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Abstract

Massless Majorana fermions in the adjoint representation of SU(Nc) are expected to screen
gauge interactions in 1+1 dimensions, analogous to a similar Higgs phenomena known for 1+1-
dimensional U(1) gauge theory with massless fundamental fermions (Schwinger model). Using
the light-cone formalism and large-Nc limit, a non-abelian analogue of the Schwinger boson is
shown to be responsible for the screening between heavy test charges. This adjoint boson does
not exist simply as a physical state, but boundstates are built entirely from this particle.
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1 Introduction

In a classic paper [1], Schwinger showed that the photon of two-dimensional QED acquires a prop-

agating longitudinal component of mass e/
√
π by a dynamical version of the Higgs mechanism

involving massless electrons. This solvable model has been a source of much inspiration in the de-

velopment of gauge theories of particle physics. It is natural to ask if there is a similarly tractable

model involving non-abelian gauge theory. In this paper we will show that by adding additional

matter representations in the adjoint representation to QCD in 1 + 1 dimensions (QCD2), one has

a very close analogue of the Schwinger mechanism. Such models are interesting because one may

study exactly some of the non-perturbative effects of the zero transverse momentum modes of gluons

or gluinos from 3 + 1 dimensions. Even when exact results are not possible, the models are useful

for testing numerical algorithms which can then be applied in higher dimensions.

Recent interest in the problem of adjoint QCD2 began with the light-cone quantisation of the

large-Nc limit performed by Klebanov and the author [2]. Numerical solution of the light-cone

Schrodinger equation for singlet boundstates of adjoint quanta revealed repeated ‘Regge trajectories’

— a kind of glueball analogue of the single meson trajectory found by ’t Hooft for large-Nc QCD2

with fundamental fermions [3]. In the low-lying spectrum these trajectories could be accurately

classified by the number of adjoint quanta in a boundstate, but since the number of these particles

in not conserved, even at large Nc, it was found that at higher mass this simple picture broke down

for light quanta. Further numerical and analytic work [4, 5, 6, 7] confirmed these conclusions and

it was also suggested that generically the density of bound states rises exponentially, leading to a

Hagedorn transition [4, 8].

New insight into the problem involving massless adjoint fermions came from an observation of

Kutasov and Schwimmer [9], who showed that for massless fermions in two-dimensional gauge theory

(not necessarily large Nc) the massive physics is largely independent of the representations present,

provided they make up the same value of the chiral anomaly in each of the two chiral sectors, so that

the total anomaly cancels. This result is especially clear in the light-cone formalism, where massless

left moving fermions decouple (for a quantisation surface x+ = (x0 + x1)/
√

2 = const.) from the

Hilbert space of massive boundstates. Physical results are thus insensitive to most of the details of the

left-moving representations. Choosing instead the quantisation surface x− = (x0−x1)/
√

2 = const.,

one arrives at the same conclusion for the right-moving fermions and therefore the entire theory. One

consequence of this universality is that the massive physics of massless adjoint Majorana fermions

is the same as that for Nf = Nc flavours of massless fundamental Dirac fermions.

Gross et al. [10] have emphasized that this should imply screening of fundamental sources in the
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presence of dynamical massless adjoint fermions. Such screening obviously occurs in the presence

of dynamical fundamental fermions (unless Nc >> Nf ) since the flux line can break, but it is far

from obvious that this should occur in the adjoint case. Although the universality results of ref.[9]

constitute a (physicist’s) proof, one would nevertheless like to understand the screening behaviour

of massless adjoint fermions from a more direct and physical viewpoint. Various arguments were

advanced in ref.[10] in evidence of this conclusion, and the conclusion that screening disappears if

the adjoint fermions are given a mass, when the equivalence with fundamental fermions no longer

holds. The most powerful of these arguments showed that the Wilson loop obeys the appropriate

area or perimeter law according to whether the adjoint fermions are massive or massless respectively.

It was also emphasized that the Schwinger model [1], where fractional charges can be screened by

massless integer charges, was an abelian prototype of this behaviour.

In this paper, the correspondence with the Schwinger mechanism — a two-dimensional dynamical

version of the Higgs phenomenon — is made more explicit. In the large-Nc QCD2 with adjoint

fermions, the vacuum polarization of the gluon is calculated in light-cone Tamm-Dancoff formalism,

showing that adjoint fermions screen the linear Coulomb potential between heavy fundamental

sources when massless but not when massive. A composite bosonic state transforming in the adjoint

representation of global colour symmetry is found to be responsible for this non-abelian Schwinger

mechanism, in rather direct analogy with Schwinger’s massive photon. For massless adjoint fermions,

the singlet spectrum of single-particle states is built entirely out of these bosons. The light-cone

analysis has many similarities with that of the usual Schwinger model [11].

