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Abstract

A natural consequence of the composite operator propagator-vertex description of deep

inelastic scattering developed by the authors is that the anomalous suppression observed

in the avour singlet contribution to the �rst moment of the polarised proton structure

function g
p
1 (the `proton spin' problem) is not a special property of the proton structure

but is a target independent e�ect which can be related to an anomalous suppression in

the QCD topological susceptibility. In this paper, it is shown how this target independent

mechanism can be tested in semi-inclusive deep inelastic scattering in which a pion or D

meson carrying a large target energy fraction z is detected in the target fragmentation

region.
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1. Introduction

The anomalous suppression of the �rst moment, �
p
1, of the polarised proton structure

function g
p
1 has been the focus of intense theoretical and experimental activity for nearly a

decade. While it is now generally accepted that the key to understanding this e�ect is the

existence of the chiral U(1) anomaly in the avour singlet pseudovector channel, there are

several detailed explanations reecting di�erent theoretical approaches to the description of

deep inelastic scattering (DIS) and proton structure. In this paper, we review one of these

{ the composite operator propagator-vertex (CPV) description of deep inelastic scattering

developed by us in a series of papers[1-4] { and show how one of its key predictions, the

target independence of the suppression mechanism, can be tested in future semi-inclusive

DIS experiments.

The essence of our approach is the decomposition of structure function moments into

the product of perturbative Wilson coe�cients, non-perturbative but target-independent

composite operator propagators, and vertex functions describing the coupling of these

operators to the target nucleon.

The vertices, which are de�ned to be `1PI' with respect to a chosen set of operators,

encode all the information on the structure and properties of the target. They are non-

perturbative and not directly calculable, and play the same role in our formalism as the

parton densities in the conventional QCD parton model description of DIS. However, just

as the parton densities have a universal character, being equally applicable to DIS or

hadron-hadron scattering, these 1PI vertices also have a more universal role, being related

in favourable cases to low energy nucleon couplings such as g�NN etc. They provide an

alternative, complementary, description of the nucleon state.

However, the most important feature of the CPV formalism as far as the `proton spin'

problem is concerned is the separation of the composite operator propagator from the

target-dependent vertex. This allows us to distinguish between generic non-perturbative

properties of QCD and e�ects which are characteristic of the particular target. Our pro-

posal is that the anomalous suppression in the avour singlet contribution to the �rst

moment of g
p
1 is of the �rst kind, viz. a generic, target-independent feature of QCD, re-

lated to the chiral U(1) anomaly but not special to any particular hadron. In fact[1-3], we

are able to relate the relevant propagator to a fundamental correlation function in QCD,

viz. the topological susceptibility �(0), and show that the suppression in �
p
1 is due to an

anomalously small value of its �rst moment �0(0). To con�rm this interpretation, we have

evaluated �0(0) using QCD spectral sum rules[4], and have found a suppression in good

quantitative agreement with the current data[5,6] on g
p
1 .

The natural next step is to see whether this target-independent suppression mecha-

nism can be tested directly, by studying the structure functions of other targets besides

the proton and neutron. (Unfortunately, for these two targets, isospin invariance already

implies target independence.) The obvious choice for an alternative target is the photon,

whose structure function g

1 may be measured in two-photon processes at a su�ciently high-

luminosity e+e� collider. However, this turns out to be an exceptional case, since there is

a direct axial current { two photon coupling via the electromagnetic chiral U(1) anomaly.

The �rst moment sum rule for g

1 (k

2), as a function of the target photon virtuality k2,
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has been presented in refs.[7,8], together with estimates of the relevant cross-section asym-

metries in polarised colliders. The dependence of g

1 (k

2) on the virtuality displays many

interesting features: g

1 (0) is zero by electromagnetic current conservation[9]; its asymp-

totic value for k2 greater than the hadronic scale is essentially given by the electromagnetic

anomaly coe�cient, with logarithmic corrections governed by the gluonic anomaly; and its

detailed dependence on k2 as the various quark thresholds are crossed depends critically

on the realisation of chiral symmetry in QCD.

Direct DIS experiments on other hadronic targets are of course not feasible. We can

nevertheless test our ideas in semi-inclusive DIS in an appropriate kinematic region where

the reaction is well described in terms of deep inelastic photon scattering o� a Reggeon

(or more complicated exchanged object) with well-de�ned hadronic characteristics. In

particular, using the target-independent suppression hypothesis, we are able to formulate

predictions for ratios of cross section moments (related to moments of the Reggeon struc-

ture functions) which are signi�cantly and characteristically di�erent from expectations

based, like the Ellis-Ja�e sum rule for g
p
1 , on the simple valence quark model or OZI rule.

In particular, our target-independent mechanism should be clearly testable by comparing

the ratios of cross section moments for the semi-inclusive reactions ep ! e��(D�)X and

en ! e�+(D0)X, in which a pion or D meson carrying a large target energy fraction z is

detected in the target fragmentation region.

The paper is organised as follows. In section 2, we review the most important features

of the CPV method and its application to the polarised proton structure function, explain

why it leads to a target-independent suppression, and compare our prediction for the �rst

moment with the most recent SMC data. Then, in section 3, we show how by assuming

target-independence and exploiting avour SU(3) symmetry we can derive predictions for

ratios of structure function moments for a variety of hadrons, including some which di�er

dramatically from results using the OZI rule.

Semi-inclusive DIS is introduced in section 4, where we use a combination of symme-

try and dynamical arguments to show that our predictions for ratios of structure function

moments can be realised as ratios of cross section moments in a certain kinematical re-

gion. In this region, the cross sections may be written in terms of Reggeon structure

functions, where the exchanged Regge trajectory has the required SU(3) properties. We

then compare these results with the more precise description of semi-inclusive DIS in terms

of fracture functions[10], and relate the Reggeon structure function to the recently intro-

duced extended fracture functions[11]. We conclude with a summary of our predictions for

the most interesting ratios of semi-inclusive cross sections.
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2. Target Independence and Composite Operator Propagator-Vertex Method

The starting point is the sum rule for the �rst moment of the polarised structure

function g
p
1 , viz.

