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1 Non-perturbative string dualities: a foreword

In these lectures I will give a brief guide to some recent developments towards understand-

ing the non-perturbative aspects of string theories. There was a parallel developement in

the context of supersymmetric field theories, [1, 2]. We will not discuss here the field the-

ory case. The interested reader may consult several comprehensive review articles [3, 4].

We would point out however that the field theory non-perturbative dynamics is natu-

rally understood in the context of string theory and there was important cross-fertilization

between the two disciplines.

In ten dimensions there are five distinct consistent supersymmetric string theories, type-

IIA,B, heterotic (O(32),E8×E8) and the unoriented O(32) type I theory that contains also

open strings. The two type-II theories have N=2 supersymmetry while the others only

N=1. An important question we would like to address is: Are these strings theories

different or just different aspects of the same theory?

In fact, by compactifying one dimension on a circle we can show that we can connect the

two heterotic theories as well as the two type-II theories. This is schematically represented

with the broken arrows in Fig. 1.

We will first show how the heterotic O(32) and E8×E8 theories are connected in D = 9.

Upon compactification on a circle of radius R we can also turn on 16 Wilson lines. The

partition function of the O(32) heterotic theory then can be written as

Z
O(32)
D=9 =

1

(
√
τ2ηη̄)7

Γ1,17(R, Y
I)

ηη̄17

1

2

1
∑

a,b=0

(−1)a+b+ab ϑ
4[ab ]

η4
, (1.1)

where the lattice sum Γp,p+16 is

Zp,p+16(G,B, Y ) =

√
det G

τ
p/2
2 ηpη̄p+16

∑

mα,nα∈Z

exp
[

− π

τ2
(G+B)αβ(mα + τnα)(mβ + τ̄nβ)

]

×

(1.2)

×1

2

1
∑

a,b=0

16
∏

I=1

eiπ(mαY I
α Y I

β
nβ−b nαY I

α ) ϑ̄
[

a−2nαY I
α

b−2mβY I
β

]

We will focus on some special values for the Wilson lines Y I , namely we will take eight

among them to be zero and the other eight to be 1/2. Then, the lattice sum (in Lagrangian

representation) can be rewritten as

Γ1,17(R) = R
∑

m,n∈Z

exp

[

−πR
2

τ2
|m+ τn|2

]

1

2

∑

a,b

ϑ̄8[ab ] ϑ̄
8[a+n

b+m]

=
1

2

1
∑

h,g=0

Γ1,1(2R)[hg ]
1

2

∑

a,b

ϑ̄8[ab ] ϑ̄
8[a+h

b+g ] , (1.3)
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Figure 1: The Web of duality symmetries between string theories. Broken lines correspond

to perturbative duality connections. Type-IIB in ten dimensions is supposed to be self-dual

under SL(2,Z).

where Γ1,1[
h
g ] are the Z2 translation blocks of the circle partition function

Γ1,1(R)[hg ] = R
∑

m,n∈Z
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 (1.4)

=
1

R

∑

m,n∈Z

(−1)mh+ng exp
[

− π

τ2R2
|m+ τn|2

]

. (1.5)

In the R → ∞ limit (1.4) implies that only (h, g) = (0, 0) contributes in the sum in (1.3)

and we end up with the O(32) heterotic string in ten dimensions. In the R → 0 limit the

theory decompactifies again, but from (1.5) we deduce that all (h, g) sectors contribute

equally in the limit. The sum on (a, b) and (h, g) factorizes and we end up with the E8×
E8 theory in ten dimensions. Both theories are different limiting points (boundaries) in

the moduli space of toroidally compactified heterotic strings.

In the type-II case the situation is similar. We compactify on a circle. Under an

R → 1/R duality

∂X9 → ∂X9 , ψ9 → ψ9 , ∂̄X9 → −∂̄X9 , ψ̄9 → −ψ̄9 . (1.6)

Due to the change of sign of ψ̄9 the projection in the R̄ sector is reversed. Consequently

the duality maps type-IIA to type-IIB and vice versa. We can also phrase this in the

following manner: The R → ∞ limit of the toroidally compactified type-IIA string gives

3



the type-IIA theory in ten dimensions. The R → 0 limit gives the type-IIB theory in ten

dimensions.

Apart from these perturbative connections, today we have evidence that all supersym-

metric string theories are connected. Since they look very different in perturbation theory,

the connections must necessarily involve strong coupling.

First, there is evidence that the type-IIB theory has an SL(2,Z) symmetry which,

among other things, inverts the coupling constant [5, 6]. Consequently, the strong coupling

limit of type-IIB is given also by the weakly-coupled type-IIB theory. Upon compactifi-

cation, this symmetry combines with the perturbative T -duality symmetries to produce a

large discrete duality group known as the U -duality group, which is the discretization of

the non-compact continuous symmetries of the maximal effective supergravity theory. In

table 3 below, the U -duality groups are given for various dimensions. They were conjecture

to be exact symmetries in [6]. A similar remark applies to non-trivial compactifications.

Dimension SUGRA symmetry T-duality U-duality

10A SO(1,1,R)/Z2 1 1

10B SL(2,R) 1 SL(2,Z)

9 SL(2,R)×O(1,1,R) Z2 SL(2,Z)×Z2

8 SL(3,R)×SL(2,R) O(2,2,Z) SL(3,Z)×SL(2,Z)

7 SL(5,R) O(3,3,Z) SL(5,Z)

6 O(5,5,R) O(4,4,Z) O(5,5,Z)

5 E6(6) O(5,5,Z) E6(6)(Z)

4 E7(7) O(6,6,Z) E7(7)(Z)

3 E8(8) O(7,7,Z) E8(8)(Z)

Table 3: Duality symmetries for the compactified type-II string.

Also, it can be argued that the strong coupling limit of type-IIA theory is described

by an eleven-dimensional theory named “M-theory” [7]. Its low-energy limit is eleven-

dimensional supergravity. Compactification of M-theory on circle with very small radius

gives the perturbative type-IIA theory.

If instead we compactify M-theory on the Z2 orbifold of the circle T 1/Z2 then we obtain

the heterotic E8×E8 theory, [8]. When the circle is large the heterotic theory is strongly

coupled while for small radius it is weakly coupled.

Finally, the strong coupling limit of the O(32) heterotic string theory is the type I

O(32) theory and vice versa, [9].

There is another non-trivial non-perturbative connection in six dimensions: The strong

4
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Figure 2: A unique theory and its various limits.

coupling limit of the six-dimensional toroidally compactified heterotic string is given by

the type-IIA theory compactified on K3 and vice versa [6].

Thus, we are led to suspect that there is an underlying “universal” theory whose various

limits in its “moduli” space produce the weakly coupled ten-dimensional supersymmetric

string theories as depicted in Fig. 2 (borrowed from [10]). The correct description of this

theory is unknown although there is a proposal that it might have a matrix description

[11], inspired from D-branes [12], which reproduces the perturbative IIA string in ten

dimensions [13].

We will provide with a few more explanations and arguments supporting the non-

perturbative connections mentioned above. But before we get there, we will need some

“non-perturbative tools”, namely the notion of BPS states and p-branes, which I will

briefly describe.

2 Antisymmetric tensors and p-branes .

The various string theories have massless antisymmetric tensors in their spectrum. We will

use the language of forms and we will represent a rank-p antisymmetric tensor Aµ1µ2...µp

by the associated p-form

Ap ≡ Aµ1µ2...µp
dxµ1 ∧ . . . ∧ dxµp . (2.1)
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Such p-forms transform under generalized gauge transformations:

Ap → Ap + d Λp−1, , (2.2)

where d is the exterior derivative (d2 = 0) and Λp−1 is a (p− 1)-form which serves as the

parameter of gauge transformations. The familiar case of (abelian) gauge fields corresponds

to p = 1. The gauge invariant field strength is

Fp+1 = d Ap . (2.3)

satisfying the free Maxwell equations

d∗Fp+1 = 0 (2.4)

The natural objects, charged under a (p+ 1)-form Ap+1 are p-branes. A p-brane is an

extended object with p spatial dimensions. Point particles correspond to p = 0, strings to

p = 1. The natural coupling of Ap+1 and a p-brane is given by

exp
[

iQp

∫

world−volume
Ap+1

]

= exp
[

iQp

∫

Aµ0...µp
dxµ0 ∧ . . . ∧ dxµp

]

, (2.5)

which generalizes the Wilson line coupling in the case of electromagnetism. The world-

volume of p-brane is p+1-dimensional. Note also that this is precisely the σ-model coupling

of the usual string to the NS antisymmetric tensor. The charge Qp is the usual electric

charge for p = 0 and the string tension for p = 1. For the p-branes we will be considering,

the (electric) charges will be related to their tensions (mass per unit volume).

In analogy with electromagnetism, we can also introduce magnetic charges. First, we

must define the analog of the magnetic field: the magnetic (dual) form. This is done by

first dualizing the field strength and then rewriting it as the exterior derivative of another

form2 :

dÃD−p−3 = F̃D−p−2 =∗ Fp+2 =∗ dAp+1 , (2.6)

where D is the the dimension of spacetime. Thus, the dual (magnetic) form couples to

(D − p − 4)-branes that play the role of magnetic monopoles with “magnetic charges”

Q̃D−p−4.

There is a generalization of the Dirac quantization condition to general p-form charges

discovered by Nepomechie and Teitelboim, [14]. The argument parallels that of Dirac.

Consider an electric p-brane with charge Qp and a magnetic (D−p−4)-brane with charge

Q̃D−p−4. Normalize the forms so that the kinetic term is 1
2

∫ ∗ Fp+2Fp+2. Integrating the

field strength Fp+2 on a (D − p − 2)-sphere surrounding the p-brane we obtain the total

flux Φ = Qp. We can also write

Φ =
∫

SD−p−2

∗Fp+2 =
∫

SD−p−3

ÃD−p−3 , (2.7)

2This is guaranteed by (2.4).
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where we have used (2.6) and we have integrated around the “Dirac string”. When the

magnetic brane circles the Dirac string it picks up a phase eiΦQ̃D−p−4 as can be seen from

(2.5). Unobservability of the string implies the Dirac-Nepomechie-Teitelboim quantization

condition

ΦQ̃D−p−4 = QpQ̃D−p−4 = 2πN , n ∈ Z . (2.8)

3 BPS states and bounds

The notion of BPS states is of capital importance in discussions of non-perturbative duality

symmetries. Massive BPS states appear in theories with extended supersymmetry. It just

happens that sometimes supersymmetry representations are shorter than usual. This is

due to some of the supersymmetry operators being “null” so that they cannot create new

states. The vanishing of some supercharges depends on the relation between the mass of a

multiplet and some central charges appearing in the supersymmetry algebra. These central

charges depend on electric and magnetic charges of the theory as well as expectation values

of scalars (moduli). In a sector with given charges, the BPS states are the lowest lying

states and they saturate the so-called BPS bound which for point-like states is of the form

M ≥ maximal eigenvalue of Z , (3.1)

where Z is the central charge matrix. This is shown in appendix B where we discuss in

detail the representations of extended supersymmetry in four dimensions.

BPS states behave in very special way.

• At generic points in moduli space they are absolutely stable. The reason is the

dependence of their mass on conserved charges. Charge and energy conservation prohibits

their decay. Consider as an example, the BPS mass formula

M2
m,n =

|m+ nτ |2
τ2

, (3.2)

where m,n are integer valued conserved charges, and τ is a complex modulus. This BPS

formula is relevant for N=4, SU(2) gauge theory, in a subspace of its moduli space. Con-

sider a BPS state with charges (m0, n0), at rest, decaying into N states with charges

(mi, ni) and masses Mi, i = 1, 2, · · · , N . Charge conservation implies, that m0 =
∑N

i=1mi,

n0 =
∑N

i=1 ni. The four-momenta of the particles produced are (
√

M2
i + ~p2

i , ~pi) with
∑N

i=1 ~pi = ~0. Conservation of energy implies

Mm0,n0
=

N
∑

i=1

√

M2
i + ~p2

i ≥
N
∑

i=1

Mi . (3.3)

Also in a given charge sector (m,n) the BPS bound implies that any mass M ≥Mm,n with

Mm,n given in (3.2). Thus, from (3.3) we obtain

Mm0,n0
≥

N
∑

i=1

Mmi,ni
, (3.4)

7



and the equality will hold if all particles are BPS and are produced at rest (~pi = ~0).

Consider now the two-dimensional vectors vi = mi + τni on the complex τ -plane, with

length ||vi||2 = |mi+niτ |2. They satisfy, v0 =
∑N

i=1 vi. Repeated application of the triangle

inequality implies

||v0|| ≤
N
∑

i=1

||vi|| . (3.5)

This is incompatible with energy conservation (3.4) unless all vectors vi are parallel. This

will happen only if τ is real. For energy conservation it should also be a rational number.

On the other hand, due to the SL(2,Z) invariance of (3.2), the inequivalent choices for τ

are in the SL(2,Z) fundamental domain and τ is never real there. In fact, real rational

values of τ are mapped by SL(2,Z) to τ2 = ∞, and since τ2 is the inverse of the coupling

constant, this corresponds to the degenerate case of zero coupling. Consequently, for τ2

finite, in the fundamental domain, the BPS states of this theory are absolutely stable.

This is always true in theories with more than 8 conserved supercharges (corresponding

to N> 2 supersymmetry in four dimensions). In cases, corresponding to theories with 8

supercharges, there are regions in the moduli space, where BPS states, stable at weak

coupling, can decay at strong coupling. However, there is always a large region around

weak coupling, where they are stable.

• The mass-formula of BPS states is supposed to be exact if one uses renormalized

values for the charges and moduli. The argument is that quantum corrections would spoil

the relation of mass and charges and if we assume unbroken SUSY at the quantum level

that would give incompatibilities with the dimension of their representations. Of course

this argument seems to have a loophole: a specific set of BPS multiplets can combine into

a long one. In that case, the argument above does not prohibit corrections. Thus, we

have to count BPS states modulo long supermultiplets. This is precisely what helicity

supertrace formulae do for us. They are reviewed in detail in appendix B. Even in the

case of N=1 supersymmetry there is an analog of BPS states, namely the massless states.

There are several amplitudes that in perturbation theory obtain contributions from

BPS states only. In the case of 8 conserved supercharges (N=2 supersymmetry in four

dimensions), all two-derivative terms as well as R2 terms are of that kind. In the the case

of 16 conserved supercharges (N=4 supersymmetry in four dimensions) except the terms

above, also the four derivative terms as well as R4, R2F 2 terms are of a similar kind. The

normalization argument of the BPS mass formula makes another important assumption:

That as the coupling grows, there is no phase transition during which supersymmetry is

(partially) broken.

The BPS states described above can be realized as point-like soliton solutions of the

relevant effective supergravity theory. The BPS condition is the statement that the soliton

solution leaves part of the supersymmetry unbroken. The unbroken generators do not

change the solution, while the broken ones generate the supermultiplet of the soliton

8



which is thus shorter than the generic supermultiplet.

So far we discussed point-like BPS states. There are however BPS versions for extended

objects (BPS p-branes). In the presence of extended objects the supersymmetry algebra

can acquire central charges that are not Lorentz scalars (as we assumed in Appendix B).

Their general form can be obtained from group theory in which case we deduce that they

must be antisymmetric tensors, Zµ1...µp
. Such central charges have values proportional to

the charges Qp of p-branes. Then, the BPS condition would relate these charges with

the energy densities (p-brane tensions) µp of the relevant p-branes. Such p-branes can

be viewed as extended soliton solutions of the effective theory. The BPS condition is the

statement that the soliton solution leaves some of the supersymmetries unbroken.

4 Massless RR states

We will now consider in more detail the massless R-R states of type-IIA,B string theory,

since they have unusual properties and play a central role in non-perturbative duality

symmetries. The reader is referred to [15] for further reading.

I will first start by describing in detail the Γ-matrix conventions in flat ten-dimensional

Minkowski space [16].

The 32 × 32-dimensional Γ-matrices satisfy

{Γµ,Γν} = −2ηµν , ηµν = (− + + . . .+) . (4.1)

The Γ-matrix indices are raised and lowered with the flat Minkowski metric ηµν .

Γµ = ηµνΓ
ν Γµ = ηµνΓν . (4.2)

We will be in the Majorana representation where the Γ-matrices are pure imaginary, Γ0 is

antisymmetric, the rest symmetric. Also

Γ0Γ†
µΓ

0 = Γµ , Γ0ΓµΓ0 = −ΓT
µ . (4.3)

Majorana spinors Sα are real: S∗
α = Sα.

