
Wilson line in high temperature particle physics

S. Bronoff
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The physics of the Wilson line leads to new developments in high temperature
particle physics. The main tool is the effective action for a given fixed value of
the phase of the Wilson line. It furnishes a gauge invariant infrared cut off, and
yields for small values of the phases a systematic procedure for obtaining a power
series in the coupling g and glog(1/g). It breaks the centergroup symmetry of the
gauge group only at high temperature so leads to domain walls disappearing at low
temperatures. It shows long lived metastable states in the standard model, SU(5),
SO(10) and its SUSY partners, with possibilities for CP violation and thermal
inflation.

1 Introduction

Phase transitions have been a recurrent theme at this meeting. We have heard
about the quantitative progress in understanding the electro-weak transition 1

and along similar lines the SU(5) GUT phase transition 2 and to some extent
the deconfinement transition 3.

Despite their differences there is a common feature: all of them have an
order parameter, the Wilson line. The Wilson line is strictly speaking an order
parameter, when there are no complex representations of the gauge group
present in the particle content. Only then it will be strictly zero in one phase
and non-zero in the other.

Usually the Wilson line is mentioned in discussions of the quark gluon tran-
sition (apart from the chiral condensate), not of the other transitions, like the
electro-weak and GUT transitions where the Higgs fields are the protagonists
in the transition.

In this paper we will discuss the role of the loop; in particular its phase,
and the dependence of the free energy on that phase. The latter is called the
effective action and is the main mathematical tool.

For small values of the phases this effective action is a gauge invariant infra
red cut off version of the free energy and the Debije mass. As such it is a nice
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starting point for the perturbative evaluation of these quantities 4. Infra red
singularities upset the usual series in g2, and their computation necessitates a
cutoff. This is briefly discussed in section 3.

For values of the phase in the centergroup one finds metastable minima.
They have one common property: they are very long lived on any cosmological
scale. This is true for the standard model and for GUT models like SU(5)
and SO(10) and their SUSY versions. A rather detailed description of where
the minima are and how they decay is found in section 4. Then we turn to
the other order parameters, the Higgs fields. The potential has qualitatively
different behaviour due to the Wilson line condensate, in case the Higgs field
carries Z(N) charge. This is the subject of section 5.

In section 5.3 we turn to the physics of these metastable states. As the
CP violating properties of some of the metastable states have been analysed
elsewhere5, we limit ourselves to thermal inflation. This happens in the SO(10)
model and its SUSY analogue.

The question of how the universe can arrive in such a metastable state
arises naturally 5. There has been debate on this 6 , as well as on the thermo-
dynamical properties of the metastable states 7 and the physical relevance of
the phase of the loop8. On the latter two the reader can find partial satisfaction
in section 2.

2 Wilson line as order parameter

In this section we will resume some well known facts about gauge systems at
high temperature in equilibrium. First the academic but instructive case of
pure SU(N) theory is reviewed. Then we introduce the Wilson line as the
order parameter that describes walls, and the effective action that controlls
its behaviour. In the last subsection we discuss the boundary conditions that
trigger localised walls.

2.1 Pure gauge theory

Let us consider a pure SU(N) gauge theory 9.
Take an elongated box in 3D with size L2

trLz. The size in the z-direction is
by far the largest in order to have walls that separate vacuum states. Boundary
conditions on the gauge potentials are periodic.

Physical states are by definition invariant under periodic gauge transfor-
mations.This means Gauss’ law is satisfied everywhere. Consider now a gauge
transformation periodic in the transverse directions, but periodic modulo a
centergroup element exp i 2kπ

N
in the z-direction. Such transformations Uk dif-

fer from one another by a periodic transformation, so have all the same effect
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on a physical state. Like a periodic transformation they do commute with
the Hamiltonian. So we can diagonalise them simultaneously. Acting on the
physical states they have eigenvalues all of which are again Z(N) phases.a

We can easily get a physical picture of what these states are: start from a
state on which all operators Uk have eigenvalue one. This state has no electric
flux, only glueballs are thermally excited. Now take a string running from z = 0
to z = Lz given by the path-ordered operator TrP exp i