�
p
1(Q

2) �
Z 1

0

dx g
p
1(x;Q

2)

=
1

12
CNS
1

�
�s(Q

2)
��
a3 +

1

3
a8
�
+

1

9
CS
1

�
�s(Q

2)
�
a0(Q2) (2:1)

Here, a3, a8 and a0(Q2) are the form factors in the forward proton matrix elements of the

renormalised axial current, i.e.

hp; sjA3
�jp; si = s�

1

2
a3 hp; sjA8

�jp; si = s�
1

2
p
3
a8 hp; sjA0

�jp; si = s�a
0(Q2)

(2:2)

where p� and s� are the momentum and polarisation vector of the proton. The Q2 de-

pendence of the singlet form factor follows from the renormalisation of the singlet current

described below. The perturbative series CNS
1

�
�s(Q

2)
�
and CS

1

�
�s(Q

2)
�
are OPE coe�-

cients and are now both known to O(�3s) [12-14].

Because of the chiral U(1) anomaly, the singlet current A0
� is renormalised and mixes

with the topological density. De�ning the bare operators A0
�B =

P
�q�5q and QB =

�s

8�
�����trG��G��, we have (for nf avours)

A0
� = ZA0

�B

Q = QB �
1

2nf
(1� Z)@�A0

�B (2:3)

where Z is a divergent renormalisation constant. The associated anomalous dimension 

was �rst calculated in ref.[15] and is now known to 3 loops[16]. Matrix elements of A0
�

therefore have a non-trivial scale dependence governed by . In particular,

d

dt
a0 = a0 (2:4)

where t = ln Q2

�2
.

The anomalous Ward identities for composite operator propagators are

@�h0jT A0
� Oj0i � 2nf h0jT Q Oj0i = h�AOi (2:5)

where O denotes an arbitrary composite operator and �AO is its chiral variation. Notice

that with these de�nitions of the renormalised composites, the combination
�
@�A0

��2nfQ
�

appearing in the anomalous Ward identities is the same for the bare or renormalised
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operators[17]. The possibility of making such a de�nition is a consequence of the Adler-

Bardeen theorem.

The sum rule (2.1) is derived using the OPE for two electromagnetic currents. The

dominant contributions arise from the operators of lowest twist and, within this set, those

of spin n contribute to the nth moment of the relevant structure function. Eq.(2.1) is the

special case for odd parity operators of twist 2 and spin 1, viz.

J�(q)J�(�q) �
Q2!1

2�����
q�

Q2

�
CNS
1

�
�s(Q

2)
��

A3
� +

1p
3
A8
�

�
+

2

3
CS
1

�
�s(Q

2)
�
A0
�

�
(2:6)

It is at this point that our CPV method and the conventional parton model analysis

of DIS diverge. In the parton model, the form factors are related to quark and gluon

densities as follows[18]:

a3 = �u��d

a8 = �u +�d� 2�s

a0(Q2) = ��� nf
�s(Q

2)

2�
�g(Q2) (2:7)

where �� = �u + �d + �s and �q =
R 1
0
dx

�
�q(x) + ��q(x)

�
. There is a scheme

ambiguity in these identi�cations, which relate four parton densities to just three measured

quantities. The above de�nitions, in which �� is chosen to be scale invariant to all orders

(this is possible because of the Adler-Bardeen theorem), are made in the AB factorisation

scheme[18-20].

����
����
����
����

Fig. 1: The description of DIS in the parton model. The upper hatched blob denotes the perturbative

QCD corrections related to the Wilson coe�cients in the OPE.

This standard approach is illustrated in Fig. 1. The upper hatched blob represents

the perturbative QCD corrections contributing to the coe�cient functions CNS
1 ; CS

1 in

the OPE. The factorisation theorems show that these diagrams, with two quark (gluon)

propagators, give the leading contribution to the amplitude for large Q2, thus allowing the

simple parton interpretation of q(x) and g(x; t) as the probability distributions for �nding

a quark or gluon with momentum fraction x in the target proton.

The Ellis-Ja�e sum rule makes the assumption that �s and �g are zero in the proton.

This is equivalent to the OZI (Zweig) rule prediction a0 = a8. The crux of the `proton
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spin' problem is to understand the origin of the OZI breaking revealed by the measurement

of �
p
1, which shows that a0 is strongly suppressed relative to its OZI value. Our favoured

explanation in the context of the parton model is that the OZI breaking is due overwhelm-

ingly to the gluon density �g in eq.(2.7). We expect the OZI rule to apply to the scale

invariant quark densities, so that (in the AB scheme) �� = a8, while the scale dependent

�g(Q2) compensates to produce an anomalously suppressed a0(Q2). This would accord

with the central conjecture of our rather di�erent approach, described below, and has the

virtue of providing a scale invariant meaning to the OZI rule in the presence of the chiral

U(1) anomaly.

In our approach, we again start from the OPE but instead factorise the resulting ma-

trix elements into the product of composite operator propagators and vertex functions.(1)

����
����
����
����

Fig. 2: The description of DIS in the composite operator propagator-vertex method. The double line

denotes the composite operator propagator and the lower cross-hatched blob the `1PI' vertex function.