Γ11 = Γ0 . . .Γ9 , (Γ11)
2 = 1 , {Γ11,Γ

µ} = 0 . (4.4)

Γ11 is symmetric and real. This is the reason that in ten dimensions the Weyl condition

Γ11S = ±S is compatible with the Majorana condition.3 We use the convention that

for the Levi-Civita tensor, ǫ01...9 = 1. We will define the antisymmetrized products of

Γ-matrices

Γµ1...µk =
1

k!
Γ[µ1 . . .Γµk] =

1

k!
(Γµ1 . . .Γµk ± permutations) . (4.5)

3In a space with signature (p,q) the Majorana and Weyl conditions are compatible provided |p − q| is

a multiple of eight.
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We can derive by straightforward computation the following identities among Γ-matrices:

Γ11Γ
µ1...µk =

(−1)[ k
2
]

(10 − k)!
ǫµ1...µ10Γµk+1...µ10

, (4.6)

Γµ1...µkΓ11 =
(−1)[ k+1

2
]

(10 − k)!
ǫµ1...µ10Γµk+1...µ10

, (4.7)

with [x] denoting the integer part of x.

ΓµΓν1...νk = Γµν1...νk − 1

(k − 1)!
ηµ[ν1Γν2...νk] , (4.8)

Γν1...νkΓµ = Γν1...νkµ − 1

(k − 1)!
ηµ[νkΓν1...νk−1] , (4.9)

with square brackets denoting the alternating sum over all permutations of the enclosed

indices. The invariant Lorentz scalar product of two spinors χ, φ is χ∗
α(Γ0)αβφβ.

Now consider the ground-states of the Ramond-Ramond sector. On the left, we have

a Majorana spinor Sα satisfying Γ11S = S by convention. On the right we have another

Majorana spinor S̃α satisfying Γ11S̃ = ξS̃ where ξ = 1 for the type-IIB string and ξ = −1

for the type-IIA string. The total ground-state is the product of the two. To represent it,

it is convenient to define the following bispinor field

Fαβ = Sα(iΓ0)βγS̃γ . (4.10)

With this definition, Fαβ is real and the trace Fαβδ
αβ is Lorentz invariant. The chirality

conditions on the spinor translate into

Γ11F = F , FΓ11 = −ξF , (4.11)

where we have used that Γ11 is symmetric and anticommutes with Γ0.

We can now expand the bispinor F into the complete set of antisymmetrized Γ’s

Fαβ =
10
∑

k=0

ik

k!
Fµ1...µk

(Γµ1...µk)αβ , (4.12)

where the k = 0 term is proportional to the unit matrix and the tensors Fµ1...µk
are real.

We can now translate the first of the chirality conditions in (4.11) using (4.7) to obtain

the following equation:

F µ1...µk =
(−1)[

k+1

2 ]

(10 − k)!
ǫµ1...µ10Fµk+1...µ10

. (4.13)

The second chirality condition implies

F µ1...µk = ξ
(−1)[

k
2 ]+1

(10 − k)!
ǫµ1...µ10Fµk+1...µ10

. (4.14)
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Compatibility between (4.13) and (4.14) implies that type-IIB theory (ξ = 1) contains

tensors of odd rank (the independent ones being k=1,3 and k=5 satisfying a self-duality

condition) and type-IIA theory (ξ = −1) contains tensors of even rank (the independent

ones having k=0,2,4). The number of independent tensor components adds up in both

cases to 16 × 16 = 256.

The mass-shell conditions G0 = Ḡ0 = 0 imply that the bispinor field ( 4.1) obeys two

massless Dirac equations coming from G0 and Ḡ0:

(pµΓ
µ)F = F (pµΓ

µ) = 0 . (4.15)

To convert these to equations for the tensors we use the gamma identities (4.8,4.9). After

some straightforward algebra one finds

p[µF ν1...νk] = pµF
µν2...νk = 0 , (4.16)

which are the Bianchi identity and free massless equation for an antisymmetric tensor field

strength. We may write these in economic form as

dF = d ∗F = 0 . (4.17)

Solving the Bianchi identity locally allows us to express the k-index field strength as the

exterior derivative of a (k − 1)-form potential

Fµ1...µk
=

1

(k − 1)!
∂[µ1

Cµ2...µk] , (4.18)

or in short-hand notation

F(k) = dC(k−1) . (4.19)

Consequently, the type-IIA theory has a vector (Cµ) and a three-index tensor potential

(Cµνρ) , in addition to a constant non-propagating zero-form field strength (F ), while the

type-IIB theory has a zero-form (C), a two-form (Cµν) and a four-form potential (Cµνρσ),

the latter with self-dual field strength. The number of physical transverse degrees of

freedom adds up in both cases to 64 = 8 × 8.

It is not difficult to see that in the perturbative string spectrum there are no states

charged under the RR forms. First, couplings of the form 〈s|RR|s〉 are not allowed by

the separately conserved left and right fermion numbers. Second, the RR vertex operators

contain the field strengths rather than the potentials and equations of motion and Bianchi

identities enter on an equal footing. If there were electric states in perturbation theory we

would also have magnetic states.

RR forms have another peculiarity. There are various ways to deduce that their cou-

plings to the dilaton are exotic. The dilaton dependence of a F 2m term at the k-th order

of perturbation theory is e(k−1)ΦemΦ instead of the usual e(k−1)Φ term for NS-NS fields. For

example, at tree-level, the quadratic terms are dilaton independent.

11



5 Heterotic/Type-I duality in ten dimensions.

We will start our discussion by describing heterotic/type-I duality in ten dimensions. It

can be shown [17] that heterotic/type-I duality, along with T-duality can reproduce all

known string dualities.

Consider first the O(32) heterotic string theory. At tree-level (sphere) and up to two-

derivative terms, the (bosonic) effective action in the σ-model frame is

Shet =
∫

d10x
√
Ge−Φ

[

R + (∇Φ)2 − 1

12
Ĥ2 − 1

4
F 2
]

. (5.1)

On the other hand for the O(32) type I string the leading order two-derivative effective

action is

SI =
∫

d10x
√
G
[

e−Φ
(

R + (∇Φ)2
)

− 1

4
e−Φ/2F 2 − 1

12
Ĥ2
]

. (5.2)

The different dilaton dependence here comes as follows: The Einstein and dilaton terms

come from the closed sector on the sphere (χ = 2). The gauge kinetic terms come from

the disk (χ = 1). Since the antisymmetric tensor comes from the RR sector of the closed

superstring it does not have any dilaton dependence on the sphere.

We will now bring both actions to the Einstein frame, Gµν = eΦ/4gµν :

Shet
E =

∫

d10x
√
g
[

R − 1

8
(∇Φ)2 − 1

4
e−Φ/4F 2 − 1

12
e−Φ/2Ĥ2

]

, (5.3)

SI
E =

∫

d10x
√
g
[

R − 1

8
(∇Φ)2 − 1

4
eΦ/4F 2 − 1

12
eΦ/2Ĥ2

]

. (5.4)

We observe that the two actions are related by Φ → −Φ while keeping the other fields

invariant. This seems to suggest that the weak coupling of one is the strong coupling

of the other and vice versa. Of course, the fact that the two actions are related by a

field redefinition is not a surprise. It is known that N=1 ten-dimensional supergravity is

completely fixed once the gauge group is chosen. It is interesting though that the field

redefinition here is just an inversion of the ten-dimensional coupling. Moreover, the two

theories have perturbative expansions that are very different.

We would like to go further and check if there are non-trivial checks of what is suggested

by the classical N=1 supergravity. However, once we compactify one direction on a circle

of radius R we seem to have a problem. In the heterotic case, we have a spectrum that

depends both on momenta m in the ninth direction as well as on windings n. The winding

number is the charge that couples to the string antisymmetric tensor. In particular, it

is the electric charge of the gauge boson obtained from B9µ. On the other hand, in type

I theory, as we have shown earlier, we have momenta m but no windings. One way to

see this, is that the open string Neumann boundary conditions forbid the string to wind

around the circle. Another way is by noting that the NS-NS antisymmetric tensor that

could couple to windings has been projected out by our orientifold projection.

12



However, we do have the RR antisymmetric tensor, but as we argue in section 4, no

perturbative states are charged under it. There may be however non-perturbative states

that are charged under this antisymmetric tensor. According to our general discussion in

section 2 this antisymmetric tensor would couple naturally to a string but this is certainly

not the perturbative string. How can we construct this non-perturbative string?

An obvious guess is that this is a solitonic string excitation of the low energy type-I

effective action. Indeed, such a solitonic solution was constructed [19] and shown to have

the correct zero mode structure.

We can give a more complete description of this non-perturbative string. The hint is

given from T -duality on the heterotic side, that interchanges windings and momenta.

When it acts on derivatives of X it interchanges ∂σX ↔ ∂τX. Consequently, Neu-

mann boundary conditions are interchanged with Dirichlet ones. To construct such a

non-perturbative string we would have to use also Dirichlet boundary conditions. Such

boundary conditions imply that the open string boundary in fixed in spacetime. In terms

of waves traveling on the string, it implies that a wave arriving at the boundary is reflected

with a minus sign. The interpretation of fixing the open string boundary in some (sub-

manifold) of spacetime has the following interpretation: There is a solitonic (extended)

object there whose fluctuations are described by open strings attached to it. Such objects

are known today as D-branes.

Thus, we would like to describe our non-perturbative string as a D1-brane. We will

localize it to the hyperplane X2 = X3 = . . . = X9 = 0. Its world-sheet extends in the

X0, X1 directions. Such an object is schematically shown in Fig. 3. Its fluctuations can

be described by two kinds of open strings:

• DD strings which have D-boundary conditions on both end-points and are forced to

move on the D1-brane.

• DN strings which have a D-boundary condition on one end, which is stuck on the

D1-brane, and N-boundary conditions on the other end, which is free.

As we will see, this solitonic configuration breaks half of N=2 spacetime supersymmetry

possible in ten dimensions. It also breaks SO(9,1)→SO(8)×SO(1,1). Moreover, we can put

it anywhere in the transverse eight-dimensional space, so we expect 8 bosonic zero-modes

around it associated with the broken translational symmetry. We will try to understand in

more detail the modes describing the world-sheet theory of the D1 string. We can obtain

them by looking at the massless spectrum of the open string fluctuations around it.

Start with the DD strings. Here XI , ψI , ψ̄I , I = 2, . . . , 9 have DD boundary conditions

while Xµ, ψµ, ψ̄µ, µ = 0, 1 have NN boundary conditions.

For the world-sheet fermions NN boundary conditions imply

NN NS sector ψ + ψ̄
∣

∣

∣

σ=0
= ψ − ψ̄

∣

∣

∣

σ=π
= 0 , (5.5)
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Figure 3: Open string fluctuations of a D1-brane

NN R sector ψ − ψ̄
∣

∣

∣

σ=0
= ψ − ψ̄

∣

∣

∣

σ=π
= 0 , (5.6)

The DD boundary condition is essentially the same with ψ̄ → −ψ̄

DD NS sector ψ − ψ̄
∣

∣

∣

σ=0
= ψ + ψ̄

∣

∣

∣

σ=π
= 0 , (5.7)

DD R sector ψ + ψ̄
∣

∣

∣

σ=0
= ψ + ψ̄

∣

∣

∣

σ=π
= 0 , (5.8)

and a certain action on the Ramond ground-state that we will describe below.

Exercise Show that we have the following mode expansions

XI(σ, τ) = xI + wIσ + 2
∑

n 6=0

aI
n

n
einτ sin(nσ) , (5.9)

Xµ(σ, τ) = xµ + pµτ − 2i
∑

n 6=0

aµ
n

n
einτ cos(nσ) . (5.10)

In the NS sector

ψI(σ, τ) =
∑

n∈Z

bIn+1/2e
i(n+1/2)(σ+τ) , ψµ(σ, τ) =

∑

n∈Z

bµn+1/2e
i(n+1/2)(σ+τ) , (5.11)

while in the R sector

ψI(σ, τ) =
∑

n∈Z

bIne
in(σ+τ) , ψµ(σ, τ) =

∑

n∈Z

bµne
in(σ+τ) . (5.12)
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Also

b̄In+1/2 = bIn+1/2 , b̄In = −bIn , (5.13)

b̄µn+1/2 = −bµn+1/2 , b̄µn = bµn . (5.14)

The xI in (5.9) are the position of the D-string in transverse space. There is no

momentum in (5.9) which means that the state wavefunctions would depend only on the

X0,1 coordinates, since there is a continuous momentum in (5.10). Thus, the states of this

theory “live” on the world-sheet of the D1-string. The usual bosonic massless spectrum

would consist of a vector Aµ(x0, x1) corresponding to the state ψµ
−1/2|0〉 and eight bosons

φI(x0, X1) corresponding to the states ψI
−1/2|0〉4. We will now consider the action of the

orientation reversal Ω: σ → −σ, ψ ↔ ψ̄. Using (5.5-5.8)

Ω bµ−1/2|0〉 = b̄µ−1/2|0〉 = −bµ−1/2|0〉 , (5.15)

Ω bI−1/2|0〉 = b̄I−1/2|0〉 = bI−1/2|0〉 . (5.16)

The vector is projected out, while the eight bosons survive the projection.

We will now analyze the Ramond sector where fermionic degrees of freedom would

come from. The massless ground-state |R〉 is an SO(9,1) spinor satisfying the usual GSO

projection

Γ11|R〉 = |R〉 . (5.17)

Consider now the Ω projection on that spinor. In the usual NN case Ω can be taken to

commute with (−1)F and acts on the spinor ground-state as -1. In the DD case the action

of Ω on the transverse DD fermionic coordinates is reversed compared to the NN case. On

the spinor this action is

Ω|R〉 = −Γ2 . . .Γ9|R〉 = |R〉 . (5.18)

From (5.17,5.18) we also obtain

Γ0Γ1|R〉 = −|R〉 . (5.19)

If we decompose the spinor under SO(8)×SO(1,1) the surviving piece transforms as 8−

where − refers to the SO(1,1) chirality (5.19). As for the bosons, these fermions are

functions of X0,1 only.

To recapitulate, in the DD sector we have found the following massless fluctuations

moving on the world-sheet of the D1-string: 8 bosons and 8 chirality minus fermions.

4The GSO projection is always present.
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Consider now the DN fluctuations. In this case Chan-Patton factors are allowed in the

free string end, and the usual tadpole cancellation argument implies there are 32 of them.

In this case, the boundary conditions for the transverse bosons and fermions become

∂τX
I
∣

∣

∣

σ=0
= 0 , ∂σX

I
∣

∣

∣

σ=π
= 0 , (5.20)

DN NS sector ψ + ψ̄
∣

∣

∣

σ=0
= ψ + ψ̄

∣

∣

∣

σ=π
= 0 , (5.21)

DN R sector ψ − ψ̄
∣

∣

∣

σ=0
= ψ + ψ̄

∣

∣

∣

σ=π
= 0 , (5.22)

while they are NN in the longitudinal directions.

We observe that here, the bosonic oscillators are half-integrally moded as in the twisted

sector of Z2 orbifolds. Thus, the ground-state conformal weight is 8/16=1/2. Also the

moding for the fermions has been reversed between the NS and R sectors. In the NS sector

the fermionic ground-state is also a spinor with ground state conformal weight 1/2. The

total ground-state has conformal weight one and only massive excitations are obtained in

this sector.

In the R sector there are massless states coming from the bosonic ground-state com-

bined with the O(1,1) spinor ground-state from the longitudinal Ramond fermions. The

usual GSO projection here is Γ0Γ1 = 1. Thus, the massless modes in the DN sector are 32

chirality plus fermions.

In total, the world-sheet theory of the D-string contains exactly what we would expect

from the heterotic string in the physical gauge! This is a non-trivial argument in favor of

heterotic-type I duality.

Exercise. We have considered so far a D1-brane in Type I theory. Consider the

general case of Dp-branes along similar lines. Show that non-trivial configurations ex-

ist (compatible with GSO and Ω projections) preserving half of the supersymmetry, for

p=1,5,9. The case p=9 corresponds to the usual open strings moving in 10-d space.

The RR two-form couples to a one-brane (electric) and a five-brane (magnetic). As we

saw above, both can be constructed as D-branes.