∫
dzAz(x, y, z) acting

on the no flux state. This state has one electric flux, since the eigenvalue of
Uk is exp ik 2π

N . If we add another string k will be replaced by 2k in the phase.
Note that a state with a given flux e can have e mod N strings. We can create
strings independently in all directions. This means that a state will by given
by a flux vector ~e. Such a flux state is obtained by acting with a projector P~e
on a physical state. This projector is related to the operators U~k by a Z(N)
Fourier transform:

P~e =
1

N3

∑
~k

exp−i~k.~e
2π

N
Uk (1)

Since flux is conserved (the Hamiltonian commutes with the U~k), we can
define a flux free energy F~e by the Gibbs trace over flux e states:

exp
−F~e
T
≡
∑
〈~e| exp

−H

T
|~e〉 (2)

These flux free energies should tell us how the strings behave. Now we expect
at low T confinement, hence a string tension ρ. Let us take the case of one
flux in the z-direction. Then at low T (� ρ):

F1 − F0 = ρLz (3)

For high enough T(Tc) this behaviour changes into:

F1 − F0 = Lz exp
−α(T )

TL2
tr

(4)

The physics of these equations is simple. At low T creation of one string has
a small probability ∼ exp− ρ

T Lz. At the same time the difference between the
free energies as the length of the box increases. The unique groundstate is
given by F~0.

As the temperature goes up so goes the probability for exciting strings.
The number of strings present in the Gibbs sum grows and so does the en-
tropy. At Tc the entropy overtakes the energy ρ and above Tc the free energies

aThat’s because UNk is periodic, hence does not change the physical state.
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become exponentially degenerate. This means that the Z(N) symmetry is
spontaneously broken.b

The question is now: does the parameter α that controls the decay of the
flux free energy correspond to a surface tension between two regions degener-
ate in energy? If so, there must be an order parameter telling the difference
between the two degenerate states.

2.2 Domainwalls as Wilson line profiles

To study domain walls one has to introduce the duals Z~k of the flux free
energies. They are called “twisted” transition elements and are defined by

Z~k = Trphys exp (−H/T )U~k (5)

The Z~k are related to the F~e by the formula 1 for the electric projectors,
that is, by a Z(N) Fourier transform.

They can be rewritten into 4D “twisted” path integrals. To see how this
works, take U~k = 1. This corresponds to the well-known pathintegral with an
integration over periodic A0 coming from the physicality constraints on the
states. c

The presence of U~k does change the state the path integral starts with at
time τ = 0: it creates a center group discontinuity when going from one side
(z = 0) to the other (z = Lz). Then we go in the time direction to the point
τ = 1/T, z = Lz, keeping this discontinuity. Going first in the time- and then
in the z direction one meets no discontinuity, so we have a vortex in the z − τ
planes with strength exp ik 2π

N
. Consider a Wilson line

p(~x) = TrP exp i

∫ 1
T

0

A0(τ, ~x)dτ (6)

at z = 0. When we push the line to z = Lz it will pick up the phase of the
vortex, as soon as it crosses the center of the vortex.d

This is an important property of the line: at high T it will have a non-zero
expectation value and change its phase going from one side of the box to the

bThis behaviour has been found analytically in gauge Potts models 10 and in gauge the-
ory by Monte Carlo simulations 11. For other mechanisms of symmetry breaking at high
temperature see ref.12

cStrictly speaking, A0 need not be periodic in the Euclidean time direction. Constraining
it to be periodic does not affect the thermodynamical properties

dClearly such a line in the z-direction will have this property too. However, it will not
have a VEV at high T, contrary to the Wilson line. For a more complete discussion, see
ref. 13
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other. This answers the question we posed at the end of the last paragraph:
the parameter α corresponds to a surface tension, the surface separating two
phases where the Wilson line takes different phases. Note that we have not as
yet a three dimensional interpretation of the Wilson line. As it stands it is a
Euclidean path integral object.

The twisted transition element has been analysed numerically in four di-
mensions. 11 In three dimensions also the profiles p(z) of the Wilsonlines have
been measured, clearly indicating domain walls above Tc.