This is illustrated in Fig. 2. To do this, we �rst select a set of composite operators ~Oi

appropriate (see below) to the physical situation and de�ne vertices � ~Oipp
as `1PI' with

respect to this set. Technically, this is achieved by introducing sources for these operators

in the QCD generating functional, then performing a Legendre transform to obtain an

e�ective action �[ ~Oi]. The 1PI vertices are the functional derivatives of �[ ~Oi]. A generic

structure function sum rule then takes the formZ 1

0

dx xn�1 F (x;Q2) =
X
i

X
j

C
(n)
j (Q2)h0jT O(n)

j
~Oij0i� ~Oipp

(2:8)

where O(n)
j are the lowest twist, spin n, operators in the appropriate OPE with C

(n)
j the

corresponding Wilson coe�cients.

This decomposition splits the structure function into three pieces { �rst, the Wilson

coe�cients C
(n)
j (Q2) which control the Q2 dependence and can be calculated in pertur-

bative QCD; second, non-perturbative but target-independent QCD correlation functions

(composite operator propagators) h0jT O(n)
j

~Oij0i; and third, a non-perturbative, target-

dependent vertex functions � ~Oipp
describing the coupling of the target proton to the com-

posite operators of interest. The vertex functions cannot be calculated directly from �rst

(1) The presentation here is a slight over-simpli�cation. In general, there is a distinction between the
cases where the OPE operators Oj are included in the set ~Oi and where they are not. See refs.[2,3] for a
complete account of the Zumino (partial Legendre) transform formalism and its application to the `proton
spin' problem.
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principles. They encode the information on the nature of the proton state and play an

analogous role to the parton distributions in the more conventional parton picture.

One of the main advantages of our method is that some non-perturbative information

which is generic to QCD, i.e. independent of the target, is factored o� into the composite

operator propagator. This allows us to distinguish between non-perturbative mechanisms

which are generic to all QCD processes and those which are speci�c to a particular target.

Our contention is that the anomalous suppression in the �rst moment of g
p
1 is of the �rst,

target-independent, type.

As emphasised in refs.[3,4,21,22], it is important to recognise that this decomposition

of the matrix elements into products of propagators and proper vertices is exact, indepen-

dent of the choice of the set of operators ~Oi. In particular, it is not necessary for ~Oi to be

in any sense a complete set. All that happens if a di�erent choice is made is that the ver-

tices � ~Oipp
themselves change, becoming `1PI' with respect to a di�erent set of composite

�elds. Of course, while any set of ~Oi may be chosen, some will be more convenient than

others. Clearly, the set of operators should be as small as possible while still capturing the

essential physics (i.e. they should encompass the relevant degrees of freedom) and indeed a

good choice can result in vertices � ~Oipp
which are both RG invariant and closely related to

low energy physical couplings, such as g�NN or g�[3,23]. In this case, eq.(2.8) provides

a rigorous relation between high Q2 DIS and low-energy meson-nucleon scattering.

For the �rst moment sum rule for g
p
1 , it is most convenient to use the chiral anomaly

immediately to re-express a0(Q2) in terms of the forward matrix element of the topological

density Q, i.e.

a0(Q2) =
1

2M
2nf hpjQjpi (2:9)

where the matrix element, which scales with the anomalous dimension , is evaluated at

the scale Q2.(2)

Our set of operators ~Oi is then chosen to be the renormalised avour singlet pseu-

doscalars Q and �5 where, up to a vital normalisation factor, the corresponding bare

operator is �5B =
P

�q5q. The normalisation factor[3,4] is chosen such that in the ab-

sence of the anomaly(3), �5 would have the correct normalisation to couple with unit decay

constant to the U(1) Goldstone boson which would exist in this limit. This is important

(2) This quantity may be evaluated directly in lattice QCD. See ref.[24] for a brief review of the current

status of lattice evaluations. Note that in order to incorporate fully the e�ects of the anomaly, it is

necessary[25] to use dynamical fermions.
(3) To be precise, what is referred to here is the `OZI limit' of QCD, de�ned in ref.[25] as the truncation of

full QCD in which non-planar and quark-loop diagrams are retained, but diagrams in which the external

currents are attached to distinct quark loops (so that there are purely gluonic intermediate states) are

omitted. This is a more accurate approximation to full QCD than either the leading large 1=Nc limit, the

quenched approximation (small nf at �xed Nc) or the leading topological expansion (Nc ! 1 at �xed

nf=Nc. In the OZI limit, the U(1) anomaly is absent, as is meson-glueball mixing[26], and there is an

extra U(1) Goldstone boson. Notice, however, that no approximation is used in deriving eq.(2.10). The

OZI limit is used here purely as the motivation for choosing a particularly convenient normalisation for

�5.
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later in justifying the use of the OZI approximation for the vertex, which is then RG

invariant.

We then have

�
p
1 singlet =

1

9

1

2M
2nf CS

1

�
�s(Q

2)
��
h0jT Q Qj0i�Qpp + h0jT Q �5j0i��5pp

�
(2:10)

where the propagators are at zero momentum and the vertices (which in this equation have

the external proton wave functions amputated) are 1PI wrt Q and �5 only.

The composite operator propagator in the �rst term is the zero-momentum limit of

the QCD topological susceptibility �(k2), viz.

�(k2) =

Z
dxeik:xih0jT Q(x) Q(0)j0i (2:11)

The anomalous chiral Ward identities show that �(0) vanishes for QCD with massless

quarks, in contrast to pure Yang-Mills theory where �(0) is non-zero. Furthermore, it can

be shown[3,4] that the propagator h0jT Q �5j0i at zero momentum is simply the square

root of the �rst moment of the topological susceptibility. We therefore �nd:

�
p
1 singlet =

1

9

1

2M
2nf CS

1

�
�s(Q

2)
� p

�0(0) ��5pp (2:12)

The quantity
p
�0(0) is not RG invariant and scales with the anomalous dimension . On

the other hand, the proper vertex has been chosen speci�cally so as to be RG invariant.

The renormalisation group properties of this decomposition are crucial to our resolution

of the `proton spin' problem.