We will describe now in some more detail the D5-brane, since it involves some novel

features. To construct a five-brane, we will have to impose Dirichlet boundary conditions

in four transverse directions. We will again have DD and NN sectors as in the D1 case. The

massless fluctuations will have continuous momentum in the six longitudinal directions,

and will describe fields living on the six-dimensional world-volume of the five-brane. Since
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we are breaking half of the original supersymmetry, we expect that the world-volume

theory will have N=1 six-dimensional supersymmetry, and the massless fluctuations will

form multiplets of this supersymmetry. The relevant multiplets are the vector multiplet,

containing a vector and a gaugino, as well as the hypermultiplet, containing four real scalars

and a fermion. Supersymmetry implies that the manifold of the hypermultiplet scalars is

a hyper-Kähler manifold. When the hypermultiplets are charged under the gauge group,

the gauge transformations are isometries of the hyper-Kähler manifold, of a special type:

they are compatible with the hyper-Kähler structure.

It will be important for our latter purposes to describe the Higgs effect in this case.

When a gauge theory is in the Higgs phase, the gauge bosons become massive by combining

with some of the massless Higgs modes. The low-energy theory (for energies well below the

gauge boson mass) is described by the scalars that have not been devoured by the gauge

bosons. In our case, each (six-dimensional) gauge boson that becomes massive, will eat-

up four scalars (a hypermultiplet). The left-over low-energy theory of the scalars will be

described by a smaller hyper-Kähler manifold (since supersymmetry is not broken during

the Higgs phase transition). This manifold is constructed by a mathematical procedure

known as the hyper-Kähler quotient. The procedure ”factors out” the isometries of a

hyper-Kähler manifold to produce a lower dimensional manifold which is still hyper-Kähler.

Thus, the hyper-Kähler quotient construction is describing the ordinary Higgs effect in six-

dimensional N=1 gauge theory.

The D5-brane we are about to construct, is mapped via heterotic/type-I duality to the

NS5-brane of the heterotic theory. The NS5-brane, has been constructed [20] as a soliton

of the effective low-energy heterotic action. The non-trivial fields, in the transverse space,

are essentially configurations of axion-dilaton instantons, together with four-dimensional

instantons embedded in the O(32) gauge group. Such instantons have a size that de-

termines the “thickness” of the NS5-brane. The massless fluctuations are essentially the

moduli of the instantons. There is a mathematical construction of this moduli space, as

a hyper-Kähler quotient. This leads us to suspect [18] that the interpretation of this con-

struction is a Higgs effect in the six-dimensional world volume theory. In particular, the

mathematical construction implies that for N coincident NS5 branes, the hyper-Kähler

quotient construction implies that an Sp(N) gauge group is completely Higgsed. For a

single five-brane, the gauge group is Sp(1) ∼ SU(2). Indeed, if the size of the instanton

is not zero, the massless fluctuations of the NS5-brane form hypermultiplets only. When,

the size becomes zero, the moduli space has a singularity, which can be interpreted as the

restoration of the gauge symmetry: at this point the gauge bosons become massless again.

All of this indicates that the world-volume theory of a single five-brane should contain

an SU(2) gauge group, while in the case of N five-branes the gauge group is enhanced to

Sp(N), [18].

We will return now in our description of the massless fluctuations of the D5-brane. The
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situation parallels the D1 case that we have described in detail. In particular, from the

DN sectors we will obtain hypermultiplets only. From the DD sector we can in principle

obtain massless vectors. However, as we have seen above, the unique vector that can

appear is projected out by the orientifold projection. To remedy this situation we are

forced to introduce a Chan-Patton factor for the Dirichlet end-points of the open string

fluctuations. For a single D5-brane, this factor takes two values, i = 1, 2. Thus, the

massless bosonic states in the DD sector are of the form,

bµ−1/2|p; i, j〉 , bI−1/2|p; i, j〉 . (5.23)

We have also seen, that the orientifold projection Ω changes the sign of bµ−1/2 and leaves

bI−1/2 invariant. The action of Ω on the ground state is Ω|p; i, j〉 = ǫ|p; j, i〉. It interchanges

the Chan-Patton factors and can have a sign ǫ = ±1. The number of vectors that survive

the Ω projection depends on this sign. For ǫ = 1, only one vector survives and the gauge

group is O(2). If ǫ = −1, three vectors survive and the gauge group is Sp(1) ∼ SU(2).

Taking into account our previous discussion, we must take ǫ = −1. Thus, we have an Sp(1)

vector multiplet. The scalar states on the other hand will be forced to be antisymmetrized

in the Chan-Patton indices. This will provide a single hypermultiplet, whose four scalars

describe the position of the D5-brane in the four-dimensional transverse space. Finally,

the DN sector, has an i = 1, 2 Chan-Patton factor on the D-end and an α = 1, 2 · · ·32

factor on the N-end. Consequently, we will obtain a hypermultiplet transforming as (2, 32)

under Sp(1)×O(32) where Sp(1) is the world-volume gauge group and O(32) is the original

(spacetime) gauge group of the type-I theory.

In order to describe N parallel coinciding D5-branes, the only difference is that the

Dirichlet Chan-Patton factor now takes 2N values. Going through the same procedure as

above we find in the DD sector, Sp(N) vector multiplets, and hypermultiplets transforming

as a singlet (the center of mass position coordinates) as well as the traceless symmetric

tensor representation of Sp(N) of dimension 2N2 − N − 1. In the DN sector we find a

hypermultiplet transforming as (2N, 32) under Sp(N) × O(32).

There are further checks of heterotic/type-I duality in ten dimensions. BPS saturated

terms in the effective action match appropriately between the two theories [21]. You can

find a more detailed exposition of similar matters in [10].

The comparison becomes more involved and non-trivial upon toroidal compactification.

First, the spectrum of BPS states is richer and different in perturbation theory in the

two theories. Second, by adjusting moduli both theories can be compared in the weak

coupling limit. The terms in the effective action that can be easiest compared are the

F 4, F 2R2 and R4 terms. These are BPS saturated and anomaly related. In the heterotic

string, they obtain perturbative corrections at one-loop only. Also, their non-perturbative

corrections are due to instantons that preserve half of the supersymmetry. Corrections due

to generic instantons, that break more than 1/2 supersymmetry, vanish due to zero modes.
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In the heterotic string the only relevant non-perturbative configuration is the NS5-brane.

Taking its world-volume to be Euclidean and wrapping it supersymmetrically around a

compact manifold (so that the classical action is finite), it provides the relevant instanton

configurations. Since we need at least a six-dimensional compact manifold to wrap it,

we can immediately deduce that the BPS saturated terms do not have non-perturbative

corrections for toroidal compactifications with more than four non-compact directions.

Thus, for D > 4 the full heterotic result is tree-level and one-loop.

In the type-I string the situation is slightly different. Here we have both the D1-brane

and the D5-brane, that can provide instanton configurations. Again, the D5-brane will

contribute in four dimensions. However, the D1-brane has a two-dimensional world-sheet

and can contribute already in eight dimensions. We conclude that in nine-dimensions, the

two theories can be compared in perturbation theory. This has been done in [22]. They do

agree at one-loop. On the type-I side however, duality implies also contact contributions

for the factorizable terms (trR2)2, trF 2trR2 and (trF 2)2 coming from surfaces with Euler

number χ = −1,−2.

In eight dimensions, the perturbative heterotic result, is mapped via duality to per-

turbative as well as non-perturbative type I contributions coming from the D1-instanton.

These have been computed and duality has been verified [23].

6 Type-IIA versus M-theory.

We have mentioned in an earlier section, that the effective type-IIA supergravity is the

dimensional reduction of eleven-dimensional, N=1 supergravity. We will see here that this

is not just an accident [6, 7].

We will first review the spectrum of forms in type-IIA theory in ten dimensions.

• NS-NS two-form B. Couples to a string (electrically) and a five-brane (magnetically).

The string is the perturbative type-IIA string.

• RR U(1) gauge field Aµ. Can couple electrically to particles (zero-branes) and mag-

netically to six-branes. Since it comes from the RR sector no perturbative state is charged

under it.

• RR three-form Cµνρ. Can couple electrically to membranes (p=2) and magnetically

to four-branes.

• There is also the non-propagating zero-form field strength and ten-form field strength

that would couple to eight-branes (see section 4).
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The lowest-order type-IIA Lagrangian is

S̃IIA =
1

2κ2
10

[

∫

d10x
√
ge−Φ

[(

R + (∇Φ)2 − 1

12
H2
)

− 1

2 · 4!
Ĝ2 − 1

4
F 2
]

+
1

(48)2

∫

B ∧G ∧G
]

.

(6.1)

We are in the string frame. Note that the RR kinetic terms do not couple to the dilaton

as argued already in section 4.

In the type-IIA supersymmetry algebra there is a central charge proportional to the

U(1) charge of the gauge field A

{Q1
α, Q

2
α̇} = δαα̇W . (6.2)

This can be understood, since this supersymmetry algebra is coming from D=11 where

instead of W there is the momentum operator of the eleventh dimension. Since the U(1)

gauge field is the G11,µ component of the metric, the momentum operator becomes the

U(1) charge in the type-IIA theory. There is an associated BPS bound

M ≥ c0
λ
|W | , (6.3)

where λ = eΦ/2 is the ten-dimensional string coupling and c0 some constant. States that

satisfy this equality are BPS saturated and form smaller supermultiplets. As mentioned

above all perturbative string states have W = 0. However, there is a soliton solution (black

hole) of type-IIA supergravity with the required properties. In fact, the BPS saturation

implies that it is an extremal black hole. We would expect that quantization of this

solution would provide a (non-perturbative) particle state. Moreover, it is reasonable to

expect that the U(1) charge is quantized in some units. Then the spectrum of these BPS

states looks like

M =
c

λ
|n| , n ∈ Z . (6.4)

At weak coupling these states are very heavy (but not as heavy as standard solitons whose

masses scale with the coupling as 1/λ2). However, being BPS states, their mass can be

reliably followed at strong coupling where they become light, piling up at zero mass as

the coupling becomes infinite. This is precisely the behavior of Kaluza-Klein (momentum)

modes as a function of the radius. Since also the effective type-IIA field theory is a

dimensional reduction of the eleven-dimensional supergravity with G11,11 becoming the

string coupling, we can take this seriously [7] and claim that as λ → ∞ type-IIA theory

becomes some eleven-dimensional theory whose low energy limit is eleven-dimensional

supergravity. We can calculate the relation between the radius of the eleventh dimension

and the string coupling.

The N=1 eleven-dimensional supergravity action is

LD=11 =
1

2κ2

[

R− 1

2 · 4!
G2

4

]

− iψ̄µΓµνρ∇̃νψρ +
1

2κ(144)2
G4 ∧G4 ∧ Ĉ + (6.5)
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+
1

192

[

ψ̄µΓµνρστυψυ + 12ψ̄νΓρσψτ
]

(G+ Ĝ)νρστ ,

where ∇̃ is defined with respect to the connection (ω+ ω̃)/2, ω is the spin connection and

ω̃µ,ab = ωµ,ab +
iκ2

4

[

−ψ̄νΓνµabρψ
ρ + 2(ψ̄µΓbψa − ψ̄µΓaψb + ψ̄bΓµψa)

]

(6.6)

is its supercovariantization. Finally, G4 is the field strength of Ĉ,

Gµνρσ = ∂µĈνρσ − ∂νĈρσµ + ∂ρĈσµν − ∂σĈµνρ (6.7)

and G̃4 is its supercovariantization

G̃µνρσ = Gµνρσ − 6κ2ψ̄[µΓνρψσ] . (6.8)

We will dimensionally reduce to D=10.

Gµν =

(

gµν + e2σAµAν e2σAµ

e2σAµ e2σ

)

. (6.9)

to be R = eσ. The three-form Ĉ gives rise to a three-form and a two-form in ten dimensions

Cµνρ = Ĉµνρ −
(

Ĉνρ,11Aµ + cyclic
)

, Bµν = Ĉµν,11 . (6.10)

The ten-dimensional action can be directly obtained from the eleven-dimensional one

using the formulae of Appendix A. For the bosonic part we obtain,

SIIA =
1

2κ2

∫

d10x
√
geσ

[

R− 1

2 · 4!
Ĝ2 − 1

2 · 3!
e−2σH2 − 1

4
e2σF 2

]

+ (6.11)

+
1

2κ(48)2

∫

B ∧G ∧G ,

where

Fµν = ∂µAν − ∂νAµ , Hµνρ = ∂µBνρ + cyclic , (6.12)

Ĝµνρσ = Gµνρσ + (FµνBρσ + 5 permutations) . (6.13)

This is the type-IIA effective action in the Einstein frame. We can go to the string frame

by gµν → e−σgµν . The ten-dimensional dilaton is Φ = 3σ. The action is

S̃10 =
1

2κ2

∫

d10x
√
ge−Φ

[(

R + (∇Φ)2 − 1

12
H2
)

− 1

2 · 4!
Ĝ2 − 1

4
F 2
]

+
1

2κ2(48)2

∫

B∧G∧G .
(6.14)

Note that the kinetic terms of the RR fields Aµ and Cµνρ do not have dilaton dependence

at the tree level, as advocated in section 4.

The radius of the eleventh dimension is given by R = eσ. Thus,

R = λ2/3 . (6.15)
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At strong type-IIA coupling, R → ∞ and the theory decompactifies to eleven dimen-

sions, while in the perturbative regime the radius is small.

The eleven-dimensional theory (which has been named M-theory) contains the three-

form which can couple to a membrane and a five-brane. Upon toroidal compactification

to ten dimensions , the membrane, wrapped around the circle, becomes the perturbative

type-IIA string that couples to Bµν . When it is not winding around the circle, then it

is the type-IIA membrane coupling to the type-IIA three-form. The M-theory five-brane

descends to the type-IIA five-brane or, wound around the circle, to the type-IIA four-brane.

7 M-theory and the E8×E8 heterotic string.

M-theory has Z2 symmetry under which the three-form changes sign. We might consider an

orbifold of M-theory compactified on a circle of radius R, where the orbifolding symmetry

is x11 → −x11 as well as the Z2 symmetry mentioned above [8].

The untwisted sector can be obtained by keeping the fields invariant under the pro-

jection. It is not difficult to see that the ten-dimensional metric and dilaton survive the

projection, while the gauge boson is projected out. Also the three-form is projected out,

while the two-form survives. Half of the fermions survive, a Majorana-Weyl gravitino and

a Mayorana-Weyl fermion of opposite chirality. Thus, in the massless spectrum, we are left

with the N=1 supergravity multiplet. We do know by now that this theory is anomalous in

ten dimensions. We must have some “twisted sector” which should arrange itself to cancel

the anomalies. As we discussed in the section on orbifolds, S1/Z2 is a line segment, with

the fixed-points 0, π at the boundary. The fixed-planes are two copies of ten-dimensional

flat space. States coming from the twisted sector must be localized on these planes. We

have also a symmetry exchanging the fixed planes, so we expect isomorphic massless con-

tent coming from the two fixed planes. It can also be shown, that half of the anomalous

variation is localized at one fixed plane and the other half at the other. The only N=1

multiplets which can cancel the anomaly symmetrically, are vector multiplets, and we must

have 248 of them at each fixed plane. The possible anomaly free groups satisfying this

constraint are E8 ×E8 and U(1)496. Since there is no known string theory associated with

the second possibility, it is natural to assume that we have obtained the E8×E8 heterotic

string theory. A similar argument to that of the previous section shows that that there is a

relation similar to (6.15) between the radius of the orbifold and the heterotic coupling. In

the perturbative heterotic string, the two ten-dimensional planes are on top of each other

and they move further apart as the coupling grows.

The M-theory membrane survives in the orbifold only if one of its dimensions is wound

around the S1/Z2. It provides the perturbative heterotic string. On the other hand,

the five-brane survives, and cannot wind around the orbifold direction. It provides the
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heterotic NS5-brane. This is in accord with what we would expect from the heterotic string.

Upon compactification to four-dimensions, the NS5-brane will give rise to magnetically

charged point-like states (monopoles).

8 Self-duality of the type-IIB string.

As described in section 4, the type-IIB theory in ten dimensions contains the following

forms:

• The NS-NS two-form B1. It couples electrically to the perturbative type-IIB string

(which we will call for later convenience the (1,0) string) and magnetically to a five-brane.

• The R-R scalar. It is a zero-form (there is a Peccei-Quinn symmetry associated with

it) and couples electrically to a (-1)-brane. Strictly speaking this is an instanton whose

“world-volume” is a point in spacetime. It also couples magnetically to a seven-brane.

• The R-R two-form B2. It couples electrically to a (0,1) string (distinct from the

perturbative type-II string) and magnetically to another (0,1) five-brane.

• The self-dual four-form. It couples to a self-dual three-brane.

The theory is chiral but anomaly-free as we will see later on. The self-duality condition

implies that the field strength F of the four-form is equal to its dual. This equation cannot

be obtained from a covariant action. Consequently, for type-IIB supergravity, the best we

can do is to write down the equations of motion [24].

