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ABSTRACT

In this article we review a recent calculation of the two-loop o-model corrections to
the T-duality map in string theory. Using the effective action approach, and focusing
on backgrounds with a single Abelian isometry, we give the O(a/) modifications of
the lowest-order duality transformations. The torsion plays an important role in the
theory to O(c’), because of the Chern-Simons couplings to the gauge fields that arise
via dimensional reduction.
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1 Introduction

It is widely believed that General Relativity requires certain alterations in order to be
brought into accord with quantum mechanics. The theory does not yield a satisfactory
account of phenomena at very small scales even in the context of classical physics. As
an example, one can take the singularity theorems of Hawking and Penrose, which
show that a gravitating system contains singular regions, where the theory breaks
down. The strongest contender to date for the extension of General Relativity into
the quantum realm is string theory. It has brought about the belief that matter
consists of very small extended objects, strings and p-branes, the size of which is of
the order of Planck length. The finite size of the elementary building blocks in string
theory could lead to dramatic modifications of small scale physics, resolving some of
the problems faced by General Relativity.

In the last few years, we have witnessed a rapid and profound development of
string theory, leading to the establishment of an interconnection of different string
constructions. The principal tool and guide in the course of this unification of string
theory was the concept of duality. In technical terms, duality arises because of the
considerably richer symmetries of string theory than in ordinary General Relativity.
In the string spectrum, in addition to the graviton, there appear other degrees of
freedom, such as the scalar dilaton and the antisymmetric torsion tensor (or the
Kalb-Ramond field), with precisely determined couplings. String duality symmetries
arise from the invariance of the theory under the exchange of the degrees of freedom in
the string spectrum. Dualities provide the natural maps between seemingly different
string theories, and not only different solutions in the phase space of a single theory
[1]). This has led to the uniqueness proof of string theory, whereby all consistent
string constructions have been recognized as the facets of a single fundamental theory,
labeled the M-theory.

A duality symmetry we have studied in [2] was the so-called T-duality, or string
scale-factor duality. At the level of the world-sheet o-model, it has been identified by
Buscher [3] as a simple Hodge duality of a cyclic target coordinate. This duality has
been also investigated, and generalized, in [4]-[10]. Most of these investigations have
been conducted at the one-loop level of the effective action approach to string theory,
where the action is truncated down to the terms of the second order in derivatives.
However, it has been argued, and in some special situations proven, that this sym-
metry is exact order-by-order in perturbation theory [5, 9, 7, 11]. It has also been
shown that the lowest-order form of the on-shell T-duality map remains unaffected by
higher order o/ corrections when viewed as a relation between specific conformal field
theories (CFT’s) [12], some dual solutions in two dimensions [13] and some special
supersymmetric solutions [14]. In these cases, the proof relied on special properties
of the solutions studied - there either existed an exact, nonperturbative CFT formu-



lation, or the solutions were highly symmetric, which protected them from acquiring
quantum corrections. A picture which has emerged from these examples is that the
T-duality map can be expanded as a perturbative series in the inverse string tension

.

Since dualities play such an important role in the new formulation of string theory,
the question of their validity beyond the first loop! is very important one. A step
towards the inclusion of higher-order corrections has been taken in [15], where T-
duality map has been determined to two loops on backgrounds with all but one cyclic
coordinates. Later, in [2] we have generalized this approach to include the gauge
fields which couple to the winding and momentum modes of the string, and were not
considered in [15]. The situations turned out to be quite a bit more subtle than in
the simpler case, because of the highly nontrivial role of the torsion field.

2 0"

Here we review the one-loop results, in order to show the explicit lowest-order T-
duality. The lowest-order term in the effective action of any string theory truncated
to only the model-independent zero mass modes is (throughout this paper we use the
string frame with e~2? out front, since the symmetry is most simply realized there)

_ o 1 _

rO = [aitisyg e {R(g) LAV - EIF} . (2.1)
Our convention for the signature of the metric is (—, +, ..., +), the Riemann curvature
is R, = 0,I'",; — ..., and the torsion field strength is the antisymmetric derivative

of the torsion potential: H wp =V MB,,,)—{—cyclicpermutations. The overbar denotes the
quantities in the original, d + 1-dimensional, frame, before we carry out the Kaluza-
Klein reduction. Note that the definition of the torsion field strength H encodes the
torsion potential gauge invariance: if we shift the B-field according to B — B + dA,
where A is an arbitrary one-form, the theory remains unchanged. As a consequence,
the Bianchi identity for H takes a very simple form: dH = 0.