The large-Nc limit is used in this paper since it illustrates particularly clearly the phenomena

in question. There has been a large amount of recent work on the vacuum properties at finite Nc,

mostly for SU(2), a (probably incomplete) list of which is refs.[12].

2 Adjoint QCD2 and Screening.

The action for 1 + 1 dimensional SU(Nc) gauge theory coupled to Majorana fermions Ψ of mass m

in the adjoint representation is

S =
∫
d2xTr

{
iΨγαD

αΨ−mΨΨ− 1
4g2

FαβF
αβ

}
. (1)

The conventions of ref.[2] will largely be followed (in particular with regard to normal-ordering). In

the light-cone formalism x+ is treated as ‘time’ and x− as ‘space’ and we use the light-cone gauge

A− = (A0 − A1)/
√

2 = 0. Then A+ and the left-moving components of Ψ are eliminated by their
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Figure 1: Elementary processes of light-cone perturbation theory contributing to the boundstate
equation (4). Wavey lines are instantaneous gluons, plain lines are fundamental fermions. Evolution
in x+ to the right is understood. The (bare) gluons propogate in x− but not in x+; they are
instantaneous. The self-energy diagrams (b), corresponding to the last term in eq.(4), effect the
principal-value nature of the Coulomb exhange process.

constraint equations of motion to yield a light-cone hamiltonian

P− =
∫
dx− Tr

{
m2

2
ψ

1
i∂−

ψ +
g2

2
J+ 1

(i∂−)2
J+

}
. (2)

The traceless hermitian fermionic matrices ψij are the propogating right-moving components of Ψ

while the current J+
ij = 2ψikψkj , with i ∈ {1, · · · , Nc} (at large Nc we are justified in not subtracting

the appropriate Traces to distinguish SU(Nc) from U(Nc)). The only remnants of the constrained

degrees of freedom are the instantaneous propagators 1/∂− and 1/(∂−)2 of the left-movers and A+

respectively, which appear in the mass term and current term respectively in (2). The Hilbert space

at fixed light-cone time x+ is constructed from the Fourier modes of ψ,

ψ(x−) =
1√
2π

∫ +∞

−∞
dp+ψ̃(p+)e−ip+x− , (3)

by applying creation operators ψ̃(p+), p+ < 0, to a Fock vacuum |0 > annihilated by ψ̃(p+), p+ > 0.

To any finite order in a Tamm-Dancoff truncation on the number of fields ψ̃ in the Hilbert space, only

singlet states under the residual global colour transformation U †ψU , U ∈ SU(Nc), are annihilated

by J̃+(p+ = 0) and so avoid the 1/(p+)2 singularity of (2) at p+ = 0. There are also zero modes

ψ̃(0) which form representations of an SU(Nc) affine Lie algebra when applied to the Fock vacuum

|0 >. Ignoring them is valid at large Nc and m = 0 for the bosonic single-particle boundstates [9],

and also likely to be a good approximation for large m since the endpoint of the wavefunction in

momentum space is suppressed.

One may easily show that the instantaneous gluon propogator 1/(∂−)2 corresponding to A+ gives
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rise to a linear potential between two heavy coloured sources. The light-cone Schrodinger equation

for the wavefunction φ(k+, P+− k+) of a pair of fundamental fermions of mass mF and momentum

k+ and P+ − k+ is ’t Hooft’s equation [3]

2P−φ(k+, P+ − k+) = m2
F

(
1
k+

+
1

P+ − k+

)
φ(k+, P+ − k+)

−g2
N

∫ P+−k+

−k+

dp+

(p+)2
[φ(k+ + p+, P+ − k+ − p+)− φ(k+, P+ − k+)](4)

where g2
N = g2Nc/π is held fixed in the large Nc limit. The elementary processes which comprise this

equation are illustrated by the diagrams of light-cone perturbation theory in Figure 1. When mF is

large the non-relativistic (equal-time) Schrodinger equation may be derived from (4) by expanding

in powers of velocity and 1/mF [13]. We have

k+ =
√
m2

F + (k1)2 + k1

= mF + k1 +
(k1)2

2mF
+ · · · (5)

The wavefunction is peaked at k+ = P+/2 and one may derive an equation in terms of the relative

equal-time momentum q1 ≈ 2mF (1− 2(k+/P+)) << mF of the pair of fermions;