Our proposal (which is fully motivated in refs.[3,23] and supported by a range of low-

energy phenomenology in the U(1) channel, such as �0 !  decay) is that we should

expect the source of OZI violations to lie in the RG non-invariant, and therefore anomaly-

sensitive, terms, i.e. in �0(0).(4) Since the anomalous suppression in �
p
1 is assigned to the

composite operator propagator rather than the proper vertex, the suppression is a target

independent property of QCD related to the chiral anomaly, not a special property of the

proton structure. This immediately raises the question whether it is possible to test the

mechanism by e�ectively performing DIS experiments on other hadronic targets.

Our quantitative prediction then follows by using the OZI approximation for the

vertex ��5pp and a QCD spectral sum rule estimate of the �rst moment of the topological

susceptibility.(5) We �nd, for nf = 3,p
�0(0)

���
Q2=10GeV 2

= 23:2� 2:4 MeV (2:13)

(4) Notice that we are using RG non-invariance, i.e. dependence on the anomalous dimension , merely

as an indicator of which quantities are sensitive to the anomaly and therefore likely to show OZI violations.

An alternative suggestion, in which the suppression in a0(Q2) is due directly to non-perturbative e�ects

in  at low scales, was made in ref. [27]. This would also predict a target-independent suppression.
(5) The validity of this calculation has been criticised by Io�e[28,29] (see also ref.[30,31]), who asserts

that the spectral sum rule technique cannot be applied to the U(1) channel because of problems with

the optimisation scale and dependence on the strange quark mass. In ref.[32], we extend our analysis to

include light quark masses and explain in detail why these criticisms are not valid.
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This is a suppression of approximately a factor 0:6 relative to the OZI value f�=
p
6.

Our �nal result is then

a0(Q2 = 10GeV2) = 0:35� 0:05 (2:14)

from which we deduce

�
p
1

���
Q2=10GeV2

= 0:143� 0:005 (2:15)

This is to be compared with the Ellis-Ja�e (OZI) prediction of a0 = 0:58 � 0:02 and the

SMC experimental data[5]:

�
p
1

���
Q2=10GeV2

= 0:136� 0:013� 0:009� 0:005 (2:16)

where the last error is theoretical, related to the Q2 evolution. This gives

a0(Q2 = 10GeV2) = 0:28� 0:16 (2:17)

There is, however, a remaining uncertainty over the data related to the small x region.

The SMC experiment is limited to measuring the region 0:003 < x < 0:7, and only a small

estimated contribution of 0:0042�0:0016 is included in eq.(2.16) for the contribution to �
p
1

from the unmeasured range 0 < x < 0:003. (The high x extrapolation is uncontroversial.)

Recent �ts[19,33] to the same data using a di�erent extrapolation to the small x region,

incorporating Q2 evolution of the parton distributions, suggest a much smaller central

value for a0 with larger errors, viz. a0(Q2 = 10GeV2) = 0:10
+0:17
�0:11

. Interestingly, these

�ts also suggest that �� = 0:45� 0:09, not too far from the OZI value.

Very recently, new preliminary proton data has become available from SMC[6]. This

gives Z 1

0:003

dx g
p
1(x;Q

2 = 10GeV2) = 0:146� 0:006� 0:009� 0:005 (2:18)

The result for the entire �rst moment depends on how the extrapolation to the unmeasured

small x region is performed. Using a simple Regge �t, SMC �nd �
p
1 = 0:149� 0:012 from

which a0 = 0:41� 0:11, while using a small x �t using perturbative QCD evolution of the

parton distributions they �nd �
p
1 = 0:135� 0:016 which implies a0 = 0:27 � 0:15 (all at

Q2 = 10GeV2).

Clearly, much more analysis, both theoretical and experimental, of the small x be-

haviour of the polarised structure functions is required and studying this region will be an

important goal of future polarised collider experiments at HERA. Nevertheless, the broad

agreement with our prediction (2.14) is very encouraging and strongly suggests that our

interpretation and explicit calculation of the topological susceptibility are correct.
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3. The g1 Sum Rule for Other Targets

In this section, we consider the implications of the target-independent suppression

mechanism for the structure functions of other hadrons, leaving aside temporarily the

question of how this may be realised experimentally.

Our basic prediction(6) is that for any hadron, the singlet form factor in eq.(2.1) can

be substituted by its OZI value multiplied by a universal (target-independent) suppression

factor s(Q2) determined, up to radiative corrections, by the anomalous suppression of the

�rst moment of the topological susceptibility
p
�0(0). For example, for a hadron containing

only u and d quarks, the OZI relation is simply a0 = a8, so we would predict:

�
p
1 =

1

12
CNS
1

�
�s(Q

2)
��
a3 +

1

3
(1 + 4s)a8

�
(3:1)

where

s(Q2) =
CS
1

�
�s(Q

2)
�

CNS
1

�
�s(Q2)

� a0(Q2)

a8
(3:2)

Since s is target independent, we can use the value measured for the proton to deduce �1
for any other hadron target simply from the avour non-singlet form factors, which obey

relations from avour SU(3) symmetry. From our spectral sum rule estimate of
p
�0(0),

we �nd s � 0:66 at Q2 = 10GeV2, while the central value of the SMC result (2.17) gives

s � 0:55. (We use the experimental data taken directly from SMC, ref.[5] in this section.)

The form factors for a hadron B are given by the matrix elements of the avour octet

axial currents. The SU(3) properties are summarised by

hBjA(�)
II3Y

jBi = hIBIB3 ; I
�BI

�B
3 jII3i

0
@ �B �

�B
��� �

IB Y B I
�B Y

�B
��� I Y

1
A h�BjA(�)j�Bi (3:3)

Here, � indicates the SU(3) representation while I; I3 and Y are the isospin and hyper-

charge quantum numbers. The term h�BjA(�)j�Bi is a reduced matrix element, while the

other factors are SU(2) and SU(3) Clebsch-Gordon coe�cients[36].