In the presence of a single Killing isometry, we can carry out the Kaluza-Klein
dimensional reduction down to d dimensions. The most natural way to carry out
the reduction is to ensure that gauge symmetries are manifest at every step of the
calculation. The reduced action will feature two additional gauge fields coupled to
the graviton, axion and dilaton, and an additional scalar field, which is the breathing
mode of the cyclic coordinate. The reduction ansétz for the metric and dilaton, g,

'We consider here the loop expansion of the world-sheet o-model in the field-theoretic sense,
where o/ is the loop counting variable. From the string theory point of view, these corrections are
classical, since o’ measures the effects of the extended structure of strings.



and ¢ respectively, is
-1
ds® = g, datdz” + exp(20)(dy + V,dz")? ¢=0¢— 27 (2.2)

All the lowering and raising of the indices in the rest of this work will be done with
respect to the reduced metric g,,. The vector field V, is the standard Kaluza-Klein
gauge field, which couples to the momentum modes of the theory. The reduction of
the axion field has to be done with more care because of the anomaly which appears
in it. In the naive decomposition of the two-form B = (1/2) B, dz* Adx” +W,dx" Ady
(here W, = B, is the other gauge field, arising from the “off-diagonal” components of
the torsion, and which couples to the winding modes), the space-time components B,W
contribute to the reduced torsion, but they are not invariant under the translations
along y. When y — ¢ =y — w(z) and V,, — V; + 9w (s.t. the cyclic einbein F =
dy+V,dz" is gauge-invariant), we find B, — B, = B, +W,0,w—W,0,w. One could
try BW = BW—(WMVV—WVVH), which in fact does not change by the local translations
along y, but when W, — W) = W, + J,,, BW — BI’W = BW — (O V) — O V,).
So the two gauge symmetries of the reduced theory are not decoupled, because the
reduced torsion potential cannot be simultaneously invariant under both of them.
The three-form field strength however must be gauge invariant, and so following [10],
we can define the reduced torsion by B,, = B,, — (1/2)(W,V, — W, V,). Then, the
gauge-invariant field strength can be written as H = dB — (1/2)WdV — (1/2)VdW,
using the form notation. This expression is manifestly T-duality invariant to the
lowest order, and hence is the correct stepping stone towards extending duality to
two loops and beyond. As we will see below, this field strength actually appears
in the dimensionally reduced action, and hence is indeed the correct choice for the
reduced dynamical variable.

With the ansétz (2.2), we can now carry out the reduction of (2.1). Here we will

skip the details, and just give the reduced action; it is (after dividing Fg) by the
y-volume [ dy):

1 1 1
Y — /dd:c ge {R +4(V¢)* — (Vo) — ZG%Z - 16720T - EH2} - (23)

with B and H given by

_ 1
and ) )
H\=V, B, — §WWV>\ — §VWW,\ + cyclic permutations (2.5)

The T-duality map is (apart from trivial rescalings) the transformation o < —o,
V, <+ W,, and it is obvious that the action (2.3) is invariant under it. The equations
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of motion which are obtained from varying the action (2.3) (and are simply related to
the string S-functions, in this order) are covariant under T-duality: the -functions of
the dilaton, reduced metric and torsion are symmetric, the G-function of the modulus
is antisymmetric, and the g-functions of the gauge fields get interchanged, as expected
from the world-sheet o-model realization of T-duality as a map which exchanges the
momentum and winding modes (the effect of T-duality on the o-model § functions
has also been discussed in [16]).

3 O

We are now ready to discuss the two-loop corrections. The appearance of the O(a/)
corrections in the effective action can be changed by finite renormalizations of the
string world-sheet couplings [17, 18]. In a sense, this blurs the notion of string theory
quantities as functions of o’ - instead of a single set of solutions, one ends up with
equivalence classes, specified by field redefinitions. In order to do any calculations,
one has to adopt a concrete scheme, thus fixing the form of the counterterms in the
effective action and the functional dependence on o/. A scheme may be specified by
simultaneously requiring manifest unitarity in perturbation theory and linear realiza-
tion of duality [15] (for the definition of this scheme, see also [19, 20]). For this action,
the relationship between the J-functions and the functional derivatives turns out to
be local, to O(a’). Hence the covariance of the -functions and the invariance of the
action in this scheme, to order O(«’), are equivalent. Here we will review the explicit
form of the corrections. The effective action to two loops is

r = / A gy /Ge % {R(g) +4(Ve)? — %Eﬂ
_ _ 1N o o
IO [—RgB 416 (R“” _ 5gWR) V0V, — 16V26(V)? + 16(Ve)*
Vo N T i,
3 (RWAPH“”O‘H)"’Q — R+ gRH2) 9 (v“v"quﬁy - §V2¢H2)