(q1)2

4mF
φ(q1)− g2

N

∫ ∞

−∞

dp1

(p1)2
[φ(p1 + q1)− φ(q1)] = E φ(q1) . (6)

Here, p1 = 4mF p
+/P+,

φ(q1) = φ

(
P+

(
1
2

+
q1

4mF

)
, P+

(
1
2
− q1

4mF

))
(7)

and E =
√

2P+P− − 2mF is the binding energy. In terms of the position space wavefunction φ(x1)

this becomes [
− 1

4mF
(∂x1)2 + V (x1)

]
φ(x1) = Eφ(x1) , (8)

with V (x1) = πg2
N |x1|. Note that the small p1 region in (6), hence the small p+ region in (4), governs

the asymptotic behaviour of V as |x1| → ∞.

If we now add adjoint fermions to the problem, Figure 2 shows the expansion of the full A+

propagator G(x) in terms of the bare instantaneous propogator g2
N/x

2 and adjoint fermion loop

corrections. We have introduced the momentum fractions x = p+/P+ transferred and y = k+/P+

flowing through the external fundamental fermion, where P+ is the total momentum flowing through

the system. There is also an analogous self-energy equation (see fig.1(b)). In light-cone Hamiltonian

formalism one must remember to divide by (M2−∑
am

2
a/xa) for every distinct intermediate state,

where ma and xa are masses and momentum fractions of the physical quanta appearing in the inter-

mediate state and M2 = 2P+P− is the invariant mass of the system. The one-loop approximation
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Figure 2: Expansion in light-cone perturbation theory of the full A+ propagator. Dotted lines are
adjoint fermions.

to fig. 2 sums fermion bubbles;

G(x) =
g2

N

x2
+
g2

N

x2
·
∫ x

0

dz
1

M2 − m2
F

y−x −
m2

F

1−y − m2

z − m2

x−z

·G(x) . (9)

Now

M2 − m2
F

y − x
− m2

F

1− y
≈ mFE − (q1)2

4
− 4m2

Fx (10)

for large mF because x << y. But since x = p1/4mF , p1 ∼ q1, and E ∼ (q1)2/mF , the first two

terms may be neglected compared to the third. Evaluating the z-integral one then finds

G(x) =
g2

N

x2 + C(x)
(11)

where

C(x) =
g2

N

4m2
F

(
1 +

m2

2m2
Fx

2(r+ − r−)
log

[ |r−|
r+

])
(12)

r± =
1±√

1 +m2/m2
Fx

2

2
. (13)

If m 6= 0 then G(x → 0) → g2
N/[x

2(1 + g2
N/6m

2)], so that the non-relativistic potential is still

asymptotically linear, but with reduced slope. If m = 0 the string tension vanishes and the dressed

gluon propogator changes to

G(x)|m=0 =
g2

N

x2 + g2
N/4m

2
F

. (14)

The pole in the gluon propogator has been cancelled by another pole coming from the propagation of

two adjoint fermions produced with a constant wavefunction φ(z, x−z) = const.. The corresponding

non-relativistic potential is easily found to be

V (x1) =
gNπ

2

(
1− e−2gN |x1|

)
(15)
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Figure 3: This figure lists the elementary processes acting on ψ̃ijψ̃jk for example: (a) internal pro-
cesses, which only involve the contracted index j; (b) external processes, which involve one or both
of the uncontracted indices i and k. Generalization to 2n fermions in the initial state is straight-
forwardly obtained by adding the appropriate spectators, on the outside of figs.(a)(i)(ii)(iii) and on
the inside of figs.(b)(ii)(iii)(iv); fig.(b)(i) may become either internal or external when spectators are
added.

At small distances the Coulomb potential V (x1 → 0) = πg2
N |x1| is recovered while at large distances

the potential tends to a constant V (x1 →∞) → gNπ/2. Potentials similar to (15) have been found

from abelian [10] and non-abelian [14] static classical solutions of the gluon effective action, but the

physical mechanism underlying it was not apparent.

The m = 0 result Eq.(14) is actually much more general than 1-loop since it includes all further

diagrams inside the fermion loop. The reason is that all these processes cancel. The planar topology

of the large Nc limit allows us to understand this result by writing a meaningful boundstate equation

for adjoint states,2

|Ψ >adj=
∞∑

n=1

∫ 1

0

2n∏
b=1

dwb
δ(

∑
b wb − 1)
Nn

φ2n(w1, w2, . . . , w2n){ψ̃(−w1)ψ̃(−w2) · · · ψ̃(−w2n)}ik|0 > ,

(16)

provided we keep only the ‘internal’ processes involving contracted colour indices (Figure 3 (a)). In
2Here, the wb are fractions of the fraction x.
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this case the corresponding light-cone Schrodinger equation 2P+P−|Ψ >adj= M2
adj|Ψ >adj has an

exact M2
adj = 0 two-particle solution with constant wavefunction φ2 = const., φ2n = 0 for n > 1.