There is an SL(2,R) global invariance in this theory which transforms the antisymmetric

tensor and scalar doublets (the metric as well as the four-form are invariant). We will

denote by φ the dilaton which comes from the (NS−NS) sector and by χ the scalar that

comes from the (R− R̄) sector. Define the complex scalar

S = χ+ ie−φ/2 . (8.1)

Then, SL(2,R) acts by fractional transformations on S and linearly on Bi

S → aS + b

cS + d
,

(

BN
µν

BR
µν

)

→
(

d −c
−b a

)(

BN
µν

BR
µν

)

, (8.2)

where a, b, c, d are real with ad − bc = 1. BN is the NS-NS antisymmetric tensor while

BR is the R-R antisymmetric tensor. When we set the four-form to zero, the rest of the

equations of motion can be obtained from the following action

SIIB =
1

2κ2

∫

d10x
√

− det g

[

R− 1

2

∂S∂S̄

S2
2

− 1

12

|HR + SHN |2
S2

]

, (8.3)

where H stands for the field strength of the antisymmetric tensors. Obviously (8.3) is

SL(2,R) invariant.
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Its SL(2,Z) subgroup was conjectured [5, 6] to be an exact non-perturbative symmetry.

There is a (charge-one) BPS instanton solution in type-IIB theory given by the following

configuration [25]

eφ/2 = λ+
c

r8
, χ = χ0 + i

c

λ(λr8 + c)
, (8.4)

where r = |x−x0|, xµ
0 being the position of the instanton, λ is the string coupling far away

from the instanton, c = π
√
π is fixed by the requirement that the solution has minimal

instanton number and the other expectation values are trivial.

There is also a fundamental string solution which is charged under B1 (the (1,0) string),

found in [26]. It has a singularity at the core, which is interpreted as a source for the

fundamental type-IIB string. Acting with S → −1/S transformation on this solution

we obtain [5] a solitonic string solution (the (0,1) string) that is charged under the RR

antisymmetric tensor B2. It is given by the following configuration [5]

ds2 = A(r)−3/4[−(dx0)2 + (dx1)2] + A(r)1/4dy · dy , S = χ0 + i
e−φ0/2

√

A(r)
, (8.5)

B1 = 0 , B2
01 =

1√
∆A(r)

, (8.6)

where

A(r) = 1 +
Q
√

∆

3r6
, Q =

3κ2T

π4
, ∆ = eφ0/2

[

χ2
0 + e−φ0

]

. (8.7)

κ is Newton’s constant and T = 1/(2πα′) is the tension of the perturbative type-IIB string.

The tension of the (0,1) string can be calculated to be

T̃ = T
√

∆ . (8.8)

In the perturbative regime, eφ0 → 0, T̃ ∼ Te−φ0/4 is large, and the (0,1) string is very

stiff. Its vibrating modes cannot be seen in perturbation theory. However, at strong

coupling, its fluctuations become the relevant low energy modes. Acting further by SL(2,Z)

transformations we can generate a multiplet of (p,q) strings with p,q relatively prime. If

such solitons are added to the perturbative theory, the continuous SL(2,R) symmetry is

broken to SL(2,Z). All the (p,q) strings have a common massless spectrum given by the

type-IIB supergravity content. Their massive excitations are distinct. Their string tension

is given by

Tp,q = T
|p+ qS|2

S2
. (8.9)

By compactifying the type-IIB theory on a circle of radius RB, it becomes equivalent to

the IIA theory compactified on a circle. On the other hand, the nine-dimensional type-IIA

theory is M-theory compactified on a two-torus.
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From the type IIB point of view, wrapping (p,q) strings around the tenth dimension

provides a spectrum of particles in nine-dimensions with masses

M2
B =

m2

R2
B

+ (2πRBnTp,q)
2 + 4πTp,q(NL +NR) , (8.10)

where m is the Kaluza-Klein momentum integer, n the winding number and NL,R the

string oscillator numbers. The matching condition is NL −NR = mn and BPS states are

obtained for NL = 0 or NR = 0. Thus, we obtain the following BPS spectrum

M2
B

∣

∣

∣

BPS
=
(

m

RB
+ 2πRBnTp,q

)2

. (8.11)

Since an arbitrary pair of integers (n1, n2) can be written as n(p, q) where n is the greatest

common divisor and p,q are relatively prime we can rewrite the BPS mass formula above

as

M2
B

∣

∣

∣

BPS
=

(

m

RB
+ 2πRBT

|n1 + n2S|2
S2

)2

. (8.12)

In M-theory, compactified on a two-torus with area A11 and modulus τ , we have two

types of (point-like) BPS states in nine dimensions: KK states with mass (2π)2|n1 +

n2τ |2/(τ2A11) as well as states that are obtained by wrapping the M-theory membrane

m times around the two torus, with mass (mA11T11)
2, where T11 is the tension of the

membrane. We can also write R11 that becomes the IIA coupling as R11 = A11/(4π
2τ2).

Thus, the BPS spectrum is

M2
11 = (m(2πR11)τ2T11)

2 +
|n1 + n2τ |2
R2

11τ
2
2

+ · · · , (8.13)

where the dots are mixing terms that we cannot calculate. The two BPS mass spectra

should be related by MB = βMB, where β 6= 1 since the masses are measured in different

units in the two theories. Comparing, we obtain

S = τ ,
1

R2
B

= TT11A
3/2
11 , β = 2πR11

√
τ2T11

T
. (8.14)

An outcome of this is the calculation of the M-theory membrane tension T11 in terms of

string data.

9 D-branes are the type-II RR charged states.

We have seen in section 5 that D-branes defined by imposing Dirichlet boundary conditions

on some of the string coordinates provided non-perturbative extended solitons required by

heterotic-type I string duality.

Similar D-branes can be also constructed in type-II string theory, the only difference

being that here, there is no orientifold projection. Also, open string fluctuations around
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Figure 4: D-branes interacting via the tree-level exchange of a closed string.

them cannot have Neumann (free) end-points. As we will see, such D-branes will provide

all RR charged states required by the non-perturbative dualities of type-II string theory.

In the type-IIA theory we have seen that there are (in principle) allowed RR charged

p-branes with p = 0, 2, 4, 6, 8, while in the type-IIB p = −1, 1, 3, 5, 7. D-branes can be

constructed with a number of coordinates having D-boundary conditions being 9 − p =

1, 2, . . . , 10, which precisely matches the full allowed p-brane spectrum of type-II theories.

The important question is: are such D-branes charged under RR forms?

To answer this question, we will have to study the tree-level interaction of two parallel

Dp-branes via the exchange of a closed string [12], depicted schematically in Fig. 4. For

this interpretation time runs horizontally. However, if we take time to run vertically, then,

the same diagram can be interpreted as a (one-loop) vacuum fluctuation of open strings

with their end-points attached to the D-branes. In this second picture we can calculate

this diagram to be

A = 2Vp+1

∫ dp+1k

(2π)p+1

∫ ∞

0

dt

2t
e−2πα′tk2−t

|Y |2

2πα′
1

η12(it)

1

2

∑

a,b

(−1)a+b+abϑ4[ab ](it) (9.1)

= 2Vp+1

∫ ∞

0

dt

2t
(8π2α′t)−

p+1

2 e−t
|Y |2

2πα′
1

η12(it)

1

2

1
∑

a,b=0

(−1)a+b+abϑ4[ab ](it) .

Vp+1 is the world-volume of the p-brane, the factor of two is because of the two end-

points, |Y |2 is the distance between the D-branes. Of course the total result is zero, because

of the ϑ-identity. This reflects the fact that the D-branes are BPS states and exert no static

force on each other. However, our purpose is to disentangle the contributions of the various

intermediate massless states in the closed string channel. This can be obtained by taking
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the leading t → 0 behavior of the integrand. In order to do this, we have to perform a

modular transformation t→ 1/t in the ϑ- and η-functions. We obtain

A|closed string
massless = 8(1 − 1)Vp+1

∫ ∞

0

dt

t
(8π2α′t)−

p+1

2 t4 e−
t|Y |2

2πα′ (9.2)

= 2π(1 − 1)Vp+1(4π
2α′)3−pG9−p(|Y |)

where

Gd(|Y |) =
1

4πd/2

∫ ∞

0

dt

t(4−d)/2
e−t|Y |2 (9.3)

is the massless scalar propagator in d dimensions. The (1− 1) comes from the NS-NS and

R-R sectors respectively. Now consider the RR forms coupled to p-branes with action

S =
αp

2

∫

Fp+2
∗Fp+2 + iTp

∫

branes
Ap+1 , (9.4)

with Fp+2 = dAp+1. Using this action, the same amplitude for exchange of Ap+1 between

two D-branes at distance |Y | in the transverse space of dimension 10 − (p + 1) = 9 − p is

given by

A|field theory =
(iTp)

2

αp
Vp+1G9−p(|Y |) , (9.5)

where the factor of volume is there since the RR field can be absorbed or emitted at any

point in the world-volume of the D-brane. Matching with the string calculation we obtain

T 2
p

αp

= 2π(4π2α′)3−p . (9.6)

We will now look at the DNT quantization condition which, with our normalization of the

RR forms, and D = 10 becomes
TpT6−p

αp

= 2πn . (9.7)

From (9.6) we can verify directly that D-branes satisfy this quantization condition for the

minimum quantum n = 1!

Thus, we are led to accept that D-branes, with a nice (open) CFT description of their

fluctuations, describe non-perturbative extended BPS states of the type-II string carrying

non-trivial RR charge.

We will now describe a uniform normalization of the D-brane tensions. Our starting

point is the type-IIA ten-dimensional effective action (6.1). The gravitational coupling κ10

is given in terms of α′ as

2κ2
10 = (2π)7α′4 . (9.8)

We will also normalize all forms so that their kinetic terms are (1/4κ2
10)
∫

d10xF ⊗∗ F .

This corresponds to αp = 1/(2κ2
10). We will define also the tensions of various p-branes

via their world-volume action of the form

Sp = −Tp

∫

Wp+1

dp+1ξ e−Φ/2

√

detĜ− iTp

∫

Ap+1 , (9.9)
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where Ĝ is the induced metric on the world-volume

Ĝαβ = Gµν
∂Xµ

∂ξα

∂Xν

∂ξβ
(9.10)

and
∫

Ap+1 =
1

(p+ 1)!

∫

dp+1ξ Aµ1···µp+1

∂Xµ1

∂ξα1
· · · ∂X

µp+1

∂ξαp+1
ǫα1···αp+1 . (9.11)

The dilaton dependence will be explained in the next section. The DNT quantization

condition in (9.7) becomes

2κ2
10TpT6−p = 2πn , (9.12)

while (9.6) and (9.8) give

Tp =
1

(2π)p(α′)(p+1)/2
. (9.13)

We have obtained the IIA theory from the reduction of eleven-dimensional supergravity on

a circle of volume 2πR11 = 2π
√
a′eΦ/3. Consequently, the M-theory gravitational constant

is

2κ2
11 = (2π)8(α′)9/2 . (9.14)

The M-theory membrane, upon compactification of M-theory on a circle, becomes the

type-IIA D2-brane. Thus, its tension TM
2 should be equal to the D2-brane tension,

TM
2 = T2 =

1

(2π)2(α′)3/2
. (9.15)

Consider now the M-theory five-brane. It has a tension TM
5 that can be computed from

the DNT quantization condition

2κ2
11T

M
2 TM

5 = 2π → TM
5 =

1

(2π)5(α′)3
. (9.16)

On the other hand, wrapping one of the coordinates of the M5-brane around the circle

should produce the D4-brane and we can confirm that

2π
√
α′TM

5 = T4 . (9.17)

10 D-brane actions

We will now derive the massless fluctuations of a single Dp-brane. This parallels our

detailed discussion of the type-I D1-brane. The difference here is that the open string

fluctuations cannot have free ends5. Thus, only the DD sector is relevant. Also there

is no orientifold projection. In the NS sector, the massless bosonic states are a (p+1)-

vector, Aµ corresponding to the state bµ−1/2|p〉 and 9-p scalars, XI corresponding to the

states bI−1/2|p〉. The XI represent the position coordinates of the Dp-brane in transverse

5Free end-points are interpreted as 9-branes and there are none in type-II string theory.
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space. These are the states we would obtain by reducing a ten-dimensional vector to

p+1 dimensions. Similarly, from the R sector we obtain world-volume fermions which

are the reduction of a ten-dimensional gaugino to (p+1) dimensions. In total we obtain

the reduction of a ten-dimensional U(1) vector multiplet to p+1 dimensions. The world-

volume supersymmetry has 16 conserved supercharges. Thus, the Dp-brane broke half-of

the original supersymmetry as expected.

In order to calculate the world-volume action, we would have to calculate scattering of

the massless states of the world-volume theory. The leading contribution comes from the

disk diagram and is thus weighted with a factor of e−Φ/2. The calculation is similar with

the calculation of the effective action in the ten-dimensional open oriented string theory.

The result there is the Born-Infeld action for the gauge field [27]

SBI =
∫

d10x e−Φ/2
√

det(δµν + 2πα′Fµν) . (10.1)

Dimensionally reducing this action, we obtain the relevant Dp-brane action from the disk.

There is a coupling to the spacetime background metric which gives the induced metric,

(9.10). There is also a coupling to the spacetime NS antisymmetric tensor. This can be

seen as follows. The closed string coupling to Bµν and the vector Aµ can be summarized

in

SB =
i

2πα′

∫

M2

d2ξ ǫαβBµν∂ax
µ∂βx

ν − i

2

∫

B1

ds Aµ∂sx
µ , (10.2)

where M2 is the two-dimensional world-sheet with one-dimensional boundary B1. Under a

gauge transformation δBµν = ∂µΛν −∂νΛµ, the action above changes by a boundary term,

δSB =
i

πα′

∫

B1

ds Λµ∂sx
µ . (10.3)

To reinstate gauge invariance, the vector Aµ has to transform as δAµ = 1
2πα′Λµ. Thus, the

gauge invariant combination is

Fµν = 2πα′Fµν − Bµν = 2πα′(∂µAν − ∂νAµ) − Bµν . (10.4)

We can now sumarize the leading order Dp-brane action as

Sp = −Tp

∫

Wp+1

dp+1ξ e−Φ/2
√

det(Ĝ+ F) − iTp

∫

Ap+1 . (10.5)

As we have seen in the previous section, the CP-odd term in the action comes from the next

diagram, the annulus. There are however more CP-odd couplings coming from the annulus

that involve q-forms with q<p. Their appearance is due to cancellation of anomalies, and

we refer the reader to [28] for a detailed discussion. We will present here the result. It

involves the roof-genus Î1/2(R) and the Chern character. Thus, (10.5) is extended to

Sp = −Tp

∫

Wp+1

dp+1ξ e−Φ/2
√

det(Ĝ+ F) − iTp

∫

A ∧ Tr[eiF/2π]
√

Î1/2(R) , (10.6)
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where A stands for a formal sum of all RR forms, and the integration picks up the (p+1)-

form in the sum.

As an example we will consider the action of the D1-string of type-IIB theory. The

relevant forms that couple here is the RR two-form BR
µν as well as the RR scalar (zero-form)

S1. The action is

S1 = − 1

2πα′

[

∫

d2ξ
|S|√
S2

√

det(Ĝ+ F) + i
∫

(BN +
iS1

2π
F)

]

, (10.7)

where e−Φ/2 = S2. Note that |S|√
S2

= e−Φ/2 when S1 = 0.

We will now consider the effect of T-duality transformations on the Dp-branes. Con-

sider the type-II theory with x9 compactified on a circle of radius R. As we have mentioned

earlier, the effect of a T-duality transformation on open strings is to interchange N and

D boundary conditions. Consider first a Dp-brane not wrapping around the circle. This

implies that one of its transverse coordinates (Dirichlet) is in the compact direction. Doing

a T-duality transformation R → α′/R, would change the boundary conditions along X9 to

Neumann and would produce a D(p+1)-brane wrapping around the circle of radius α′/R.

Thus, the Dp-brane has been transformed into a D(p+1)-brane. The original Dp-brane

action contains Tp

∫

dp+1ξ e−Φ/2. The dilaton transforms under duality as

e−Φ/2 →
√
α′

R
e−Φ/2 . (10.8)

Consequently, Tp

√
α′/R = Tp+1(2πα

′/R) and we obtain

Tp+1 =
Tp

2π
√
α′ , (10.9)

which is in agreement with (9.13).

On the other hand, if the Dp-brane was wrapped around the compact direction, T-

duality transforms it into a D(p-1)-brane. This action of T-duality on the various D-branes

is a powerful tool for investigating non-perturbative physics due to them.