2_2 7 1\2 1 - [yv [TPON IT po 1_2 [T2uy 1 [72 2]}
SHH (VO — S HunHY po BV H + HH |- (3:6)

where we introduce a useful shorthand notation:
ﬁiu = H,uaﬁ]_{yaﬁ, and ]_{2 = HuaﬁHuaﬁ (37)

The parameter )y allows us to move between different string theories: Ay = —1/8 for
heterotic, —1/4 for bosonic, and 0 for superstring. In this sense, our calculations are
completely general (although, they are of course trivial in the case of the superstring
- where the O(a) terms vanish identically and hence the lowest-order T-duality does
not acquire any corrections; curiously, in this context T-duality is not a map between
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the solutions of a theory but instead a map between different theories). The R — H
terms also include the Lorentz-Chern-Simons terms which emerge in the heterotic
theory to two loops. The curvature squared terms are arranged in the Gauss-Bonnet
combination, Rgp = R?,,,—4R2,+R?. While the dimensional reduction of this action
may appear difficult at first, it is manageable when carried out on the tangent space.
The details of the dimensional reduction can be found in [2]. The contributions to
the reduced action contain terms which are invariant under the one-loop level duality
transformations o <+ —o, V,, <+ W, and also terms which are not symmetric under this
map. It is these latter terms which we are interested in here. They are the ones forcing
us to correct the one-loop duality map with O(a/) contributions. In order to separate
the two-loop contributions into one-loop duality-invariant and duality-noninvariant
parts, we can apply the transformations, and work out I';,, = (1/2)(I'y + 7T3) and
Chine = (1/2)(T'y — TTy). Using this and the results of [2], the duality-violating sector
of the reduced O(ca/) action is

ninv

r? = /) / d'z\/Ge **{ =4V ,,0V*(Vo)? = V,oV* [e 27T + ¢ 7

+% 7412 — ' 7?] + iHaﬁUHW“ (Weswme 2 — yesyme]  (3.8)

1
+ [VVAWL = VWAV Hysg + 5 VAW = WAV V3
+2V, 0V WA HM + 2V, 0 W, VI H A

Given the noninvariant terms (3.8) and the one-loop level duality o <> —o,V, <>
W,, the natural way to reconcile them is to interpret (3.8) as the O(a’) terms in
the expansion of the exact T-duality map, which presumably exists in a complete
quantum theory, which admits various string theories as its limits. Hence, one ought
to be able to incorporate these terms by redefining the duality-invariant one-loop
action - in effect shifting the one-loop level fields by amounts proportional to ', while
preserving any other symmetries the one-loop level theory has. With this in mind,
we only need to ensure that the noninvariant terms (3.8) be absorbed to O(a/). Any
deviation away from the perturbative form of T-duality, at any higher loop order,
can be safely ignored from the point of view of the effective action, in this order.
Although this may appear limited to the two loop level, it conforms with the idea
that T-duality is perturbatively exact. At higher orders, we expect that the terms
violating the two-loop form of duality, that will emerge from similar calculations, can
be absorbed away as further corrections of the O(a’?) and O(c’) sectors of the action.
In fact, we expect that such analytical cancellations will go on ad infinitum, yielding
a Taylor-series expression for the complete T-duality map.

To find the corrections of the T-duality map, we define the shifts of the one-loop
degrees of freedom as follows:

o= 6+ddo V, = V,+d'V, W, —= W,+a'6W, Hyus — Hus+a/0H,,, (3.9)
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Starting from the one-loop action (2.3), the shifts induce the O(a’) correction

20
0T = o / dz/ge® | ~2V,0V"(60) %[501/3” L VYL
—20 1
+5 160 W2, — WSW,,] — ZH" 5H,,\} (3.10)