13

2.3 Wilsonline and heavy quarksource

We would like to associate the Wilsonline in the periodic system with the pres-
ence of a heavy quark. This in order to have a three dimensional interpretation
of the line and of the twisted transition element.

However in a periodic volume with Gauss’ law everywhere imposed a single
heavy quark source cannot exist. So we have to drop the periodicity and search
for convenient boundary conditions, that replace our twisted box and introduce
a localised wall. In this article we will not explain this in detail, but the strategy
can be read off from a simple Z(2) lattice gauge model. 14 The model is the
limit of an SU(2) gauge model where all particles are made very massive by
adjoint Higgs multiplets. This leaves only Z(2) centergroup transformations,
as they still commute with the adjoint Higgses. There one can show that at
high temperature a domain wall is created with a profile of positive energy
density. The rigour is the same as used in proving that the Ising model can
produce walls.

3 Effective action, perturbative expansion, and infra red cut off

The surface tension α was computed in perturbation theory.15 Also the profile
of the Wilson line. The computation leads in a natural way to the realisation
that the loop serves as a gauge invariant infra red cut-off 4 in the effective
action. This is the subject of this section.

The effective action U for the Wilson line is defined for any given profile
p(z) as follows:

exp−
U(p)

T
L2
tr =

∫
DAµδ(p− P̄ (A0)) exp−

1

g2
S(A) (7)

To avoid clutter in eq. 7 we left out the z dependence. P̄ (A0) stands for
the normalised average over the transverse directions of the WIlson line. Hence
it need not be unitary.
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The effective action gives the twisted transition element (eq. 5) by inte-
grating over all profile configurations with boundary conditions appropriate
to the twist. In the time direction the statistics of the boson fields imposes
periodicity, for fermions anti periodicity.

Let us note that the Wilson line 6transforms under periodic gauge trans-
formations as an adjoint. So only the phases are gauge invariant. Hence the
loop P in eq. 7 stands for TrP , and to get all eigenvalues one should admit
winding the loop several times (from 1 to N-1) before taking the trace.

U(p) has a symmetry under gaugetransformations that are periodic in the
time direction modulo a centergroup element. Such a transformation indeed
leaves the action and the measure invariant, but changes the Wilson line by
that same phase. Hence we have:

U(p exp ik
2π

N
) = U(p) (8)

The same stays true when we admit fields with no Z(N) charge. But fields that
do carry Z(N) charge will see their boundary conditions in the time direction
changed by the phase. Hence the relation (8) is no longer true; it only holds
approximately, the better the larger the masses of those fields are.

In what follows we consider the perturbative expansion of U . This implies
we work at very high T, where the VEV of the Wilsonline has modulus one,
so only phases:

p(z) = exp i2πC(z) (9)

The matrix C is in the Cartan subspace of the Lie algebra of SU(N) and
contains all the eigenvalues Ci, i = 1....N , with the constraint that they add
up to zero. So our perturbative expansion will be around C as background.

U(C), the effective action, will take the general form of a kinetic and a
potential part:

U(C) =

∫
dz

(
K(C)Tr(2πT

∂

∂z
C)2 + π2T 4V (C)

)
(10)

Both K and V are Z(N) periodic just as U(C) in eq. 8, and will loose that
property when there Z(N) charged fields.

At large values of Ltr the pathintegral over all profiles is dominated by the
extremum of U(p). At large values of |z| the wall will be determined by the
behaviour of kinetic and potential terms at C=0. The behaviour of the wall in
that region is determined by the large distance behaviour of the correlation of
the phase of the loop. Hence it will be dominated by the Debije mass, not by
the magnetic glueball mass, since the correlation is odd under CT 16.
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3.1 Background field expansion

The expansion introduces fluctuation fields Qµ around the background C:

Aµ = 2πTCδµ,0 + gQµ (11)

Now we expand the Wilson line around C. This gives:

P (A0) = exp i2πC +

∫ 1
T

0

dτ exp (i2πTCτ)igQ0(τ) exp (i2πTC(1/T − τ))

+

∫ 1
T

0

dτ1

∫ 1
T

τ1

dτ2 exp (i2πTCτ1)igQ0(τ1) exp (i2πTC(τ2 − τ1))

igQ0(τ2) exp (i2πTC(1/T − τ2)) +O(g3) (12)

This expansion satisfies the constraint in the effective action up to terms
of order g. The delta function is then expanded around these terms. Since C
is diagonal the trace of the order g term tells us that static diagonal Q̄0 should
not be integrated over. On the other hand expanding the action gives a linear
term containing only static diagonal Q̄0. So C is the correct minimum for the
expansion.