So far, we have discussed a single Dp-brane, interacting with the background type-II

fields. An obvious question is: what happens when we have more than one parallel Dp-

branes? Consider first the case where we have N Dp-branes being at the same point in

transverse space. Then, the only difference in the previous analysis, is to include a Chan-

Patton factor i = 1, 2, · · · , N at the open string end-points. We now have N2 massless

vector states, bµ−1/2|p; i, j〉. Going through the same procedure as before, we will find that

the massless fluctuations are described by the dimensional reduction of the ten-dimensional

N=1 U(N) Yang-Mills multiplet on the world-volume of the brane (we have oriented open

strings here). The U(1) factor of U(N) describes the overall center of mass of the system. If

we take one of the Dp-branes and we separate it from the rest, the open strings stretching

between it and the rest N-1 of the branes, acquire a mass-gap (non-trivial tension), and
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the massless vectors have a gauge group which is U(N− 1)×U(1). In terms of the world-

sheet theory, this is an ordinary Higgs effect. For generic positions of the Dp-branes, the

gauge group is U(1)N. The scalars that described the individual positions become now

U(N) matrices. The world-volume action has a non-abelian generalization. In particular,

to lowest order, it is the dimensional reduction of U(N) ten-dimensional Yang-Mills

SN
p = −TpStr

∫

Wp+1

dp+1ξ e−Φ/2(F 2
µν + 2F 2

µI + F 2
IJ) , (10.10)

where

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (10.11)

FµI = ∂µX
I + [Aµ, X

I ] , FIJ = [XI , XJ ] . (10.12)

Both Aµ and XI are U(N) matrices. At the minimum of the potential, the matrices XI are

commuting, and can be simultaneously diagonalized. Their eigenvalues can be interpreted

as the coordinates of the N Dp-branes.

One very interesting application of D-branes is the following. D-branes wrapped around

compact manifolds produce point-like RR charged particles in lower dimensions. Such par-

ticles have an effective description as microscopic black holes. Using D-brane techniques,

their multiplicity can be computed for fixed charge and mass. It can be shown that this

multiplicity agrees to leading order with the Bekenstein-Hawking entropy formula for clas-

sical black holes [29]. The interested reader may consult [30] for a review.

11 Heterotic/Type-II duality in six and four Dimen-

sions

There is another non-trivial duality relation that we are going to discuss in some detail:

that of the heterotic string compactified to six dimensions on T 4 and the type-IIA string

compactified on K3. Both theories have N=2 supersymmetry in six dimensions. Both

theories have the same massless spectrum, containing the N=2 supergravity multiplet and

twenty vector multiplets.

The six-dimensional tree-level heterotic effective action in the σ-model frame is

Sheterotic
D =

∫

dDx
√
−det Ge−Φ

[

R + ∂µΦ∂µΦ − 1

12
ĤµνρĤµνρ− (11.1)

−1

4
(M̂−1)ijF

i
µνF

jµν +
1

8
Tr(∂µM̂∂µM̂−1)

]

,

where i = 1, 2, . . . , 36 − 2D and

Ĥµνρ = ∂µBνρ −
1

2
LijA

i
µF

j
νρ + cyclic . (11.2)
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The moduli scalar matrix M̂ is,

M =









G−1 G−1C G−1Y t

CtG−1 G + CtG−1C + Y tY CtG−1Y t + Y t

Y G−1 Y G−1C + Y 116 + Y G−1Y t









, (11.3)

where 116 is the sixteen-dimensional unit matrix and

Cαβ = Bαβ − 1

2
Y I

αY
I
β . (11.4)

Going to the Einstein frame by Gµν → eΦ/2Gµν , we obtain

Shet
D=6 =

∫

d6x
√
−G

[

R− 1

4
∂µΦ∂µΦ − e−Φ

12
ĤµνρĤµνρ− (11.5)

−e
−Φ

2

4
(M̂−1)ijF

i
µνF

jµν +
1

8
Tr(∂µM̂∂µM̂−1)



 .

The tree-level type-IIA effective action in the σ-model frame is

SIIA
K3 =

∫

d6x
√

−det G6e
−Φ
[

R + ∇µΦ∇µΦ − 1

12
HµνρHµνρ+ (11.6)

+
1

8
Tr(∂µM̂∂µM̂−1)

]

−1

4

∫

d6x
√
−det G(M̂−1)IJF

I
µνF

Jµν+
1

16

∫

d6xǫµνρστυBµνF
I
ρσL̂IJF

J
τυ ,

where I = 1, 2, . . . , 24.

Going again to the Einstein frame we obtain

SIIA
D=6 =

∫

d6x
√
−G

[

R − 1

4
∂µΦ∂µΦ − 1

12
e−ΦHµνρHµνρ− (11.7)

−1

4
eΦ/2(M̂−1)ijF

i
µνF

jµν +
1

8
Tr(∂µM̂∂µM̂−1)

]

+
1

16

∫

d6xǫµνρστεBµνF
i
ρσL̂ijF

j
τε ,

where L̂ is the O(4,20) invariant metric. Notice the following differences: The heterotic

Ĥµνρ contains the Chern-Simons term (11.2) while the type-IIA one doesn’t. The type-IIA

action instead contains a parity-odd term coupling the gauge fields and Bµν . Both effective

actions have a continuous O(4,20,R) symmetry which is broken in the string theory to the

T-duality group O(4,20,Z).

We will denote by a prime the fields of the type-IIA theory (Einstein frame) and without

a prime those of the heterotic theory.

Exercise. Derive the equations of motion stemming from the actions (11.5) and

(11.7). Show that the two sets of equations of motion are equivalent via the following

(duality) transformations
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Φ′ = −Φ , G′
µν = Gµν , M̂ ′ = M̂ , A′i

µ = Ai
µ , (11.8)

e−ΦĤµνρ =
1

6

ǫµνρ
στε

√
−G H ′

στε , (11.9)

where the data on the right-hand side are evaluated in the type-IIA theory.

There is a way to see some indication of this duality by considering the compactification

of M-theory on S1×K3 which is equivalent to type-IIA on K3. As we have seen in a previous

section, all vectors descend from the RR one- and three-forms of the ten-dimensional type-

IIA theory, and these descend from the three-form of M-theory to which the membrane

and five-brane couple. The membrane wrapped around S1 would give a string in six

dimensions. Like in ten dimensions, this is the perturbative type-IIA string. There is

another string however, obtained by wrapping the five-brane around the whole K3. This

is the heterotic string [31].

There is further evidence for this duality. The effective action of type-IIA theory on

K3 has a string solution singular at the core. The zero mode structure of the string is

similar to the perturbative type-IIA string. There is also a string solution which is regular

at the core. This is a solitonic string and analysis of its zero modes indicates that it has

the same (chiral) word-sheet structure as the heterotic string6. The string-string duality

map (11.8-11.9) exchanges the roles of the two strings. The type-IIA string now becomes

regular (solitonic), while the heterotic string solution becomes singular.

We will now compactify further both theories on a two-torus down to four dimensions

and examine the consequences of the duality. In both cases we use the standard Kaluza-

Klein ansatz described in Appendix A. The four-dimensional dilaton becomes as usual

φ = Φ − 1

2
log[detGαβ ] , (11.10)

where Gαβ is the metric of T 2 and Bαβ = ǫαβB is the antisymmetric tensor. We obtain

Shet
D=4 =

∫

d4x
√
−ge−φ [R + LB + Lgauge + Lscalar] , (11.11)

where

Lg+φ = R + ∂µφ∂µφ , (11.12)

LB = − 1

12
HµνρHµνρ , (11.13)

with

Hµνρ = ∂µBνρ −
1

2

[

BµαF
A,α
νρ + Aα

µF
B
a,νρ + L̂ijA

i
µF

j
νρ

]

+ cyclic (11.14)

6We have seen a similar phenomenon already in the case of the D1-string of type I string theory.
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≡ ∂µBνρ −
1

2
LIJA

I
µF

J
νρ + cyclic .

The matrix

L =



















0 0 1 0 ~0

0 0 0 1 ~0

1 0 0 0 ~0

0 1 0 0 ~0
~0 ~0 ~0 ~0 L̂



















(11.15)

is the O(6,22) invariant metric. Also

Cαβ = ǫαβB − 1

2
L̂ijY

i
αY

j
β , (11.16)

so that

Lgauge = −1

4

{[

(M̂−1)ij + L̂kiL̂ljY
k
αG

αβY l
β

]

F i
µνF

j,µν +Gαβ FB
α,µνF

µν
B,β+

+
[

Gαβ + CγαG
γδCδβ + Y i

α(M̂−1)ijY
j
β

]

FA,a
µν F β,µν

A − 2GαγCγβ FB
α,µνF

A,β,µν − (11.17)

−2L̂ijY
i
αG

αβ F j
µνF

B,µν
β + 2(Y i

α(M̂−1)ij + CγαG
γβL̂ijY

i
β) F a,A

µν F j,µν
}

≡ −1

4
(M−1)IJF

I
µνF

J,µν ,

where the index I takes 28 values. For the scalars

Lscalar = ∂µφ∂
µφ+

1

8
Tr[∂µM̂∂µM̂−1] − 1

2
Gαβ(M̂−1)ij∂µY

i
α∂

µY j
β +

+
1

4
∂µGαβ∂

µGαβ − 1

2detG

[

∂µB + ǫαβL̂ijY
i
α∂µY

j
β

] [

∂µB + ǫαβL̂ijY
i
α∂

µY j
β

]

(11.18)

= ∂µφ∂
µφ+

1

8
Tr[∂µM∂µM−1] .

We will now go to the standard axion basis in terms of the usual duality transformation

in four dimensions. First we will go to the Einstein frame by

gµν → e−φgµν , (11.19)

so that the action becomes

Shet,E
D=4 =

∫

d4x
√−g

[

R − 1

2
∂µφ∂µφ− 1

12
e−2φHµνρHµνρ− (11.20)

−1

4
e−φ(M−1)IJF

I
µνF

J,µν +
1

8
Tr(∂µM∂µM−1)

]

.

The axion is introduced as usual,

e−2φHµνρ =
ǫµνρ

σ

√−g∂σa . (11.21)
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The transformed equations come from the following action:

S̃het
D=4 =

∫

d4x
√−g

[

R− 1

2
∂µφ∂µφ− 1

2
e2φ∂µa∂µa−

1

4
e−φ(M−1)IJF

I
µνF

J,µν (11.22)

+
1

4
a LIJF

I
µνF̃

J,µν +
1

8
Tr(∂µM∂µM−1)

]

,

where

F̃ µν =
1

2

ǫµνρσ

√−gFρσ . (11.23)

Finally, defining the complex S field

S = a+ i e−φ , (11.24)

we obtain

S̃het
D=4 =

∫

d4x
√−g

[

R − 1

2

∂µS∂µS̄

ImS2
− 1

4
ImS(M−1)IJF

I
µνF

J,µν (11.25)

+
1

4
ReS LIJF

I
µνF̃

J,µν +
1

8
Tr(∂µM∂µM−1)

]

.

Now consider the type-IIA action (11.6). Going through the same procedure and

introducing the axion via

e−2φHµνρ =
ǫµνρ

σ

√−g

[

∂σa+
1

2
L̂ijY

i
αδσY

j
β ǫ

αβ
]

, (11.26)

we obtain the following four-dimensional action in the Einstein frame

S̃IIA
D=4 =

∫

d4x
√−g

[

R + Leven
gauge + Lodd

gauge + Lscalar

]

, (11.27)

with

Leven
gauge = −1

4

∫

d4x
√−g

[

e−φGαβ
(

FB
α,µν −BαγF

A,γ
µν

) (

FB,µν
β − BαδF

δ,µν
A

)

+ (11.28)

+e−φGαβF
A,α
µν F β,µν

A +
√

detGαβ(M̂−1)ij

(

F i
µν + Y i

αF
A,α
µν

) (

F j,µν + Y j
βF

β,µν
A

)]

,

Lodd
gauge =

1

2

∫

d4xǫµνρσ
[

1

4
aFB

α,µνF
A,α
ρσ +

1

2
ǫαβL̂ijY

i
βF

B
α,µν

(

F j
ρσ +

1

2
Y j

γ F
A,γ
ρσ

)

(11.29)

−1

8
ǫαβL̂ijBαβ

(

F i
µν + Y i

γF
A,γ
µν

) (

F j
ρσ + Y j

δ F
A,δ
ρσ

)

]

,

Lscalar = −1

2
(∂φ)2 +

1

4
∂µGαβ∂µG

αβ − 1

2detG
∂µB∂

µB +
1

8
Tr[∂µM̂∂µM̂−1] + (11.30)
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−1

2
e2φ(∂µa +

1

2
L̂ijǫ

αβY i
α∂

µY j
β )2 − 1

2
eφ
√

detGαβ(M̂−1)ijG
αβ∂µY

i
α∂

µY j
β .

Now we will use unprimed fields to refer to the heterotic side and primed ones for the

type-II side. We will now work out the implications of the six-dimensional duality relations

(11.8,11.9) in four dimensions. From (11.8), we obtain

e−φ =
√

detG′
αβ , e−φ′

=
√

detGαβ , (11.31)

Gαβ
√

detGαβ

=
G′

αβ
√

detG′
αβ

, A′α
µ = Aα

µ , (11.32)

gµν = g′µν Einstein frame , (11.33)

M̂ ′ = M̂ , Ai
µ = A′i

µ , Y i
α = Y ′i

α . (11.34)

Finally, the relation (11.9) implies

A = B′ , A′ = B (11.35)

and

1

2

ǫµν
ρσ

√−g ǫ
αβFB′

β,ρσ = e−φGαβ
[

FB
β,µν − CβγF

A,γ
µν − L̂ijY

i
βF

j
µν

]

− 1

2
a
ǫµν

ρσ

√−gF
A,α
ρσ , (11.36)

which is an electric-magnetic duality transformation on the Bα,µ gauge fields (see Appendix

D). It is easy to check that this duality maps the scalar heterotic terms to the type-IIA

ones and vice versa.

In the following, we will keep the 4 moduli of the two torus and the 16 Wilson lines Y i
α

In the heterotic case we will define the T, U moduli of the torus and the complex Wilson

lines as

W i = W i
1 + iW i

2 = −Y i
2 + UY i

1 , (11.37)

Gαβ =
T2 −

∑

i
(W i

2
)2

2U2

U2

(

1 U1

U1 |U |2
)

, B = T1 −
∑

iW
i
1W

i
2

2U2
. (11.38)

Altogether we have the complex field S∈SU(1,1)/U(1) (11.24) and the T, U,W i moduli ∈
O(2,18)

O(2)×O(18)
. Then the relevant scalar kinetic terms can be written as

Lhet
scalar = −1

2
∂zi∂z̄jK(zk, z̄k) ∂µz

i∂µz̄j , (11.39)

where the Kähler potential is

K = log

[

S2

(

T2U2 −
1

2

∑

i

(W i
2)

2

)]

. (11.40)

In the type-IIA case the complex structure is different: (11.37) remains the same but

Gαβ =
T2

U2

(

1 U1

U1 |U |2
)

, B = T1 . (11.41)
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Also

S = a−
∑

iW
i
1W

i
2

2U2

+ i(e−φ −
∑

i(W
i
2)

2

2U2

) . (11.42)

Here T ∈SU(1,1)/U(1) and S, U,W i ∈ O(2,18)
O(2)×O(18)

. In this language the duality transfor-

mations become

S ′ = T , T ′ = S , U = U ′ , W i = W ′i . (11.43)

In the type-IIA string, there is a SL(2,Z) T -duality symmetry acting on T by fractional

transformations. This is a good symmetry in perturbation theory. We also expect it to be a

good symmetry non-perturbatively, since it is a discrete remnant of a gauge symmetry and

is not expected to be broken by non-perturbative effects. Then heterotic/type-II duality

implies that there is an SL(2,Z) S-symmetry that acts on the coupling constant and the

axion. This is a non-perturbative symmetry from the point of view of the heterotic string.

It acts as an electric magnetic duality on all the 28 gauge fields. In the field theory limit

it implies an S-duality symmetry for N=4 super Yang-Mills theory in four dimensions.

We will finally see how heterotic/type-II duality acts on the 28 electric and 28 mag-

netic charges. Label the electric charges by a vector (m1, m2, n1, n2, q
i) where mi are the

momenta of the two torus, ni are the respective winding numbers, and qi are the rest of

the 24 charges. For the magnetic charges we write the vector (m̃1, m̃2, ñ1, ñ2, q̃
i). Because

of (11.36) we have the following duality map.



















m1

m2

n1

n2

qi



















→



















m1

m2

ñ2

−ñ1

qi



















,



















m̃1

m̃2

ñ1

ñ2

q̃i



















→



















m̃1

m̃2

−n2

n1

q̃i



















. (11.44)

One can compute the spectrum of BPS multiplets both short and intermediate. The results

of section 12 are useful in this respect.

