has to be established by
analysing data from event generators. In this letter results for the MW determination will be
presented, whereas the detailed TGC results will be deferred to a later paper [6]. The reasons
to focus now on MW are threefold. In the first place, the maximum likelihood method for MW

offers an alternative to the reconstruction method. Secondly, it is the simplest application of
the developed computer program. Thirdly, the variables {φ} and the integration algorithms
are the same for the MW and TGC determination.

In order to construct a tool for the evaluation of p({φi},MW ) one has to choose the set
{φ} of accurately measured variables. Although one can always consider more sets {φ}, the
following choices seem reasonable in practice [5] for different four-fermion final states:

1. Semileptonic case: q1q2`ν
1a {φ} = (E`,Ω`,Ωq1,Ωq2)
1b {φ} = (E`,Ω`,Ωq1 ,Ωq2, Eh), where Eh is the total energy of the jets.

2. Purely hadronic case: q1q2q3q4

{φ} = {Ωq1Ωq2Ωq3Ωq4}.

3. Purely leptonic case: `1ν1`2ν2

{φ} = (E`1,Ω`1 , E`2 ,Ω`2}

Since eight variables determine an event when no ISR is present, sets 1a and 3 would require
one or two integrations, cases 1b and 2 none. Including ISR adds two integrations. When jets
cannot be assigned to specific quarks a folding over the various possibilities should be included.

In order to make consistency checks, two programs have been developed to calculate
p({φi},MW ), one program using parts of the event generator ERATO [7], another similarly
based on EXCALIBUR [8]. Details will be published elsewhere [6]. For {φ} from set 1a, the
program calculates

p({φi},MW ) =
1

σtot

dσ

dE`dΩ`dΩq1dΩq2

. (1)

When the experimental measurement range on {φ} is restricted, σtot should be calculated with
the same restriction. For the other sets {φ} the analogous multidifferential cross-sections are
used and calculated in the “analyser” program.

Now we want to show that the maximum likelihood determination of MW works in the
semileptonic case. To this end we generate 1600 unweighted events at a center-of-mass energy
of 190 GeV, with either ERATO or EXCALIBUR, for a known input value

MW = 80.230 GeV . (2)

With the analyser we calculate

logL =
∑
i

log pi(MW ) , (3)
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where i runs over the 1600 events and

pi(MW ) = p({φi},MW ) . (4)

For the W -mass parameter MW nine different values were chosen, leading to nine data points
for logL, the logarithm of the likelihood function. The integration needed to calculate pi(MW )
leads to a small error on those data points. A parabola is fitted to these points from which the
reconstructed W -mass MR is obtained with an error ∆MR.

An example of this procedure is shown in Fig. 1. The 1600 events were generated in the
whole phase space with a CC3 matrix element (containing only the three signal diagrams [4])
including the ISR. Also the analyser contained CC3 diagrams and ISR. The reconstructed mass
is 80.238 ± 0.049. So within the errors (mainly determined by the number of experimental
points, i.e. 1600) the correct W -mass has been recovered. The variable set 1a has been used in
this analysis.

In order to get more insight in the reliability of the maximum likelihood procedure to find
MR and to study some physics effects, three different data sets of 1600 events were used, which
were analysed in different ways. We label the various data sets with j = 1, 2, 3. All three
include ISR, the first one is based on CC3, the second on CC10 and the last one on CC20. So
the pure signal case is generated, the muon case with all diagrams and the electron case with
all diagrams. The CC3 and CC10 events are produced in the whole phase space, while, for the
CC20 set, the outgoing e− has a 10◦ cut from the beam.

The various analysers are denoted by i = 1, 5 and are respectively CC3, CC3 + ISR, CC10
+ ISR, CC20 + ISR, CC3 + ISR + folding. In the last case the average cross-section is used
with the two possible quark assignments. The results for a number of (i, j) combinations are
given in Table 1 for case 1a and in Table 2 for case 1b. The entries are the reconstructed
masses.

From Table 1, the following conclusions can be drawn. Comparing cases (1,1) and (2,1)
shows that neglect of ISR in the analysis causes a shift of 269± 49 MeV. Comparing (2,1) and
(5,1) shows that folding gives within the errors a well-reconstructed MR.

Comparing cases (2,2) and (3,2) tells us that the background diagrams, in the case the final
state lepton is a muon, have no significant effect. An analysis with CC3 alone is sufficient,
within the errors. The same happens for the case the final state lepton is an electron (see
cases (2,3) and (4,3)). However, the latter statement depends on the error originating from
just using 1600 events and on the phase space cuts. Here a 10◦ cut from the beam is applied
on the outgoing e−. Cutting less may give a larger background and a significant shift.