We have to choose gauge fixing and will take it of the form 17:

Sgf =
1

ξ
T r(

1

ξ′
D0Q0 + ∂iQi)

2 (13)

which reduces to usual background field gauge fixing for ξ′ = 1. ξ′ → 0 gives
us static background gauge, in which Q0 decouples from the loop in eq. 12.

So in general thermal fluctuations of the loop expectation value will be
O(g2), and in static background gauge absent. 17 This is important for the
tunneling results of next section. The fluctuations will contribute to the effec-
tive action, and render it gauge independent. 18

Another remark concerns the propagators of the quantum fields Q: with
our gauge choice the background field will enter the quadratic part of the action
through the covariant time derivative: TrQµ.(−D2

0− ~∂
2).Qµ. The background

enters only through commutators. Let us denote the field with all components
zero, except the one on the row i and column j by Qij . Then the inverse
propagator will look for all polarisations like:(

(2πT )2(n+ Ci − Cj)
2 + ~p

)2
(14)

This shows that the static configurations (n = 0) are screened by the
phases, except where the differences are integer valued. This happens precisely

7



in centergroup values exp i2πC = exp ik 2π
N

. Fields diagonal in colour are not
screened. From those diagonal fields the constraint in eq. 7 eliminates part. In
other words the U(1)N−1 subgroup (including for the SM QED) keeps a infra
red problem.

The same is true for any particle species that has no Z(N) charge, e.g. is in
the adjoint representation. Actually for those species all centergroup elements
look the same. This confirms on the perturbative level what we found quite
generally in the previous subsection.

For particles in the fundamental N-dimensional representation the inverse
propagators look like: (

(2πT )2(n+ Ci)
2 + ~p

)2
(15)

for the i-th component. Now there is still screening in the centergroup
elements.

3.2 Walls and profiles in perturbation theory

The effective action is the key quantity to compute. In the limit of very large
Ltr its extremum is going to dominate the path integral over profiles. For the
one dimensional action in eq. 7 this extremum is simply given by the equations
of motion for the profile:√

K(C)2πT
∂

∂z
C − πT 2

√
V (C) = 0 (16)

The eigenvalues C1 = −C2 in SU(2) are parametrised by 2C = C1, V(C) is
periodic mod 1 in C, as is obvious from the discussion on Z(N) symmetry in
the previous sections. It is normalised to zero for C=0. Solving this equation
with the boundary conditions C=0 and C=1 (p=1 and p=-1) at z = ±∞ gives
a profile, that is controlled at large |z| according to the general arguments just
above subsection 3.1 by the Debije mass

mD =
1

2
lim
C→0

√
V (C)

K(C)
(17)

Let us see how this works in perturbation theory.
One can readily do this in the background expansion and one finds to two

loop order 15:

K(C) = 1/g2(1 + g2K2(C))

V (C) = C2(1− |C|)2 − 5
g2

8π2
C2(1− |C|)2 (18)
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The kinetic term K2(C) behaves well for all C, except at small values,
where it develops a pole. This is in contrast with our general expectation of
the large z behaviour. It should be governed by the Debije mass in eq. 17.
This equation, together with eq. 18, tells us that the correction to the lowest

order result
√
N/3gT for mD is (1 + O(g

2

C
))! However the work of Rebhan 19

shows that this correction is not O(g2). It is larger, of order g log(1/g) !