Exercise. Find the BPS multiplicities on the heterotic and type-IIA side in four

dimensions.

There are indirect quantitative tests of this duality. Compactifying the heterotic string

to four dimensions with N=2 supersymmetry can be dual to the type-IIA string compacti-

fied on a CY manifold of a special kind (K3 fibration over P 1) [32, 33, 34]. In the heterotic

theory, the dilaton is in a vector multiplet. Consequently, the vector multiplet moduli

space has perturbative and non-perturbative corrections while the hypermultiplet moduli
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space is exact. In the dual type-II theory, the dilaton is in a hypermultiplet. Consequently,

the vector moduli space geometry has no corrections and can be computed at tree-level.

Doing the duality map that should reproduce all quantum corrections to the heterotic

side. This has been done in some examples, and in this way the one-loop heterotic correc-

tion was obtained which agreed with the heterotic computation. Moreover, all instanton

effects were obtained this way. Taking the field theory limit and decoupling gravity, the

Seiberg-Witten solution was verified for N=2 gauge theory. This procedure gives also a

geometric interpretation of the Seiberg-Witten solution. A review of these developements

can be found in [35].

12 Helicity string partition functions and multiplici-

ties of BPS states

We have seen in section 3 that BPS states are important ingredients in non-perturbative

dualities. The reason is that their special properties, most of the time, guarantee that

such states survive at strong coupling. In this section we would like to analyze ways of

counting BPS states in string perturbation theory.

An important point that should be stressed from the beginning is the following: A

generic BPS state is not protected from quantum corrections. The reason is that sometimes

groups of short BPS multiplets can combine into long multiplets of supersymmetry. Such

long multiplets are not protected from non-renormalization theorems. We would like thus

to count BPS multiplicities in such a way that only “unpaired” multiplets contribute. As it

is explained in Appendix B, this can be done with the help of helicity supertrace formulae.

They have precisely the properties we need in order to count BPS multiplicities that are

protected from non-renormalization theorems. Moreover, multiplicities counted via helicity

supertraces are insensitive to moduli. They are the generalizations of the elliptic genus

which is the stringy generalization of the Dirac index. In this sense, they are indices,

insensitive to the details of the physics. We will show here how we can compute helicity

supertraces in perturbative string groundstates and we will work out some interesting

examples.

We will introduce the helicity generating partition functions for D = 4 string theories

with N ≥ 1 spacetime supersymmetry. The physical helicity in closed string theory λ is a

sum of the left helicity λL coming from the left movers and the right helicity λR coming

from the right movers. Then, we can consider the following helicity-generating partition

function

Z(v, v̄) = Str[qL0 q̄L̄0e2πivλR−2πiv̄λL ] . (12.1)

We will first examine the heterotic string. Four-dimensional vacua with at least N=1
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spacetime supersymmetry have the following partition function

Zheterotic
D=4 =

1

τ2η2η̄2

1
∑

a,b=0

(−1)a+b+ab ϑ[ab ]

η
CInt[ab ] , (12.2)

where we have separated the (light-cone) bosonic and fermionic contributions of the four-

dimensional part. C[ab ] is the partition function of the internal CFT with (c, c̄) = (9, 22)

and at least (2,0) superconformal symmetry. a = 0 corresponds to the NS sector, a = 1

to the R sector and b = 0, 1 indicates the presence of the projection (−1)FL, where FL is

the zero mode of the N=2, U(1) current.

The oscillators that would contribute to the left helicity are the left moving light-cone

bosons ∂X± = ∂X3 ± i∂X4 contributing helicity ±1 respectively, and the the light-cone

fermions ψ± contributing again ±1 to the left helicity. Only ∂̄X± contribute to the right-

moving helicity. Calculating (12.1) is straightforward with the result

Zheterotic
D=4 (v, v̄) =

ξ(v)ξ̄(v̄)

τ2η2η̄2

1
∑

a,b=0

(−1)a+b+ab ϑ[ab ](v)

η
CInt[ab ] , (12.3)

where ξ(v) is given in (C.15). This can be simplified using spacetime supersymmetry to

Zheterotic
D=4 (v, v̄) =

ξ(v)ξ̄(v̄)

τ2η2η̄2

ϑ[11](v/2)

η
CInt[11](v/2) , (12.4)

with

CInt[11](v) = TrR[(−1)F Int

e2πiv J0 qLInt
0

−3/8 q̄L̄Int
0

−11/12] , (12.5)

where the trace is in the Ramond sector, and J0 is the zero mode of the U(1) current of the

N=2 superconformal algebra. CInt[11](v) is the elliptic genus of the internal (2,0) theory

and is antiholomorphic. The leading term of CInt[11](0) coincides with the Euler number

in CY compactifications.

If we define

Q =
1

2πi

∂

∂v
, Q̄ = − 1

2πi

∂

∂v̄
, (12.6)

then the helicity supertraces can be written as

Str[λ2n] = (Q+ Q̄)2n Zheterotic
D=4 (v, v̄)

∣

∣

∣

v=v̄=0
. (12.7)

Consider as an example the heterotic string on T 6 with N=4, D = 4 spacetime super-

symmetry. Its helicity partition function is

Zheterotic
N=4 (v, v̄) =

ϑ4
1(v/2)

η12η̄24
ξ(v)ξ̄(v̄)

Γ6,22

τ2
. (12.8)

It is obvious that we need at least four powers of Q in order to get a non-vanishing

contribution, implying B0 = B2 = 0, in agreement with the N=4 supertrace formulae
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derived in Appendix B. We will calculate B4 which, according to (B.33),(B.34) is sensitive

to short multiplets only:

B4 = 〈(Q+ Q̄)4〉 = 〈Q4〉 =
3

2

1

η̄24
. (12.9)

For the massless states the result agrees with (B.34), as it should. Moreover, from (B.33)

we observe that massive short multiplets with a bosonic ground-state give an opposite

contribution from multiplets with a fermionic ground-state. We learn that all such short

massive multiplets in the heterotic spectrum are ”bosonic” with multiplicities given by the

coefficients of the η−24.

Consider further

B6 = 〈(Q+ Q̄)6〉 = 〈Q6 + 15Q4Q̄2〉 =
15

8

2 − Ē2

η̄24
. (12.10)

Since there can be no intermediate multiplets in the perturbative heterotic spectrum we

get only contributions from the short multiplets. An explicit analysis at low levels confirms

the agreement between (B.33) and (12.10).

For type-II vacua, there are fermionic contributions to the helicity both from the left-

moving and right-moving world-sheet fermions. We will consider as a first example the

type-II string, compactified on T 6 to four dimensions with maximal N=8 supersymmetry.

The light-cone helicity generating partition function is

ZII
N=8(v, v̄) = Str[qL0 q̄L̄0e2πivλR−2πiv̄λL] = (12.11)

=
1

4

1
∑

α,β=0

1
∑

ᾱ,β̄=0

(−1)α+β+αβ ϑ[αβ ](v)ϑ3[αβ ](0)

η4
(−1)ᾱ+β̄+ᾱβ̄

ϑ̄[ᾱβ̄ ]ϑ̄3[ᾱβ̄ ](0)

η̄4

ξ(v)ξ̄(v̄)

Imτ |η|4
Γ6,6

|η|12 =

=
Γ6,6

Imτ

ϑ4
1(v/2)

η12

ϑ̄4
1(v̄/2)

η̄12
ξ(v)ξ̄(v̄) .

It is obvious that in order to obtain a non-zero result, we need at least a Q4 on the

left and a Q̄4 on the right. This is in agreement with our statement in appendix B:

B0 = B2 = B4 = B6 = 0 for an N = 8 theory. The first non-trivial case is B8 and by

straightforward computation we obtain

B8 ≡ Str[λ8] = 〈(Q+ Q̄)8〉 = 70〈Q4Q̄4〉 =
315

2

Γ6,6

Imτ
. (12.12)

At the massless level, the only N=8 representation is the supergravity representa-

tion, which contributes 315/2 in accordance with (B.56). At the massive levels we have

seen in appendix B that only short representations Sj can contribute, each contributing

315/2 (2j+1). We learn from (12.12) that all short massive multiplets have j = 0 and they
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are left and right ground states of the type II CFT breaking thus N=8 supersymmetry to

N=4. Since the mass for these states is

M2 =
1

4
p2

L , ~m · ~n = 0 , (12.13)

such multiplets exist for any (6,6) lattice vector satisfying the matching condition. The

multiplicity coming from the rest of the theory is one.

We will now compute the next non-trivial supertrace7

B10 = 〈(Q+ Q̄)10〉 = 210〈Q6Q̄4 +Q4Q̄6〉 = −4725

8π2

Γ6,6

Imτ

(

ϑ′′′1

ϑ′1
+ 3ξ′′ + cc

)

=
4725

4

Γ6,6

Imτ
.

(12.14)

In this trace, I1 intermediate representations can also in principle contribute. Compar-

ing (12.14) with (B.53,B.63) we learn that there are no I1 representations in the pertur-

bative string spectrum.

Moving further,

B12 = 〈495(Q4Q̄8 +Q8Q̄4) + 924Q6Q̄6〉 =
[

10395

2
+

31185

64
(E4 + Ē4)

]

Γ6,6

Imτ
(12.15)

=
[

10395 · 19

32
+

10395 · 45

4

(

E4 − 1

240
+ cc

)]

Γ6,6

Imτ
.

Comparison with (B.59) indicates that the first term in the formula above contains the

contribution of the short multiplets. Here however, I2 multiplets can also contribute and

the second term in (12.15) describes precisely their contribution. These are string states

that are groundstates either on the left or on the right and comparing with (B.68) we learn

that their multiplicities are given by (E4 − 1)/240. More precisely, for a given mass level

with p2
L −p2

R = 4N > 0 the multiplicity of these representations at that mass level is given

by the sum of cubes of all divisors of N, d4(N) (see Appendix C).

Ij
2 :

∑

j

(−1)2jDj = d4(N) . (12.16)

They break N=8 supersymmetry to N=2.

The last trace that long multiplets do not contribute is

B14 = 〈(Q+ Q̄)14〉 =
[

45045

32
20 +

14189175

16

(

2
E4 − 1

240
+

1 − E6

504
+ cc

)]

Γ6,6

Imτ
. (12.17)

Although in this trace I3 representations can contribute, there are no such representations

in the perturbative string spectrum. The first term in (12.17) comes from short repre-

sentations while the second from I2 representations. Taking into account (B.69) we can

derive the following sum rule

Ij
2 :

∑

j

(−1)2jD3
j = d6(N) . (12.18)

7We use formulae from appendix C here.
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The final example we will consider is also instructive because it shows that although

a string groundstate can contain many BPS multiplets, most of them are not protected

from renormalization. The relevant vacuum is the type II string compactified on K3×T 2

down to four dimensions.

We will first start from the Z2 special point of the K3 moduli space. This is given by

a Z2 orbifold of the four-torus. We can write the one-loop vacuum amplitude as

ZII =
1

8

1
∑

g,h=0

1
∑

α,β=0

1
∑

ᾱ,β̄=0

(−1)α+β+αβ ϑ
2[αβ ]

η2

ϑ[α+h
β+g ]

η

ϑ[α−h
β−g ]

η
× (12.19)

×(−1)ᾱ+β̄+ᾱβ̄
ϑ̄2[ᾱβ̄ ]

η̄2

ϑ̄[ᾱ+h
β̄+g

]

η̄

ϑ̄[ᾱ−h
β̄−g

]

η̄

1

Imτ |η|4
Γ2,2

|η|4 Z4,4[
h
g ]

where

Z4,4[
0
0] =

Γ4,4

|η|8 , Z4,4[
0
1] = 16

|η|4
|ϑ2|4

=
|ϑ3ϑ4|4
|η|8 (12.20)

Z4,4[
1
0] = 16

|η|4
|ϑ4|4

=
|ϑ2ϑ3|4
|η|8 , Z4,4[

1
1] = 16

|η|4
|ϑ3|4

=
|ϑ2ϑ4|4
|η|8 (12.21)

We have N=4 supersymmetry in four dimensions. The mass formula of BPS states

depends only on the two-torus moduli. Moreover states that are groundstates both on the

left and the right will give short BPS multiplets that break half of the supersymmetry.

On the other hand states that are groundstates on the left but otherwise arbitrary on the

right (and vice versa) will provide BPS states that are intermediate multiplets breaking

3/4 of the supersymmetry. Obviously there are many such states in the spectrum. Thus,

we naively expect many perturbative intermediate multiplets.

We will now evaluate the helicity supertrace formulae. We will first write the helicity

generating function,

ZII(v, v̄) =
1

4

∑

αβᾱβ̄

(−1)α+β+αβ+ᾱ+β̄+ᾱβ̄ ϑ[αβ ](v)ϑ[αβ ](0)

η6

ϑ̄[ᾱβ̄ ](v̄)ϑ̄[ᾱβ̄ ](0)

η̄6
ξ(v)ξ̄(v̄)C[α ᾱ

β β̄ ]
Γ2,2

τ2

(12.22)

=
ϑ2

1(v/2)ϑ̄2
1(v̄/2)

η6 η̄6
ξ(v)ξ̄(v̄)C[1 1

1 1](v/2, v̄/2)
Γ2,2

τ2

where we have used the Jacobi identity in the second line. C[α ᾱ
β β̄ ] is the partition func-

tion of the internal (4,4) superconformal field theory in the various sectors. Moreover

C[1 1
1 1](v/2, v̄/2) is an even function of v, v̄ due to the SU(2) symmetry and

C[1 1
1 1](v, 0) = 8

4
∑

i=2

ϑ2
i (v)

ϑ2
i (0)

(12.23)

is the elliptic genus of the (4,4) internal theory on K3. Although we calculated the elliptic

genus in the Z2 orbifold limit the calculation is valid on the whole of K3 since the elliptic

genus does not depend on the moduli.
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Let us first compute the trace of the fourth power of the helicity:

〈λ4〉 =〉(Q+ Q̄)4〉 = 6〈Q2Q̄2 +Q2Q̄4〉 = 36
Γ2,2

τ2
(12.24)

As expected, we obtain contributions from the the groundstates only, but with arbitrary

momentum and winding on the (2,2) lattice. At the massless level, we have the N=4 su-

pergravity multiplet contributing 3 and 22 vector multiplets contributing 3/2 each, making

a total of 36, in agreement with (12.24). There is a tower of massive short multiplets at

each mass level, with mass M2 = p2
L where pL is the (2,2) momentum. The matching

condition implies, ~m · ~n = 0.

We will further compute the trace of the sixth power of the helicity, to investigate the

presence of intermediate multiplets.

〈λ6〉 =〉(Q+ Q̄)6〉 = 15〈Q4Q̄2 +Q2Q̄4〉 = 90
Γ2,2

τ2
(12.25)

where we have used

∂2
vC[1 1

1 1](v, 0)|v=0 = −16π2 E2 (12.26)

The only contribution comes from the short multiplets again as evidenced by (B.36),

since 22 · 15/8 + 13 · 15/4 = 90. We conclude that there are no contributions from inter-

mediate multiplets in (12.26) although there are many such states in the spectrum. The

reason is that such intermediate multiplets pair up into long multiplets.

We will finally comment on a problem where counting BPS multiplicities is important.

This is the problem of counting black-hole microscopic states in the case of maximal

supersymmetry in type II string theory. For an introduction we refer the reader to [30].

The essential ingredient is that at weak coupling, states can be constructed using various

D-branes. At strong coupling these states have the interpretation of charged macroscopic

black holes. The number of states for given charges can be computed at weak coupling.

These are BPS states. Their multiplicity can then be extrapolated to strong coupling,

and gives an entropy that scales as the classical area of the black hole as postulated

by Bekenstein and Hawking. In view of our previous discussion such an extrapolation is

naive. It is the number of unpaired multiplets that can be extrapolated at strong coupling.

Here however the relevant states are the lowest spin vector multiplets, which as shown in

appendix B have always positive supertrace. Thus, the total supertrace is proportional to

the overall number of multiplets and justifies the naive extrapolation to strong coupling.

13 Outlook

I hope to have provided a certain flavor of the the recent developments towards a non-

perturbative understanding of string theory.
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Despite the many miraculous characteristics of string theory, there are some major

unresolved problems. The most important in my opinion is to make contact with the real

world and more concretely to pin down the mechanism of supersymmetry breaking and sta-

bility of the vacuum in that case. Recent advances in our non-perturbative understanding

of the theory could help in this direction.