It is straightforward to verify this on the boundstate integral equations [5] for |Ψ >adj restricted to

the processes of fig.3(a); the non-trivial equations are

M2
adjφ2(w1, 1− w1) = g2

N

∫ 1−w1

−w1

dw

w2
[φ2(w1, 1− w1)− φ2(w1 + w, 1 − w − w1)] , (17)

M2
adjφ4(w1, w2, w3, 1− w1 − w2 − w3) = 0

=
g2

N

(w2 + w3)2
φ2(w1, 1− w1)− g2

N

(w2 + w3)2
φ2(w1 + w2 + w3, 1− w1, w2, w3) . (18)

The constant two-particle wavefunction remains an eigenstate if we add the process of fig.3(b)(i),

which allows it to mix with the longitudinal component of the gluon. We must add

g2
N

∫ 1

0

dw φ2(w, 1 − w) (19)

to eq.(17). The mass eigenvalue is then shifted to M2
adj = g2

N (the Higgs mechanism). Since other

solutions of the adjoint boundstate equation are orthogonal to φ2 = const., they do not contribute

as intermediate states in the vacuum polarization. The constant wavefunction two-particle adjoint

state is the non-abelian analogue of Schwinger’s boson. Unlike Schwinger’s massive photon, it

does not occur simply as a physical state because it is coloured. Its definition required us to drop

‘external’ processes involving the uncontracted colour indices (Figure 3(b)). In the Tamm-Dancoff

approximations these involve uncancelled infinities unless the adjoint boson is inserted inside an

overall singlet. These processes cause it to interact with other coloured states through Coulomb

exchange (fig.3(b)(ii)(iii)) and creation of further bosons (fig.3(b)(iv)).

Another way to see why the constant wavefunction two-particle adjoint state plays a privileged

role when m = 0 is to note that it is simply the current J̃+
ik(−p+)|0 > acting on the vacuum. As

emphasized in ref.[9], the hamiltonian (2) is expressed entirely in terms of the SU(Nc) currents

J+ = J+aTa when m = 0, which satisfy an affine Lie algebra

[J̃+a(p), J̃+b(k)] = kNcδp+k,0δ
ab + ifabcJ̃+c(p+ k) , (20)

and the boundstate problem can be framed algebraicly in terms of the bosonic basis of J̃+’s rather

than the fermionic basis of ψ̃’s.3 Single-particle bosonic physical states are of the form

∞∑
n=2

∫ P+

0

n∏
a=1

dk+
a δ(

∑
a

k+
a − P+)hn(k+

1 , . . . , k
+
n )Tr{J̃+(−k+

1 ) · · · J̃+(−k+
n )}|0 > . (21)

3In general at m = 0 the basis of ψ̃’s will contain multi-particle combinations of the basis of J̃+’s [9].
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The light-cone boundstate integral equations for hn have been worked out in detail in ref.[15], and

are similar to the corresponding ones in the fermionic basis [5]. There are also fermionic boundstates,

related by a softly broken supersymmetry [4, 17].

When m > 0, the non-abelian Schwinger boson is no longer an exact eigenstate of the adjoint

boundstate equation defined above, and many other intermediate states contribute to the vacuum

polarization in a complicated way. At large m >> g2N we should recover the bare Coulomb

amplitude. There is evidence that confinement is lost at high temperature however [4, 16], at least

for large m.

3 Summary.

It has been shown how a non-abelian analogue of the Schwinger boson is responsible for screening

of heavy sources in large-Nc QCD2 with massless adjoint Majorana fermions. The heavy source

potential was calculated from vacuum polarization of the gluon; every gluon propogator may be

replaced by the screened version (14). When the adjoint fermions are massive, although there are

additional states contributing to the vacuum polarization, which were not included in the calculation

beyond one-loop, the confining result found here is probably a good guide to the exact behaviour.

Since Schwinger’s work, physicists have come up with innumerable ways to look at the Schwinger

model and no doubt many of them have an analogue in Adjoint QCD2. These investigations are

left for the future, but we mention that it would be interesting to understand how the results relate

to the those found in the bosonized formalism [18] and also to see explicitly what happens to gauge

invariance.

Acknowledgements: I thank D.Kutasov for a discussion.
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