3.3 Postmortem

Our seemingly disastrous result, the pole in the kinetic term, just indicates,
that for small C, naive perturbation theory breaks down. For small values of C,
say O(g2), the screening of the propagators in eq. 14 becomes ineffective. For
those values of the background one has to do first the integration over all non-
static configurations, and obtain an effective 3D action S3. This integration
will induce terms of order g2 (the one containing the lowest order Debye mass
term for the static fourth component of the quantum field) and higher.

The new action will only depend on the static quantum fields, the back-
ground C and inherits the gauge fixing in eq. 13. It will receive contributions
from the non-static part of the constraint. The latter is gauge dependent and
absent in static background gauge. Like in the 4D calculation they are the
garantuee for gauge choice independence.

We have calculated the Debije mass from this effective action. 4 In Feyn-
man background gauge there is only one 3D diagram contributing. The result
coincides with that of Rebhan.

4 Effective potential for the Standard Model and beyond

In this section the one and two loop potentials for the Standard model and
beyond are analysed.

There are two interesting types of minima: the absolute minimum and
the metastable minima. It will turn out that the latter are very long lived on
cosmological scales.

Let us first analyse the contribution to the potential of a generic particle
species coupled through the covariant time derivative to its Wilson line phase
xs:

D0(x) = 2πT (n+ x) (19)

The one loop result for a complex boson neglecting its mass is then:

Vb(x) = TrTD
2(x) − TrT=0D

2(x)
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=
−π2

45
T 4 +

2

3
π2T 4x2(1− |x|)2 (20)

The trace at temperature T stands for the sum over Matsubara frequencies
and a regulated integral over 3 − 2ε dimensions. We subtracted the T=0
contribution, and get, because of eq. 19 a result which is periodic in x mod 1.
The contribution of a Dirac helicity doublet is simply:

Vf (x) = −Vb(x+
1

2
) (21)

The minus sign comes from the fermion determinant and the shift from
the anti-periodicity for fermions used in eq. 19.

Note that the sum of the two is antisymmetric when x is shifted over
1
2 . So SUSY theories, though broken at high temperature, have this discrete
symmetry for every species.

Now we have to specify what x is in terms of the various Cartan group
charges of our gauge group.

For the SM and SU(5) we are working in a four dimensional space of
phases. So our matrix C (eq. 9) can be conveniently described by an SU(5)
matrix in which the phases for colour SU(3) are given by q and r, of weak
SUL(2) by s, and of weak hypercharge U(1) by t:

diag
(q

3
+
r

2
−
t

3
,
q

3
−
r

2
−
t

3
,−

2q

3
−
t

3
,
s

2
+
t

2
,−

s

2
+
t

2

)
(22)

So e.g. for the righthanded electron x equals − 1
2 t.

All what is left to do is to sum over all particle species. We then normalise
to zero by subtracting out the Planck free energies in eq. 20 and eq. 21. The
result is plotted for SU(3) in fig.1, and for the SM and SU(5) against the weak
hypercharge phase in fig.2. The Higgs content of SU(5) was taken to be the
5 and the 24. For SO(10) the 16 and and 45. For SUSY SO(10) we took the
complexified 45 and 54 to guarantee a good SU(5) limit.

For SO(10) the plot in fig.2 is in terms of a U(1) charge u, orthogonal to
the SU(5) charges. The reason is that SO(10) contains SU(5)xU(1).

All minima are in the centergroup elements. The trivial centergroup el-
ement contains the absolute minimum. The other centergroup elements are
metastable points ( though not all, as in the SM). There would have been
degeneracy, had all the species been Z(N) neutral. But the fermions, the fun-
damental Higgs have Z(N) charge, and lift the degeneracy.

How can we be sure of seeing all the relevant minima? This will be ex-
plained in subsection 4.1.
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Figure 1: SU(3) potentials on the elementary cell (without and with fermions), fermions are
explicitly breaking Z(3) symmetry.

Then there are the tunneling rates of these metastable states into the stable
state. They will be discussed in subsection 4.2. Lastly the thermodynamics is
discussed.

4.1 Centergroup lattice of SU(N) and SO(2N) groups

We begin the lattice of points in the Cartan subspace, that contains all center-
group elements. Such a lattice is easy to generalise from the the case of SU(3)
in fig.1.