Similar conclusions can be drawn when the set 1b is used. The errors on the reconstructed
MR are better, since one less integration is needed. Also the shift in MR from the ISR is smaller,
now being 142± 33 MeV.

Variable set 3 is not as much efficient for the mass reconstruction. This is due to the fact
that a large part of the kinematical information is actually missing. We have found that the
determination error in this set of variables is twice as much as in the case 1a for the same
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number of generated unweighted events. The purely hadronic case can also be used. Since
the folding complicates the calculation of pi, we defer the discussion of this case to a future
paper [6] .

The analyser gives the probability as a function of a limited set of kinematical variables {φ}.
It integrates over some undetermined variables and ISR. Whereas in event generators one wants
to generate events with all information provided, also preferably ISR photon momenta, the
analyser only has to integrate over the ISR. It is known that the structure function method gives
a reliable integration over all emitted ISR photon momenta. Because of this ISR integration in
the analyser program, the details of pT distributions of ISR photons are expected to matter here
less than for refined event generation, where they matter for the kinematics of each event. It
should be noted that the unweighted events used for the analysis of Tables 1 and 2 are generated
with ISR along either beam direction. In order to test the effect of transverse photon momenta
of the ISR, another event sample generated by KORALW [9] was analysed. The inclusion of
transverse photon momenta did not give results different from the ones in the tables, at least
within the errors of the analysis. From this point of view, the maximum likelihood method for
determining MW may have an advantage over the direct reconstruction method.

In conclusion, the maximum likelihood method for determining MW from well-measured
experimental variables, with well-known resolutions, seems to offer an alternative to the direct
reconstruction method.

Besides the incorporation of the ISR, the method also easily takes into account the full
set of diagrams for each channel. Beforehand one can test whether a CC3 + ISR analysis is
sufficient, or whether background diagrams should be included.

Although further results concerning the full set of TGC parameters, as well as the consid-
eration of all possible production channels, will be presented elsewhere [6], we give here one
indication of its feasibility. We have performed an analysis based on the αWφ parameter [3].
More precisely the 1600 events generated with CC3+ISR have been analysed in the case 1a,
with the result:

αWφ = 0.002± 0.026 .

We also generated 1600 events with CC3 but without ISR and analysed them using the set of
variables described in 1b. In that case, where no ISR is present, we expect to have a more or
less ideal situation, since the full kinematical information is available. The fitted value is now

αWφ = 0.006± 0.024 .

Both numbers agree very well with the results presented in [3], where in the so-called ‘ideal’
case a determination error of 0.018 has been found by fitting a sample of 2600 events.

Summarizing, the feasibility of the method has been demonstrated from a theoretical point
of view. Further studies with detector simulation would be required to see the results of the
method in an experimental environment.
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Figure 1: Example of likelihood curve for case i = 2, j = 1 in Table 1.
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j = → 1 2 3
i = ↓ CC3 + ISR CC10 + ISR CC20 + ISR
1 CC3 80.507 ±0.045

2 CC3 + ISR 80.238 ±0.049 80.224 ± 0.048 80.280 ± 0.047

3 CC10 + ISR 80.277 ± 0.048

4 CC20 + ISR 80.231 ± 0.049

5 CC3 + ISR 80.249 ±0.048
+ folding

Table 1: The reconstructed MR ±∆MR from three different data samples of 1600 unweighted
events (j = 1, 2, 3). The analyser has been used for five different treatments of the cross-section
(i = 1, 5). Sets j = 1 and j = 2 have no cuts, while, for set j = 3, the outgoing e− has a 10◦

cut from the beam. The experimental variables are those of set 1a.

j = → 1 2 3
i = ↓ CC3 + ISR CC10 + ISR CC20 + ISR
1 CC3 80.380 ±0.032

2 CC3 + ISR 80.238 ±0.033 80.238 ± 0.032 80.269 ± .032

3 CC10 + ISR 80.240 ± 0.032

4 CC20 + ISR 80.240 ± 0.033

5 CC3 + ISR 80.239 ±0.033
+ folding

Table 2: The reconstructed MR ±∆MR from three different data samples of 1600 unweighted
events (j = 1, 2, 3). The analyser has been used for five different treatments of the cross-section
(i = 1, 5). Sets j = 1 and j = 2 have no cuts, while, for set j = 3, the outgoing e− has a 10◦

cut from the beam. The experimental variables are those of set 1b.
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