If we now take the hadron B to be in the 10 representation, then since

10� �10 = 1+ 8+ 27+ 64 (3:4)

(6) The analogous prediction in the parton model would be to assume that (in the AB scheme) the RG
invariant �� would take its OZI value, ie. �� ' ��val, where ��val is the sum of the valence quark
densities. These can be distinguished from the OZI-violating sea quark densities in semi-inclusive DIS in

the current fragmentation region[34,35]. The gluon contribution �G � nf
�s(Q

2)

2�
�g(Q2) would then be

given by

�G = (1� ~s(Q2)) ��val

where ~s(Q2) is simply (3.2) with the Wilson coe�cients omitted. This has the correct scaling property

and ensures a target independent suppression in �1.
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the matrix element of the (octet) currents contain just one reduced matrix element. This

is in contrast to the case of B in the octet representation, as for the proton or neutron,

which would involve an F=D ratio arising from the two reduced matrix elements in the

decomposition 8�8 = 1+8+8+10+ �10+27. This is an important simpli�cation, as it

means that the ratio of �1 for decuplet states can be predicted as a simple group-theoretic

number, up to the dynamical suppression factor s.

For example, for the �++, the matrix elements of the currents are

h�++jA3
�j�++i =

r
3

10
h10jA(8)j10i h�++jA8

�j�++i =
r

1

10
h10jA(8)j10i (3:5)

evaluating the relevant Clebsch-Gordon coe�cients. Similar results hold for the ��. Tak-

ing the ratio to eliminate the common reduced matrix element h10jA(8)j10i, we �nd the

following result for the ratio of the �rst moment of the polarised structure functions g1 for

the �++ and ��:

��
++

1

��
�

1

=

q
3
10

+
q

1
10

q
1
3
(1 + 4s)

�
q

3
10

+
q

1
10

q
1
3
(1 + 4s)

=
2s+ 2

2s� 1
(3:6)

The OZI (c.f. Ellis-Ja�e) prediction is given by setting s = 1, i.e. ��
++

1 =��
�

1 = 4.(7) How-

ever, substituting a suppression factor of s � 0:66 gives a much larger ratio ��
++

1 =��
�

1 �
10, while the experimental factor s � 0:55 would give an even larger value, indicating a

near complete suppression of ��
�

1 .

We would therefore expect to �nd a quite spectacular deviation from the quark model

expectation for this ratio of structure function moments. We can also show (footnote

(7)) that the same result is obtained for the ratio �
�++
c

1 =�
�0
c

1 for the charmed baryons

�++c = uuc and �0c = ddc. Of course, these examples have been specially selected (because

of the 2s�1 factor) to show a particularly striking di�erence from the simple valence quark

model predictions. However, as we shall see in section 4, they are also the examples which

can be dynamically isolated in semi-inclusive DIS.

Although these are the most interesting, other ratios of structure function moments

can be easily calculated by the same method. The most obvious is the proton-neutron

(7) Alternatively, this result can be simply obtained in the valence quark model as follows. Using the
quark charges and neglecting radiative corrections, we have

�1 =
1

18
(4�u +�d +�s)

and so

��
++

1 =
2

3
�u(�++) ��

�

1 =
1

6
�d(��)

With the (isospin) assumption �u(�++) = �d(��), we immediately �nd ��
++

1 =��
�

1 = 4.

The corresponding result for the ratio �
�
++
c

1 =�
�0
c

1 follows from quark counting in the same way,

assuming �u(�++c ) = �d(�0c) and treating the heavy c quark as a spectator.

10



ratio which, as noted above, does not simply give a group theoretic number but depends

also on the F=D ratio. In this case, the OZI prediction is

�
p
1

�n1
=

1� 9F=D

4� 6F=D
(3:7)

while including the anomalous suppression factor, we �nd

�
p
1

�n1
=

2s� 1� 3(2s+ 1)F=D

2s+ 2� 6sF=D
(3:8)

This complements the Bjorken sum rule for the di�erence �
p
1 � �n1 , viz.

�
p
1 � �n1 =

1

6
CNS
1

�
�s(Q

2)
�
gA (3:9)

where gA = a3p. The neutron structure function is[5]

�n1
��
Q2=10GeV2 = �0:046� 0:021 (3:10)

so that the experimental result for the ratio is

�
p
1

�n1

����
Q2=10GeV2

= �2:96� 1:39 (3:11)

This is to be compared with the OZI result �
p
1=�

n
1 = �7:6 � 1:4, where we have used

F=D = 0:575� 0:016 in eq.(3.7), and with the prediction from our modi�ed formula (3.8)

which gives central values �
p
1=�

n
1 = �3:5 for s � 0:66 and �

p
1=�

n
1 = �2:9 for s � 0:55.

Of course, this only con�rms that the suppression in the singlet form factor a0(Q2) is the

same for the proton and neutron, as expected by isospin symmetry and con�rmed by the

experimental validity of the Bjorken sum rule.

As a �nal example, we quote the corresponding results for hadrons containing the

strange quark. For the octet �+ and ��, the OZI rule gives respectively a0 = 1
2
(3a3� a8)

and a0 = �1
2
(3a3 + a8), so that our prediction is

��
+

1 =
1

12
CNS
1

�
�s(Q

2)
��
(1 + 2s)a3 +

1

3
(1� 2s)a8

�
(3:12)

while

��
�

1 =
1

12
CNS
1

�
�s(Q

2)
��
(1� 2s)a3 +

1

3
(1� 2s)a8

�
(3:13)

A similar group theoretic calculation then gives

��
+

1

��
�

1

=
2s� 1� 3(2s+ 1)F=D

2s� 1� 3(2s� 1)F=D
(3:14)
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with the valence quark model prediction again being recovered by setting s = 1.