Also, the recent non-perturbative advances seem to require other extended objects

apart from strings. This, makes the following question resurface: What is string theory?

A complete formulation which would include the extended objects required is still lacking.

I think this is an exciting period, because we seem being at the verge to understand

some of the mysteries of string theory.
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Appendix A: Toroidal Kaluza-Klein reduction

In this appendix we will describe the Kaluza-Klein ansätz for toroidal dimensional reduc-

tion from 10 to D < 10 dimensions. A more detailed discussion can be found in [36].

Hatted fields will denote the (10 − D)-dimensional fields and similarly for the indices.

Greek indices from the beginning of the alphabet will denote the 10 − D internal (com-

pact) dimensions. Unhatted Greek indices from the middle of the alphabet will denote the

D non-compact dimensions.

The standard form for the 10-bein is

êr̂
µ̂ =

(

er
µ Aβ

µE
a
β

0 Ea
α

)

, êµ̂
r̂ =

(

eµ
r −eν

rA
α
ν

0 Eα
a

)

. (A.1)
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For the metric we have

Ĝµ̂ν̂ =

(

gµν + Aα
µGαβA

β
ν GαβA

β
µ

GαβA
β
ν Gαβ

)

, Ĝµ̂ν̂ =

(

gµν −Aµα

−Aνα Gαβ + Aα
ρA

β,ρ

)

. (A.2)

Then the part of the action containing the Hilbert term as well as the dilaton becomes

α′D−2Sheterotic
D =

∫

dDx
√

−det g e−φ
[

R + ∂µφ∂
µφ+

1

4
∂µGαβ∂

µGαβ − 1

4
GαβF

A
µν

α
F β,µν

A

]

,

(A.3)

where

φ = Φ̂ − 1

2
log(detGαβ) , (A.4)

FA
µν

α
= ∂µA

α
ν − ∂νA

α
µ . (A.5)

We will now turn to the antisymmetric tensor part of the action:

− 1

12

∫

d10x
√

−det Ĝe−Φ̂Ĥ µ̂ν̂ρ̂Ĥµ̂ν̂ρ̂ = −
∫

dDx
√

−det g e−φ
[

1

4
HµαβH

µαβ+ (A.6)

+
1

4
HµναH

µνα +
1

12
HµνρH

µνρ
]

where we have used Hαβγ = 0, and

Hµαβ = er
µê

µ̂
r̂ Ĥµ̂αβ = Ĥµαβ , (A.7)

Hµνα = er
µe

s
ν ê

µ̂
r ê

ν̂
sĤµ̂ν̂α = Ĥµνα −Aβ

µĤναβ + Aβ
ν Ĥµαβ , (A.8)

Hµνρ = er
µe

s
νe

t
ρê

µ̂
r ê

ν̂
s ê

ρ̂
t Ĥµ̂ν̂ρ̂ = Ĥµνρ +

[

−Aα
µĤανρ + Aα

µA
β
ν Ĥαβρ + cyclic

]

. (A.9)

Similarly,

∫

d10x
√

−det Ĝ e−Φ̂
16
∑

I=1

F̂ I
µ̂ν̂F

I,µ̂ν̂ =
∫

dDx
√

−det g e−φ
16
∑

I=1

[

F̃ I
µνF̃

I,µν + 2F̃ I
µαF̃

I,µα
]

,

(A.10)

with

Y I
α = ÂI

α , AI
µ = ÂI

µ − Y I
αA

a
µ , F̃ I

µν = F I
µν + Y I

αF
A,α
µν (A.11)

F̃ I
µα = ∂µY

I
α , F I

µν = ∂µA
I
ν − ∂νA

I
µ . (A.12)

We can now evaluate the D-dimensional antisymmetric tensor pieces using (A.7)-(A.9):

Ĥµαβ = ∂µB̂αβ +
1

2

∑

I

[

Y I
α ∂µY

I
β − Y I

β ∂µY
I
α

]

. (A.13)

Introducing

Cαβ ≡ B̂αβ − 1

2

∑

I

Y I
αY

J
β , (A.14)

we obtain from (A.6)

Hµαβ = ∂µCαβ +
∑

I

Y I
α ∂µY

I
β . (A.15)
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Also

Ĥµνα = ∂µB̂να − ∂νB̂µα +
1

2

∑

I

[

ÂI
ν∂µY

I
α − ÂI

µ∂νY
I
α − Y I

α F̂
I
µν

]

. (A.16)

Define

Bµ,α ≡ B̂µα +BαβA
β
µ +

1

2

∑

I

Y I
αA

I
µ , (A.17)

FB
α,µν = ∂µBα,ν − ∂νBα,µ , (A.18)

we obtain from (A.7)

Hµνα = FB
αµν − CαβF

A,β
µν −

∑

I

Y I
αF

I
µν . (A.19)

Finally,

Bµν = B̂µν +
1

2

[

Aα
µBνα +

∑

I

AI
µA

α
νY

I
α − (µ↔ ν)

]

− Aα
µA

β
νBαβ (A.20)

and

Hµνρ = ∂µBνρ −
1

2

[

BµαF
A,α
νρ + Aα

µF
B
a,νρ +

∑

I

AI
µF

I
νρ

]

+ cyclic (A.21)

≡ ∂µBνρ −
1

2
LijA

i
µF

j
νρ + cyclic

where we combined the 36 − 2D gauge fields Aα
µ, Bα,µ, A

I
µ into the uniform notation Ai

µ,

i = 1, 2, . . . , 36 − 2D and Lij is the O(10-D,26-D)-invariant metric. We can combine the

scalars Gαβ , Bαβ, Y
I
α into the matrix M given in (11.3). Putting everything together, the

D-dimensional action becomes

Sheterotic
D =

∫

dDx
√

−det ge−φ
[

R + ∂µφ∂µφ− 1

12
H̃µνρH̃µνρ− (A.22)

−1

4
(M−1)ijF

i
µνF

jµν +
1

8
Tr(∂µM∂µM−1)

]

.

We will also consider here the KK reduction of a three-index antisymmetric tensor

Cµνρ. Such a tensor appears in type-II string theory and eleven-dimensional supergravity.

The action for such a tensor is

SC = − 1

2 · 4!

∫

ddx
√
−G F̂ 2 , (A.23)

where

F̂µνρσ = ∂µĈνρσ − ∂σĈµνρ + ∂ρĈσµν − ∂νĈρσµ . (A.24)

We define the lower-dimensional components as

Cαβγ = Ĉαβγ , Cµαβ = Ĉµαβ − CαβγA
γ
µ , (A.25)

Cµνα = Ĉµνα + ĈµαβA
β
ν − ĈναβA

β
µ + CαβγA

β
µA

γ
ν , (A.26)

Cµνρ = Ĉµνρ +
(

−ĈνραA
α
µ + ĈαβρA

α
µA

β
ν + cyclic

)

− CαβγA
α
µA

β
νA

γ
ρ . (A.27)
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Then,

SC = − 1

2 · 4!

∫

dDx
√−g

√

detGαβ

[

FµνρσF
µνρσ + 4FµνραF

µνρα + 6FµναβF
µναβ + 4FµαβγF

µαβγ
]

,

(A.28)

where

Fµαβγ = ∂µCαβγ , Fµναβ = ∂µCναβ − ∂νCµαβ + CαβγF
γ
µν , (A.29)

Fµνρα = ∂µCνρα + CµαβF
β
νρ + cyclic , (A.30)

Fµνρσ = (∂µCνρσ + 3 perm.) + (CρσαF
α
µν + 5 perm.) . (A.31)

Appendix B: BPS multiplets and helicity supertrace

formulae

BPS states are important probes of non-perturbative physics in theories with extended

(N ≥ 2) supersymmetry.

BPS states are special for the following reasons:

• Due to their relation with central charges, although massive they form multiplets

under extended supersymmetry which are shorter than the generic massive multiplet.

Their mass is given in terms of their charges and moduli expectation values.

• At generic points in moduli space they are stable due to energy and charge conser-

vation.

• Their mass-formula is supposed to be exact if one uses renormalized values for the

charges and moduli. 8 The argument is that quantum corrections would spoil the relation

of mass and charges, and if we assume unbroken supersymmetry at the quantum level that

would give incompatibilities with the dimension of their representations.

In order to present the concept of BPS states we will briefly review the representation

theory of N -extended supersymmetry. A more complete treatment can be found in [37].

The anti-commutation relations are

{QI
α, Q

J
β} = ǫαβZ

IJ , {Q̄I
α̇, Q

J
β̇
} = ǫα̇β̇Z̄

IJ , {QI
α, Q̄

J
α̇} = δIJ 2σµ

αα̇Pµ , (B.1)

where ZIJ is the antisymmetric central charge matrix.

The algebra is invariant under the U(N) R-symmetry that rotates Q, Q̄. We begin with

a description of the representations of the algebra. We will first assume that the central

charges are zero.

8In theories with N ≥ 4 supersymmetry there are no renormalizations.
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• Massive representations. We can go to the rest frame P ∼ (−M,~0). The relations

become

{QI
α, Q̄

J
α̇} = 2Mδαα̇δ

IJ , {QI
α, Q

J
β} = {Q̄I

α̇, Q̄
J
β̇
} = 0 . (B.2)

Define the 2N fermionic harmonic creation and annihilation operators

AI
α =

1√
2M

QI
α , A†I

α =
1√
2M

Q̄I
α̇ . (B.3)

Building the representation is now easy. We start with Clifford vacuum |Ω〉 which is

annihilated by the AI
α and we generate the representation by acting with the creation

operators. There are
(

2N
n

)

states at the n-th oscillator level. The total number of states is
∑2N

n=0

(

2N
n

)

, half of them being bosonic and half of them fermionic. The spin comes from

symmetrization over the spinorial indices. The maximal spin is the spin of the ground-

states plus N .

Example. Suppose N=1 and the ground-state transforms into the [j] representation

of SO(3). Here we have two creation operators. Then, the content of the massive repre-

sentation is [j] ⊗ ([1/2] + 2[0]) = [j ± 1/2] + 2[j]. The two spin-zero states correspond to

the ground-state itself and to the state with two oscillators.

• Massless representations. In this case we can go to the frame P ∼ (−E, 0, 0, E). The

anti-commutation relations now become

{QI
α, Q̄

J
α̇} = 2

(

2E 0

0 0

)

δIJ , (B.4)

the rest being zero. QI
2, Q̄

I
2̇

totally anticommute so they are represented by zero. We have

N nontrivial creation and annihilation operators AI = QI
1/2

√
E,A† I = Q̄I

1/2
√
E, and the

representation is 2N -dimensional. It is much shorter than the massive one.

• Non-zero central charges. In this case the representations are massive. The central

charge matrix can be brought be a U(N) transformation to block diagonal form and we

will label the real positive eigenvalues by Zm. We assume that N is even so that m =

1, 2, . . . , N/2. We will split the index I → (a,m). a = 1, 2 labels positions inside the 2× 2

blocks while m labels the blocks. Then

{Qam
α , Q̄bn

α̇ } = 2Mδαα̇δabδmn , {Qam
α , Qbn

β } = Znǫ
αβǫabδmn . (B.5)

Define the following fermionic oscillators

Am
α =

1√
2
[Q1m

α + ǫαβQ
2m
β ] , Bm

α =
1√
2
[Q1m

α − ǫαβQ
2m
β ] , (B.6)

and similarly for the conjugate operators. The anticommutators become

{Am
α , A

n
β} = {Am

α , B
n
β} = {Bm

α , B
n
β} = 0 , (B.7)

{Am
α , A

†n
β } = δαβδ

mn(2M + Zn) , {Bm
α , B

†n
β } = δαβδ

mn(2M − Zn) . (B.8)
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Unitarity requires that the right hand sides in (B.8) be non-negative. This in turn implies

the Bogomolnyi bound

M ≥ max
[

Zn

2

]

. (B.9)

Consider 0 ≤ r ≤ N/2 of the Zn’s to be equal to 2M . Then 2r of the B-oscillators

vanish identically and we are left with 2N − 2r creation and annihilation operators. The

representation has 22N−2r states. The maximal case r = N/2 gives rise to the short BPS

multiplet whose number of states are the same as in the massless multiplet. The other

multiplets with 0 < r < N/2 are known as intermediate BPS multiplets.

Another ingredient that makes supersymmetry special is some special properties of

supertraces of powers of the helicity. Such supertraces appear in loop amplitudes and they

will be quite useful. They can also be used to distiguish BPS states. We will define the

helicity supertrace on a supersymmetry representation R as

B2n(R) = TrR[(−1)2λλ2n] . (B.10)

It is useful to introduce the “helicity generating function” of a given supermultiplet R

ZR(y) = str y2λ . (B.11)

For a particle of spin j we have

Z[j] =















(−)2j
(

y2j+1−y−2j−1

y−1/y

)

massive

(−)2j(y2j + y−2j) massless

. (B.12)

When tensoring representations the generating functionals get multiplied,

Zr⊗r̃ = ZrZr̃ . (B.13)

The supertrace of the nth power of helicity can be extracted from the generating functional

through

Bn(R) = (y2 d

dy2
)n ZR(y)|y=1 . (B.14)

For a supersymmetry representation constructed from a spin [j] ground-state by acting

with 2m oscillators we obtain

Zm(y) = Z[j](y)(1 − y)m(1 − 1/y)m . (B.15)

We will now analyse in more detail N=2,4 supersymmetric representations

• N=2 Supersymmetry. There is only one central charge eigenvalue Z. The long

massive representations has the following content:

Lj : [j] ⊗ ([1] + 4[1/2] + 5[0]) . (B.16)

49



When M = Z/2 we obtain the short (BPS) massive multiplet

Sj : [j] ⊗ (2[1/2] + 4[0]) . (B.17)

Finally the massless multiplets have the following content

M0
λ : ±(λ + 1/2) + 2(±λ) + ±(λ− 1/2) . (B.18)

λ = 0 corresponds to the hypermultiplet, λ = 1/2 to the vector multiplet and λ = 3/2 to

the supergravity multiplet.

We have the following helicity supertraces

B0(any rep) = 0 , (B.19)

B2(M
0
λ) = (−1)2λ+1 , B2(Sj) = (−1)2j+1 Dj , B2(Lj) = 0 . (B.20)

• N=4 Supersymmetry. Here we have two eigenvalues for the central charge matrix

Z1 ≥ Z2 ≥ 0. For the generic massive multiplet, M > Z1, and all eight raising operators act

non-trivially. The representation is long, containing 128 bosonic and 128 fermionic states.

The generic long massive multiplet can be generated by tensoring the representation [j] of

its ground-state with the long fermionic oscillator representation of the N=4 algebra:

Lj : [j] ⊗ (42[0] + 48[1/2] + 27[1] + 8[3/2] + [2]) . (B.21)

It contains 128 Dj bosonic degrees of freedom and 128 Dj fermionic ones (Dj = 2j + 1).

The minimum-spin massive long (ML) multiplet has j = 0 and maximum spin 2 with the

following content:

s = 2 massive long : 42[0] + 48[1/2] + 27[1] + 8[3/2] + [2] . (B.22)

The generic representation saturating the mass bound, M = Z1 > Z2, leaves one

unbroken supersymmetry and is referred to as massive intermediate BPS multiplet . It

can be obtained as

Ij : [j] ⊗ (14[0] + 14[1/2] + 6[1] + [3/2]) (B.23)

and contains 32Dj bosonic and 32Dj fermionic states. The minimum spin multiplet (j=0)

has maximum spin 3/2 and content

I3/2 : 14[0] + 14[1/2] + 6[1] + [3/2] . (B.24)

Finally, when M = |Z1| = |Z2| the representation is a short BPS representation. It

breaks half of the supersymmetries. For massive such representations we have the content

Sj : [j] ⊗ (5[0] + 4[1/2] + [1]) , (B.25)
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with 8Dj bosonic and 8Dj fermionic states. The representation with minimum greatest

spin is the one with j = 0, and maximum spin 1:

S1 : 5[0] + 4[1/2] + [1] . (B.26)

Massless multiplets, which arise only when both central charges vanish, are thus always

short. They have the following O(2) helicity content:

M0
λ : [±(λ + 1)] + 4[±(λ+ 1/2)] + 6[±(λ)] + 4[±(λ− 1/2)] + [±(λ− 1)] , (B.27)

with 16 bosonic and 16 fermionic states. There is also the CPT-self-conjugate vector

representation (V 0) (corresponding to λ = 0) with content 6[0] + 4[±1/2] + [±1] and 8

bosonic and 8 fermionic states. For λ = 1 we obtain the spin-two massless supergravity

multiplet which has the helicity content

M0
1 : [±2] + 4[±3/2] + 6[±1] + 4[±1/2] + 2[0] . (B.28)

Long representations can be decomposed into intermediate representations as

Lj → 2 Ij + Ij+1/2 + Ij−1/2 . (B.29)

When further, by varying the moduli, we can arrange that M = |Z1| = |Z2| then the

massive intermediate representations can break into massive short representations as

Ij → 2Sj + Sj+1/2 + Sj−1/2 . (B.30)

Finally when a short representation becomes massless, it decomposes as follows into mass-

less representations:

Sj →
j
∑

λ=0

M0
λ , j − λ ∈ Z . (B.31)

By direct calculation we obtain the following helicity supertrace formulae:

Bn(any rep) = 0 for n = 0, 2 . (B.32)

The non-renormalization of the two derivative effective actions in N=4 supersymmetry is

based on (B.32).