Consider the set of N basis vectors e1, e2, ...., eN given by the diagonal NxN
matrices e1 = 1

N
diag(1, 1, ....., 1, 1 − n), e2 = 1

N
diag(1 − N, 1, ....1), ...., eN =

1
N diag(1, 1, ...., 1−N, 1). Their sum adds up to zero. Taking any linear com-
bination L of the ek with integer coefficients will give a centergroup element
exp i2πL. The inverse is true too: all centergroup elements are to be found on
this lattice.

This lattice contains many elementary cells on which the potential is iden-
tical. This is because of the symmetries in eq. 19.

A convenient cell is starting in 0, and formed by the succession e1, e1 +
e2, ....., e1 + e2 + ...... + eN−1. Inside this cell there are conjugated points e1

and e1 +e2 + ....+eN−1, e1 +e2 and e1 +e2 + ....+eN−2, etc. related by charge
(or CP) conjugation, and with complex conjugate values for the centergroup
elements.

The cell of SO(10) is related to that of SU(5) because SO(10) or rather its
covering group Spin(10) contains SU(5)xU(1). The centergroup is Z(4) as one
can easily check from the 16 dimensional spin representation. We normaise
the u variable by fixing P=-1 at u=1 and all other phases zero. Consider the
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Figure 2: potentials in the weak hypercharge direction s (u for SO(10)).

cell of SU(5). Shift from e1 by − 1
5 in the u direction to get the vector u1 with

P=-1. Shift e1 + e2 by 1
10 in the u direction to get u2 with P=i. The complex

conjugate of u2 is u3 and is obtained from e1 + e2 + e3 by shifting over − 1
10 ,

and that of u1 from −e5 by shifting over 1
5 .

Where are the minima of the potential? If only Z(N) neutral fields are
around there is a proof to all orders in perturbation theory that the minima
are in the centergroup elements 17.

As discussed above, fermions and Higgs fields lift the degeneracy. We have
verified numerically that no other metastable points develop. So we have a the
following working hypothesis:

Any metastable or stable minimum must be in the centergroup.
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A last question concerns how the minima of say SU(5) do give rise to the
minima in the standard model, when decoupling the heavies in SU(5).

Our working hypothesis will prove useful here. The heavies in SU(5) are
given a common mass m, that we switch on from its value 0 in SU(5) to ∞
in the SM. They are all multiplets of the SM gauge group, so switching on m
will cause a movement of the minima of SU(5) along the centergroup elements
of the SM, to wit Z(3)xZ(2)xU(1).Since the process is continuous the minima
can only slide along the six U(1) lines corresponding to the discrete Z(3)xZ(2)
group. This is shown in fig.3.

weak hypercharge

SM

SU(5)
 

0

1

2

Free Energy

SM

SU(5)
 

0

1

2

Figure 3: Potential interpolating between SU(5) and SM.

Similarly the evolution of the SO(10) minima into SU(5) minima occurs
along the 5 U(1) lines, that we used in the construction of the SO(10) cell out
of the SU(5) cell.

In fig.4 we show how two loop corrections affect the SU(5) potential, for
reasonable values of the couplings. Those are very small effects.
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Figure 4: SU(5) potential: one-loop (dashed) and two-loop (solid).

4.2 Tunneling paths and tunneling rates

Semi classical methods are appropriate, in our situation with small coupling,
to compute the tunneling rate Γ per unit volume:

Γ = aT 4 exp−Sb (23)

The dimensionless quantity a derives from the determinant of the fluctu-
ations around the classical bounce configuration B (for QCD and the SM this
was done in ref. 20)

The computation of the bounce consists of finding the solutions to the
Euclidean equations of motion. The temperature T is much larger than the
scale of the 4D Euclidean bounce, we can do the calculation in 3D 22 for a
radially symmetric bounce:

d2B

dr2 +
2

r

dB

dr
= −V ′(B) (24)

Boundary conditions are limr→∞ = Bms and dB
dr

= 0 at the starting point r0.
Our bounce is a multicomponent object (4 or 5) and Bms is the metastable
point in the elementary cell. We study the decay to the stable vacuum at the
origin, so r0 is near zero, depending on the thickness of the wall. We have
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developed a numerical method that solves the equations of motion and can
handle the multicomponent field.