On the other hand, for the ��+ and ��� in the decuplet, the F=D ratio is absent and

instead we �nd the simple ratio

��
�+

1

��
��

1

=
2s+ 1

2s� 1
(3:15)

We shall see to what extent these predictions may be tested in the next section.

4. Semi-Inclusive Deep Inelastic Scattering

Of course, it is not possible to measure structure functions directly for baryonic targets

such as the � or �c. However, it is possible to test the ideas in the previous sections

in semi-inclusive DIS reactions eN ! ehX, where h is a detected hadron in the target

fragmentation region.

In our case, we are interested in reactions where N is a nucleon target and the detected

hadron h is, for the interesting cases described above, a pion or D meson. The electron

can of course represent any lepton. There are distinct contributions to this process from

the current and target fragmentation regions, which we require to be clearly distinguished

kinematically. A large rapidity gap is therefore required between h and the inclusive

hadrons X, with h in the target fragmentation region. h is also required to carry a large

target energy fraction z (de�ned below).

4.1 Single Reggeon Exchange Model

'e (p1)

'h (p2)

X

e (p1)

p (p2)

γ (q)

B (k)

Fig.3 : The semi-inclusive DIS reaction eN! ehX in the target fragmentation region with z � 1 modelled

by the exchange of a Reggeon B.

In this kinematical regime, the process may be modelled as shown in Fig. 3, in which

the exchanged object is a Reggeon B with well-de�ned SU(3) quantum numbers. With a

polarised beam and target, this kinematics allows us to measure the structure function gB1
of the exchanged Regge trajectory B.

12



This is analogous to the measurement of the photon structure function g

1 in polarised

e+e� scattering in the DIS region[7,8] (Fig. 4) or the pomeron structure function FP2 in

di�ractive ep scattering[37] (Fig. 5).

e

e

X

e

e

γ

γ

Fig.4 : The deep inelastic two-photon process in polarised e+e� scattering used to measure the structure

function g

1 of the photon.

X

e

e

P

p

p

γ

Fig.5 : The di�ractive exchange process in ep scattering used to measure the structure function FP2 of

the pomeron.

Since the results of section 3 depend solely on the SU(3) properties of the baryon B,
they will still hold here despite the fact that B is interpreted as a Reggeon. Indeed, it is not

even necessary (see section 4.2) to assume that the exchanged object is a single Reggeon

{ our �nal predictions for cross section ratios hold independently of the dynamical nature

of the exchanged object, which could in principle be a multi-Regge exchange or more

complicated structure, provided the SU(3) properties are correct.

If the target is a nucleon N and the detected hadron is an octet meson (�), SU(3)

symmetry shows that B belongs to a representation on the rhs of

8� 8 = 1+ 8+ 8+ 10+ �10+ 27 (4:1)

Since the 27 requires a 5-quark state, it is a good dynamical approximation at su�ciently

large z that the 10 dominates the 27. However, there is no such argument for 8 domi-

13



nance over the 10. To isolate a unique representation for B, we must therefore choose a
combination of N and h giving I3; Y quantum numbers for B which appear in the 10 but

not in the 8. This is satis�ed by the �++ and ��, as in section 3. The required ratio

of �rst moments ��
++

1 =��
�

1 = 2s+2
2s�1

, where now �++ and �� are Reggeons, is therefore

obtained by comparing the reactions ep! e��X and en! e�+X.

These symmetry considerations are easily pictured by drawing valence quark diagrams

for the NhB vertex. Fig. 6 shows the quark structure of the ep ! e��X reaction, while

the corresponding 5-quark, 27 represenation, exchange is shown in Fig. 7.

p

∆++ (10)

π−

u
u
d

u
d

u
u
u

Fig.6 : Quark diagram for the NhB vertex in the reaction ep ! e��X with the Reggeon B in the 10

representation.

p

∆++ (27)

π−

u
u
d

u
d

u

u

u

d
d

Fig.7 : Quark diagram for the NhB vertex in the reaction ep ! e��X with the Reggeon B in the 27

representation.

As in section 3, we �nd the same ratio holds for the moments �
�++
c

1 =�
�0
c

1 , which can be

realised (Fig. 8) in reactions in which a D meson is detected by comparing ep! eD�X and

en! eD0X. To justify the assumption made there of treating the c quark as a spectator,

we must select events in which there is no charmed jet in the current fragmentation region.

p

Σ++

D−

u
u
d

c
d

u
u
c c

Fig.8 : Quark diagram for the NhB vertex in the reaction ep! eD�X where the Reggeon B has quantum

numbers of the �++c .

Trajectories with the quantum numbers of the �+ and �� would be exchanged in the

reactions ep! eK0X and en! eK+X (substituting an s quark for the c quark in Fig. 8).

14



However, with these reactions there are two possibilities for the exchanged trajectory, with

either the �+ (��) in the 8 or the ��+ (���) in the 10 being possible (in addition to the

Zweig suppressed 27 contribution). As we saw in section 3, these give quite di�erent ratios

of structure function moments. Unfortunately, it would be di�cult to distinguish these

possibilities experimentally. In particular, there is no dynamical justi�cation for assuming

10 dominance over the 8. This is why we had to choose the �++ (��) or �++c (�0c)

trajectories to obtain a clear test of the predictions of section 3.

The dynamics of these semi-inclusive reactions in the large z, target fragmentation

region (Fig. 5) can be deduced by analogy with the photon structure function or di�ractive

pomeron exchange processes. The �rst moment of the polarised structure function for the

Reggeon B is found from the polarisation asymmetry of the di�erential cross section in the

target fragmentation region, i.e.