B4(Lj) = B4(Ij) = 0 , B4(Sj) = (−1)2j 3

2
Dj (B.33)

B4(M
0
λ) = (−1)2λ 3 , B4(V

0) =
3

2
. (B.34)

These imply that only short multiplets contribute in the renormalization of some terms in

the four derivative effective action in the presence of N=4 supersymmetry. It also strongly
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suggests that such corrections come only from one order (usually one-loop) in perturbation

theory.

The following helicity sums will be useful when counting intermediate multiplets in

string theory:

B6(Lj) = 0 , B6(Ij) = (−1)2j+145

4
Dj , B6(Sj) = (−1)2j 15

8
D3

j , (B.35)

B6(M
0
λ) = (−1)2λ 15

4
(1 + 12λ2) , B6(V

0) =
15

8
. (B.36)

Finally,

B8(Lj) = (−1)2j 315

4
Dj , B8(Ij) = (−1)2j+1105

16
Dj(1 +D2

j ) , (B.37)

B8(Sj) = (−1)2j 21

64
Dj(1 + 2 D4

j ) , (B.38)

B8(M
0
λ) = (−1)2λ 21

16
(1 + 80λ2 + 160λ4) , B8(V

0) =
63

32
. (B.39)

The massive long N=4 representation is the same as the short massive N=8 representation,

which explains the result in (B.37).

Observe that the trace formulae above are in accord with the decompositions (B.29)-

(B.31).

•N=8 supersymmetry. The highest possible supersymmetry in four dimensions is N=8.

Massless representations (T λ
0 ), have the following helicity content

(λ± 2) + 8
(

λ± 3

2

)

+ 28(λ± 1) + 56
(

λ± 1

2

)

+ 70(λ) . (B.40)

Physical (CPT-invariant) representations are given by Mλ
0 = T λ

0 + T−λ
0 and contain 28

bosonic states and an equal number of fermionic ones with the exception of the supergravity

representation M0
0 = T 0

0 which is CPT-self-conjugate:

(±2) + 8
(

±3

2

)

+ 28(±1) + 56
(

±1

2

)

+ 70(0) , (B.41)

and contains 27 bosonic states.

Massive short representations (Sj), are labeled by the SU(2) spin j of the ground state

and have the following content

[j] ⊗ ([2] + 8[3/2] + 27[1] + 48[1/2] + 42[0]) . (B.42)

They break four (half) of the supersymmetries and contain 27 · Dj bosonic states. Sj

decomposes to massless representations as

Sj →
j
∑

λ=0

Mλ
0 , (B.43)
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where the sum runs on integer values of λ if j is integer and on half-integer values if j is

half-integer.

There are three types of intermediate multiplets which we list below

Ij
1 : [j] ⊗ ([5/2] + 10[2] + 44[3/2] + 110[1] + 165[1/2] + 132[0]) , (B.44)

Ij
2 : [j] ⊗ ([3] + 12[5/2] + 65[2] + 208[3/2] + 429[1] + 572[1/2] + 429[0]) , (B.45)

Ij
3 : [j] ⊗ ([7/2] + 14[3] + 90[5/2] + 350[2] + 910[3/2] + 1638[1] + 2002[1/2] + 1430[0]) .

(B.46)

They break respectively 5,6,7 supersymmetries. They contain 29 ·Dj (Ij
1), 211 ·Dj (Ij

2) and

213 ·Dj (Ij
3) bosonic states.

Finally, the long representations (Lj) (that break all supersymmetries ) are given by

[j]⊗([4] + 16[7/2] + 119[3] + 544[5/2] + 1700[2] + 3808[3/2] + 6188[1] + 7072[1/2] + 4862[0]) .

(B.47)

Lj contains 215 ·Dj bosonic states.

We also have the following recursive decomposition formulae:

Lj → I
j+ 1

2

3 + 2Ij
3 + I

j− 1

2

3 , (B.48)

Ij
3 → I

j+ 1

2

2 + 2Ij
2 + I

j− 1

2

2 , (B.49)

Ij
2 → I

j+ 1

2

1 + 2Ij
1 + I

j− 1

2

1 , (B.50)

Ij
1 → Sj+ 1

2 + 2Sj + Sj− 1

2 . (B.51)

All even helicity supertraces up to order six vanish for N=8 representations. For the

rest we obtain:

B8(M
λ
0 ) = (−1)2λ 315 , (B.52)

B10(M
λ
0 ) = (−1)2λ 4725

2
(6λ2 + 1) , (B.53)

B12(M
λ
0 ) = (−1)2λ 10395

16
(240λ4 + 240λ2 + 19) , (B.54)

B14(M
λ
0 ) = (−1)2λ 45045

16
(336λ6 + 840λ4 + 399λ2 + 20) , (B.55)

B16(M
λ
0 ) = (−1)2λ 135135

256
(7680λ8 + 35840λ6 + 42560λ4 + 12800λ2 + 457) , (B.56)

The supertraces of the massless supergravity representation M0
0 can be obtained from

the above by setting λ = 0 and dividing by a factor of two to account for the smaller

dimension of the representation.

B8(S
j) = (−1)2j · 315

2
Dj , (B.57)
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B10(S
j) = (−1)2j · 4725

8
Dj(D

2
j + 1) , (B.58)

B12(S
j) = (−1)2j · 10395

32
Dj(3D

4
j + 10D2

j + 6) , (B.59)

B14(S
j) = (−1)2j · 45045

128
Dj(3D

6
j + 21D4

j + 42D2
j + 14) , (B.60)

B16(S
j) = (−1)2j · 45045

512
Dj(10D8

j + 120D6
j + 504D4

j + 560D2
j + 177) , (B.61)

B8(I
j
1) = 0 , (B.62)

B10(I
j
1) = (−1)2j+1 · 14175

4
Dj , (B.63)

B12(I
j
1) = (−1)2j+1 · 155925

16
Dj(2D

2
j + 3) , (B.64)

B14(I
j
1) = (−1)2j+1 · 2837835

64
Dj(D

2
j + 1)(D2

j + 4) , (B.65)

B16(I
j
1) = (−1)2j+1 · 2027025

128
Dj(4D

6
j + 42D4

j + 112D2
j + 57) , (B.66)

B8(I
j
2) = B10(I

j
2) = 0 , (B.67)

B12(I
j
2) = (−1)2j · 467775

4
Dj , (B.68)

B14(I
j
2) = (−1)2j · 14189175

16
Dj(D

2
j + 2) , (B.69)

B16(I
j
2) = (−1)2j · 14189175

32
Dj(6D

4
j + 40D2

j + 41) , (B.70)

B8(I
j
3) = B10(I

j
3) = B12(I

j
3) = 0 , (B.71)

B14(I
j
3) = (−1)2j+1 · 42567525

8
Dj , (B.72)

B16(I
j
3) = (−1)2j+1 · 212837625

8
Dj(2D

2
j + 5) , (B.73)

B8(L
j) = B10(L

j) = B12(L
j) = B14(L

j) = 0 , (B.74)

B16(L
j) = (−1)2j · 638512875

2
Dj . (B.75)

A further check of the formulae above is provided by the fact that they respect the

decomposition formulae of the various representations , (B.43,B.48-B.51).
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Appendix C: Modular forms

In this appendix we collect some formulae for modular forms, which are useful for analysing

the spectrum of BPS states and BPS-generated one-loop corrections to the effective su-

pergravity theories. A (holomorphic) modular form Fd(τ) of weight d behaves as follows

under modular transformations:

Fd(−1/τ) = τdFd(τ) Fd(τ + 1) = Fd(τ) . (C.1)

We list first the Eisenstein series:

E2 =
12

iπ
∂τ log η = 1 − 24

∞
∑

n=1

nqn

1 − qn
, (C.2)

E4 =
1

2

(

ϑ8
2 + ϑ8

3 + ϑ8
4

)

= 1 + 240
∞
∑

n=1

n3qn

1 − qn
, (C.3)

E6 =
1

2

(

ϑ4
2 + ϑ4

3

) (

ϑ4
3 + ϑ4

4

) (

ϑ4
4 − ϑ4

2

)

= 1 − 504
∞
∑

n=1

n5qn

1 − qn
. (C.4)

In counting BPS states in string theory the following combinations arise

H2 ≡
1 − E2

24
=

∞
∑

n=1

nqn

1 − qn
≡

∞
∑

n=1

d2(n)qn , (C.5)

H4 ≡
E4 − 1

240
=

∞
∑

n=1

n3qn

1 − qn
≡

∞
∑

n=1

d4(n)qn , (C.6)

H6 ≡
1 −E6

504
=

∞
∑

n=1

n5qn

1 − qn
≡

∞
∑

n=1

d6(n)qn . (C.7)

We have the following arithmetic formulae for d2k:

d2k(N) =
∑

n|N
n2k−1 , k = 1, 2, 3 . (C.8)

E4 and E6 are modular forms of weight four and six respectively. They generate the

ring of modular forms. E2 is not exactly a modular form. However,

Ê2 = E2 −
3

πτ2
(C.9)

is a modular form of weight two but is not holomorphic any more. The (modular invariant)

j function and η24 can be written as

j =
E3

4

η24
=

1

q
+ 744 + . . . , η24 =

1

26 · 33

[

E3
4 −E2

6

]

. (C.10)

Here we will give some identities between derivatives of ϑ-functions and modular forms.

They are useful for trace computations in string theory.

ϑ′′′1

ϑ′1
= −π2 E2 ,

ϑ
(5)
1

ϑ′1
= −π2 E2

(

4πi∂τ logE2 − π2E2

)

, (C.11)
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− 3
ϑ

(5)
1

ϑ′1
+ 5

(

ϑ′′′1

ϑ′1

)2

= 2π4E4 , (C.12)

− 15
ϑ

(7)
1

ϑ′1
− 350

3

(

ϑ′′′1

ϑ′1

)3

+ 105
ϑ

(5)
1 ϑ′′′1

ϑ′21
=

80π6

3
E6 , (C.13)

1

2

4
∑

i=2

ϑ′′i ϑ
7
i

(2πi)2
=

1

12
(E2E4 −E6) . (C.14)

The function ξ(v) that appears in string helicity generating partition functions is de-

fined as

ξ(v) =
∞
∏

n=1

(1 − qn)2

(1 − qne2πiv)(1 − qne−2πiv)
=

sin πv

π

ϑ′1
ϑ1(v)

ξ(v) = ξ(−v) . (C.15)

It satisfies

ξ(0) = 1 , ξ(2)(0) = −1

3

(

π2 +
ϑ′′′1

ϑ′1

)

= −π
2

3
(1 −E2) , (C.16)

ξ(4)(0) =
π4

5
+

2π2

3

ϑ′′′1

ϑ′1
+

2

3

(

ϑ′′′1

ϑ′1

)2

− 1

5

ϑ
(5)
1

ϑ′1
=
π4

15
(3 − 10E2 + 2E4 + 5E2

2) , (C.17)

ξ(6)(0) = −π
6

7
−π4ϑ

′′′
1

ϑ′1
− 10π2

3

(

ϑ′′′1

ϑ′1

)2

+π2ϑ
(5)
1

ϑ′1
− 10

3

(

ϑ′′′1

ϑ′1

)3

+2
ϑ

(5)
1 ϑ′′′1

ϑ′21
− 1

7

ϑ
(7)
1

ϑ′1
= (C.18)

=
π6

63
(−9 + 63E2 − 105E2

2 − 42E4 + 16E6 + 42E2E4 + 35E3
2)

where ξ(n)(0) stands for taking the n-th derivative with respect to v and then setting v = 0.

Appendix D: Electric-Magnetic duality in D=4

In this appendix we will describe electric-magnetic duality transformations for free gauge

fields. We consider here a collection of abelian gauge fields in D = 4. In the presence of

supersymmetry we can write terms quadratic in the gauge fields as

Lgauge = −1

8
Im

∫

d4x
√

−detg Fi
µνNijF

j,µν , (D.1)

where

Fµν = Fµν + i∗Fµν , ∗Fµν =
1

2

ǫµν
ρσ

√−gFρσ , (D.2)

with the property (in Minkowski space) that ∗∗F = −F and ∗Fµν
∗F µν = −FµνF

µν .

In components, the langrangian (D.1) becomes

Lgauge = −1

4

∫

d4x
[√−g F i

µνN
ij
2 F j,µν + F i

µνN
ij
1 ) ∗F j,µν

]

. (D.3)
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Define now the tensor that gives the equations of motion

Gi
µν = NijF

j
µν = N1 F −N2

∗F + i(N2 F +N1
∗F ) , (D.4)

with N = N1 + iN2. The equations of motion can be written in the form Im∇µGi
µν = 0,

while the Bianchi identity is Im∇µFi
µν = 0, or

Im∇µ

(

Gi
µν

Fi
µν

)

=

(

0

0

)

. (D.5)

Obviously any Sp(2r,R) transformation of the form

(

G′
µν

F′
µν

)

=

(

A B

C D

)(

Gµν

Fµν

)

, (D.6)

where A,B,C,D are r × r matrices (CAt − ACt = 0, BtD −DtB = 0, AtD − CtB = 1),

preserves the collection of equations of motion and Bianchi identities. At the same time

N ′ = (AN +B)(CN +D)−1 . (D.7)

The duality transformations are

F ′ = C(N1 F −N2
∗F ) +D F , ∗F ′ = C(N2 F +N1

∗F ) +D ∗F . (D.8)

In the simple case A = D = 0, −B = C = 1 they become

F ′ = N1 F −N2
∗F , ∗F ′ = N2 F +N1

∗F , N ′ = − 1

N
. (D.9)

When we perform duality with respect to one of the gauge fields (we will call its component

0) we have
(

A B

C D

)

=

(

1 − e −e
e 1 − e

)

, e =









1 0 ...

0 0 ...

. .









. (D.10)

N ′
00 = − 1

N00
, N ′

0i =
N0i

N00
, N ′

i0 =
Ni0

N00
, N ′

ij = Nij −
Ni0N0j

N00
. (D.11)

Finally consider the duality generated by

(

A B

C D

)

=

(

1 − e1 e2

−e2 1 − e1

)

, e1 =













1 0 0 ...

0 1 0 ...

0 0 0 .

. . . .













, e2 =













0 1 0 ...

−1 0 0 ...

0 0 0 .

. . . .













.

(D.12)

We will denote the indices in the 2-d subsector where the duality acts by α, β, γ.... Then

N ′
αβ = − Nαβ

detNαβ
N ′

αi = −Nαβǫ
βγNγi

detNαβ
, N ′

iα =
Niβǫ

βγNαγ

detNαβ
, (D.13)
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N ′
ij = Nij +

Niαǫ
αβNβγǫ

γδNδj

detNαβ
. (D.14)

Consider now the N=4 heterotic string in D=4. The appropriate matrix N is

N = S1L+ iS2M
−1 , S = S1 + iS2 . (D.15)

Performing an overall duality as in (D.9) we obtain

N ′ = −N−1 = − S1

|S|2L+ i
S2

|S|2M = − S1

|S|2L+ i
S2

|S|2LM
−1L . (D.16)

Thus, we observe that apart from an S → −1/S transformation on the S field it also affects

an O(6,22,Z) transformation by the matrix L which interchanges windings and momenta

of the 6-torus.

The duality transformation which acts only on S is given by A = D = 0, −B = C = L

under which

N ′ = −LN−1L = − S1

|S|2L+ i
S2

|S|2M
−1 . (D.17)

The full SL(2,Z) group acting on S is generated by

(

A B

C D

)

=

(

a 128 b L

c L d 128

)

, ad− bc = 1 . (D.18)

Finally the duality transformation which acts as an O(6,22,Z) transformation is given

by A = Ω, D−1 = Ωt, B = C = 0.
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