In this formula we have replaced the shifted degrees of freedom (denoted by a hat
in (3.9)) by the original one-loop ones, in the spirit of the active interpretation of
symmetries. As we see from the above, the torsion field needs to be corrected too,
although at the lowest order it is a singlet under 7T-duality. It may look puzzling
why it is necessary to correct a field which is only a passive spectator in the arena
of T-duality, in order to restore the symmetry. Here we must remember that the
reduced torsion couples to the gauge fields via the mixed Chern-Simons term. Since
the vectors transform nontrivially under duality, their corrections must play a key role
in the restoration of duality at the two-loop level. Their coupling to the torsion via the
Chern-Simons terms however also induces the corrections of the torsion field. Thus
the torsion assumes the role of a custodian field. Its corrections arise because of gauge
symmetries and are needed to restore duality. The form of the corrections however is
determined by the need to preserve the anomaly terms and gauge invariance. These
two conditions require that [2]

0By, = CW/\[MV)\V} + WLV + 0V Wy (3.11)

and
O0Hn = 3cV (W, V) — 3V Wiy — 3W oV (3.12)

where ¢ is a constant to be determined by duality restoration. Note that up to
this constant, the torsion correction is completely determined by the gauge sector of
the theory. Substituting (3.12) into (3.10), and requiring that (3.8) and (3.10) cancel
each other (i.e. that the O(«’) corrections in (3.8) are absorbed by (3.10)), determines
the functional form of the shifts. We have found the unique explicit form of these
corrections

So = —2X(Vo)? — %G%Z - %e‘QUT
6V = 2X\V,,Vio — %Haﬁvwﬁve%
Wo = 2X\W,,VFio + %Haﬁwvﬁve% (3.13)
with the constant ¢ = —2)¢ [2]. The resulting two terms in the action, the renormal-

ized one-loop part and the invariant two-loop part (which we did not give here for
brevity’s sake, but which can be found in [2]), then are manifestly invariant under the
one-loop level form of the T-duality map o <+ —o, V,, <+ W,,, acting on the corrected
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fields. If we return to the original one-loop level degrees of freedom (unhatted ones in
the equation (3.9)), and interpret the O(«’) shifts as the two-loop corrections to the
T-duality map, we can rewrite the new two-loop T-duality map as

/

A
o — —o—4a'\(Vo)? — %[620Z + e 2T
V., — W, —4a'X\ W, V0 — &' A\gH,,\V"e*
W, — V,—4d'\V,u V0 + &/ \gHuyW"e (3.14)
HHV)\ — H/W)\ — 1204,)\0V[M(W1,’0V)\]p) — 120/)\01/[WW>\},)V”U

—12a/ N W Vi, VP20 — 30/ X (e VP Vi — e > WP W) Hyjpo

The full reduced action, containing all one- and two-loop contributions is invariant
under (3.14) to order ¢/, as one can check by directly applying these transformation
rules. This is our final result.

4 Conclusion

In summary, we have presented here the O(«’) two-loop corrections to the lowest-
order T-duality map in string theory. We have started with the effective field theory
of the model-independent zero mass sector, which included two-loop corrections in the
manifestly unitary form. Focusing on the string backgrounds with a single isometry,
we have shown that the theory is invariant under the two-loop corrected T-duality
map. We have arrived at the form of the corrections by an iterative reformulation
of the o/ expansion: those O(a’) terms which violate the one-loop form of duality
induce O(a’) corrections in the original duality map. The terms linear in o’ should be
thought of as the first subleading terms of the Taylor expansion of the duality map in
o’. One unusual feature of the scheme we have used is that the BPS solutions of the
lowest-order action do not retain their form when the two-loop terms are included.
As a result, when our duality corrections are applied to BPS states, they contain
nonvanishing terms to O(«’). While this may sound odd, given the current lore [14],
one should remember that while for BPS states there exists a scheme in which the
classical solutions are exact to all orders in the o’ expansion, this of course need not
be true in any scheme. Hence, those terms among our two-loop corrections which do
not vanish on BPS backgrounds should be removed by string field redefinitions. We
will not delve on the details here. Suffice it to say that, in some sense, these terms
behave like gauge degrees of freedom.

Another interesting feature of our calculation is that the torsion field strength
plays a crucial role in restoring two-loop duality. This should not come as a complete
surprise. As has been pointed out by Maharana and Schwarz, who discovered the
Chern-Simons terms in the definition of the torsion field strength in the reduced
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theory [10], the anomaly was essential in rendering the one-loop theory 7-duality
invariant. This role of the anomaly seems to persist to two loops, and raises an
interesting possibility that the concepts of the anomaly and T-duality may somehow
be related in the full quantum theory beyond the effective action limit (M-theory).
Checking if such a relationship exists demands a nonperturbative approach, because
of the complexity of higher-loop counterterms.
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