Z 1�z

0

dx x
d��target

dxdydzdt
=

YP

2

4��2

s
�f(z; t)

Z 1

0

dxB gB1 (xB; t;Q
2) (4:2)

Here, x = Q2

2p2:q
, xB = Q2

2k:q
, z =

p02:q

p2:q
so that 1� z = x

xB
, y = p2:q

p2:p1
, t = �(p2 � p02)

2 � �k2

and YP = 1
y
(2� y). This kinematics is described further in Appendix A.

If we now take the ratio of eq.(4.2) for the two reactions ep! e��X and en! e�+X

(or ep! eD�X and en! eD0X), the factorised Reggeon emission factor �f(z; t) cancels

out, leaving the ratio of structure function moments �1 predicted in section 3 to be given

simply by the ratio of the cross section moments. Our �nal predictions for the cross section

ratios are summarised in section 4.3.

As well as predicting the ratios, which contain the essential physics we wish to test,

we should also consider the absolute size of the relevant cross section asymmetries. In

particular, we must check that the cross sections do not fall o� too quickly as z approaches

1 for our predictions to be seen clearly in the data. Returning to eq.(4.2), and making the

ansatz that the Reggeon emission factor �f(z; t) appropriate to the polarised amplitude

is the same as that for the unpolarised case, we expect

�f(z; t) � F (t)(1� z)1�2�B(t) (4:3)

where �B(t) is the Regge trajectory for the B. For the reactions of interest, the relevant
trajectory is the �, for which ��(t) ' 0:0 + 0:9t, with t in GeV2. For the relevant

experimental condition of t close to zero (corresponding to a small scattering angle �LAB
of h relative to the incident nucleon in a collider experiment), the cross section moment

therefore falls o� only as 1� z.

4.2 Fracture Functions

Within the general framework of the parton model, the appropriate description of

events in the target fragmentation region in semi-inclusive DIS is with fracture functions,

introduced in ref.[10]. In this section, we show briey how the fracture function description

gives a more rigorous foundation to the results given in the previous section in terms of

Reggeon structure functions.
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e 

X'

e 

p

γ 

i

h

X

Fig.9 : The contribution to semi-inclusive DIS from the current fragmentation region.

X

e 

e 

p

γ 

i

h

X'

Fig.10 : The contribution to semi-inclusive DIS from the target fragmentation region.

The two distinct contributions to semi-inclusive DIS from the current and target

fragmentation regions are shown in Figs. 9 and 10. The current fragmentation events

are described by parton fragmentation functions Dh
i (z;Q

2), where i denotes the parton,

while the target fragmentation events are described by fracture functions MhN
i (x; z;Q2)

representing the joint probability distribution for producing a parton with momentum

fraction x and a detected hadron h carrying energy fraction z from a nucleon N.

The di�erential cross section for polarised, semi-inclusive DIS has been given in

refs.[38,39], including NLO corrections. (The equivalent results for the unpolarised case

were calculated in ref.[40].) For our purposes here, we just quote the lowest order result:

x
d��

dxdydz
=

YP

2

4��2

s

X
i

e2i

�
1

1� x
�qi(x;Q

2)Dh
i

� z

1� x
;Q2

�
+ �MhN

i (x; z;Q2)

�

(4:4)

where we have expressed the result in terms of the variable z =
p02:q

p2:q
(see Appendix A). Here,

�qi(x;Q
2) and �MhN

i (x; z;Q2) are the polarisation asymmetries of the parton densities

and fracture functions respectively. Restricting to the target fragmentation region, we

simply have:

x
d��target

dxdydz
=

YP

2

4��2

s

X
i

e2i �M
hN
i (x; z;Q2) (4:5)
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In the kinematical region z � 1 where the dominant process can be modelled as

Reggeon exchange (Fig. 5), we can compare this expression to eq.(4.2). In this limit,

therefore, we can relate the Reggeon structure function to the fracture function as follows:

X
i

e2i

Z 1�z

0

dx �MhN
i (x; z;Q2) =

z�1

Z
dt �f(z; t)

Z 1

0

dxB gB1 (xB; t;Q
2) (4:6)

This is just the �rst moment of the more general relation

X
i

e2i �M
hN
i (x; z;Q2) =

z�1

Z
dt

1

1� z
�f(z; t) gB1

� x

1� z
; t;Q2

�
(4:7)

This relation expresses the Reggeon structure function gB1 in terms of its partonic

constituents, as described by the fracture function �MhN
i . We therefore see that the

fracture function measures the parton distribution of the exchanged object[10]. Indeed, this

interpretation is more general than the particular relation (4.7), since the fracture function

description is not dependent on a particular model (such as a single Regge trajectory) for

the exchanged object. For example, if the process is modelled by multi-Regge exchange,

the rhs of eq.(4.7) would comprise a sum over the Reggeons.

We can take this identi�cation a stage further by considering the extended fracture

functions MhN
i (x; z; t;Q2) introduced recently in ref.[11]. These are de�ned such that

MhN
i (x; z;Q2) =

Z O(Q2)

0

dt MhN
i (x; z; t;Q2) (4:8)

where t = �(p2� p02)
2. Just as in the integrals of the Reggeon emission factors, the upper

limit of the t integration is not precisely speci�ed, with the physical results for large Q2

being independent of the exact choice to the required order. These extended fracture func-

tions have a number of important features[11], notably a much simpler, homogeneous, RG

evolution equation. They also have an interesting interpretation in terms of spacelike cut

vertices, whose RG properties are known to be determined by the anomalous dimensions

of appropriate local operators.

These extended fracture functions allow us to remove the t integration in eq.(4.7), so

we can �nally write, to leading order,

X
i

e2i�M
hN
i (x; z; t;Q2) =

z�1
F (t)(1� z)�2�B(t) gB1

� x

1� z
; t;Q2

�
(4:9)

where we have substituted eq.(4.3) for �f(z; t). The NLO corrections to the rhs of eq.(4.9)

can be read o� from refs.[38,39]. In fact, this should be taken as the de�nition of the

`Reggeon structure function' in the single Regge exchange approximation.

Since B is a Reggeon, we cannot express the structure function gB1 in terms of Wilson

coe�cients and operator matrix elements as for single particle structure functions such

as g
p
1 . Nevertheless, the moments of gB1 should inherit a RG scaling dependendence on

the anomalous dimension of the appropriate OPE operator, e.g. A0
� for the avour singlet
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�rst moment. For consistency, therefore, we would require the extended fracture function

�MhN
i (x; z; t;Q2) to satisfy a homogeneous RG evolution equation. This is borne out by

the results of ref.[11], where it is shown that

@

@ lnQ2
�MhN

i (x; z; t;Q2) =
�s(Q

2)

2�

Z 1�z

x

dw

w
�Pij

� x
w
; �s(Q

2)
�
�MhN

j (w; z; t;Q2)

(4:10)

where �Pij is the usual DGLAP evolution kernel.

A satisfying picture therefore emerges, in which the results of section 4.1 are con�rmed

and placed in a broader theoretical framework for the description of semi-inclusive DIS.

4.3 Predictions

Of course, the ratio (3.6) is only obtained in the limit as z approaches 1, where the

reaction eN ! ehX is dominated by the process in which most of the target energy is

carried through into the �nal state h by a single quark (see Figs. 6-8).

At the opposite extreme, for z approaching 0, the detected hadron carries only a

small fraction of the target nucleon energy and has no special status compared to the

other inclusive hadrons X. In this limit, therefore, the ratio of cross section moments (4.2)

for ep! e��X and en! e�+X is simply the ratio of the structure function moments for

the proton and neutron, i.e. �
p
1=�

n
1 as given in section 3. The same result would hold for

the ratio of ep! eD�X and en! eD0X.

We therefore predict the following results for the ratios of the di�erential cross section

moments
R 1�z
0

dx x d��target

dxdydzdt
:

en! e�+(D0)X

ep! e��(D�)X
� 2s� 1

2s+ 2
(z ! 1)

� 2s+ 2� 6sF=D

2s� 1� 3(2s+ 1)F=D
(z ! 0) (4:11)

Between these limits, we can only interpolate. We therefore expect a plot of the ratios

of
R 1�z
0

dx x d��target

dxdydzdt
over the range 0 < z < 1 for en! e�+(D0)X and ep! e��(D�)X

to look like the sketch in Fig. 11, where the solid line shows the ratios predicted by (4.11)

with s � 0:66, contrasted with the ratios predicted by the OZI rule, i.e. s = 1 (dotted

line).
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0.30

0.20
0.25

z

0.10 0.10

-0.10
-0.13
-0.20
-0.28
-0.30

0 1

OZI

s ~ 0.66

Fig.11 : Sketch of the cross section moment ratios for en! e�+(D0)X and ep! e��(D�)X, interpolating

between the limits z ! 0 and z ! 1. The dotted line shows the OZI prediction and the solid line our

prediction based on the target-independent suppression mechanism (with s � 0:66).

The di�erence between the OZI (or valence quark model) expectations and these

predictions based on our target-independent interpretation of the `proton spin' data is

therefore quite dramatic, and should give a clear experimental signal.

Since our proposed experiment requires particle identi�cation in the target fragmenta-

tion region, it is di�cult to do at a polarised �xed-target experiment such as COMPASS[41]

at CERN, which is better suited to studying semi-inclusive processes in the current frag-

mentation region. A better option is a polarised ep collider, such as HERA[42]. Testing

our predictions requires comparision of proton and neutron data, which can be extracted

from experiments with polarised deuterons replacing the protons in the collider.
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Appendix A

A number of di�erent de�nitions of the variable `z' in semi-inclusive reactions are

used in the literature. Here, we describe the relation between our notation and that used

elsewhere, and present a number of useful kinematical results.

In refs.[38-40], the kinematics is described in the CM frame of the virtual photon and

target nucleon. Let Eh and EN be the energy of the detected hadron and nucleon in this

frame and � be the angle between the corresponding momenta. With the de�nition[40]

v = 1
2
(1 � cos �), we see that the target fragmentation region is characterised by v � 1,

while the current fragmentation region is v � 0. The hadron energy fraction variable used

by ref.[40] is then

z(G) =
Eh

EN

1

1� x
(A:1)

In contrast, the corresponding variable used in refs.[34,35] is

zh =
p2:p

0

2

p2:q
(A:2)

The relation is

zh = z(G)(1� v) (A:3)

Notice[40] that these two variables are approximately equal in the current fragmentation

region but di�er substantially in the target fragmentation region, where zh is small.

In terms of the variable t = �(p2 � p02)
2, which in the model of Fig. 5 is the invariant

spacelike momentum �k2 of the exchanged Reggeon, we have

zh =
xt

Q2
(A:4)

so that at �xed x;Q2 in the target fragmentation region, zh is simply a measure of t. The

angle � (assuming t is small compared to Q2) is given by

�2 ' 4z

x(1� x)

t

Q2
(A:5)

Our preferred variable z =
p02:q

p2:q
can be expressed in this frame as

z =
Eh

EN

� xt

Q2
= (1� x)z(G) + O

� t

Q2

�
(A:6)

so for relatively small t, z is simply given by the ratio of the detected hadron energy to the

target nucleon energy in the photon-nucleon CM frame. The required kinematical region,

where the semi-inclusive reaction is well approximated by the Reggeon exchange diagram

and our prediction for the cross section moment ratios holds, is therefore v � 1 and z

approaching 1.
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