Luckily there is a lot of symmetry in our problem, that allows an educated
guess of the actual tunneling path. So we can reduce the problem to a one
component bounce, solvable with the undershoot-overshoot method.

The bounce path from a given metastable point in the cell is simply given
by the straight path from that point. This was corroborated by our numerical
method for the simple groups. For the SM the deviation from a straight path
was small but significant e. The results for the bounce actions are presented in
table 1.

Table 1: Numerical data on the bounces.

metastable points Bounce action Critical radius

(Sb/
4π2

g3 ) (R/gT )

SM s = 1.28 6.99 2.7
s = 1.74 46.08 4.6
q = 1, s = −0.25 2.64 2.0

MSSM s = 1.761 37.60 3.25
SU(5) PA = exp (i4π/5) 10.63 2.3

PB = exp (i2π/5) 86.63 5.3
susy SU(5) PA = exp (i4π/5) 9.92 1.75

PB = exp (i2π/5) 50.47 3.3
SO(10) P = −1 20.99 2.75

P = i 308.8 7.4
susy SO(10) P = −1 36.87 2.2

P = i 286.07 5.1

What is striking is the large value of all bounce actions. Tunneling tem-
peratures Ttun can be estimated by the following simple- minded argument.
Tunneling occurs at a time tc determined by Γt4c ∼ 1. Matter in our metastable
states has qualitatively the same free energy as in the stable vacuum. Only
the pressure p = −π2T 4V (Cms) is lower in the metastable states. So we will
assume the relation tc ∼MPlanck/T

2. Then Ttun ∼MPlanck exp−Sb/4 , using
eq. 23 to eliminate tc. Putting in the numbers from the table shows that the
metastable states easily survive all known cosmological transitions.

It means that the behaviour of the potential as function of the Higgs fields

eNot all metastable minima in fig. 2 lie in the same cell as one can easily check.
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will be very relevant for how the metastable states will decay. This is the
subject of section 5.

Fig. 4 shows the effect of the two loop contribution. the couplings were
taken to be α = β = λ1 = λ2 = 0.1 and g = 0.4. The sign of the contribution is
uniformly negative. That this was the case at C = 0 was known since long 23.

4.3 Thermodynamics

The calculation of the surface tension 15 motivated a renewed interest in the
thermodynamics of the minima. In all the models considered in the previous
subsections the energy and entropy densities of the minima are positive. But
the thermal boundary conditions on fields with non-trivial Z(N) charge are
changed in the metastable minima by a Z(N) phase, and as a consequence the
occupation number is changed 7:

n(E) =
1

exp (E
T
T + ik 2π

N
)± 1

(25)

So in the case of fermions one finds a purely imaginary value for the fermion
number. States with complex conjugate Z(N) phase are related by CP conju-
gation. Our phases have the C and P transformation properties of a diagonal
A0, so are CP odd. This singles out the self conjugate states like the one
in SO(10) with P = −1. There, fermion number is zero. So far no reasoble
interpretation has been found for this behaviour.

Let us finally mention a case without any thermodynamic anomalies: large
N pure gauge theory. To see this, consider the free energy without the Planck
contribution:

V (C) =
4

3
π2T 4

∑
i≤j

C2
ij (1− |Cij |)

2 (26)

where Cij = Ci − Cj . In that case due to the permutation symmetry
of the variables Ci, the potential has an extremum in the barycenter of the
elementary cell. in the one loop approximation this is an absolute maximum.
Let us compute its value Vmax. In the barycenter the value of Cij is i−j

N
.

Substituting in eq. 26 gives:

Vmax =
π2T 4

45
(N2 − 1)

(
1 +O(

1

N2
)

)
(27)

To leading order we find precisely the Planck free energy, but with the
opposite sign! Hence adding the Planck free energy we have positive energy
and entropy density, except in the maximum where both are zero. This result
remains true in the next order.
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For finite N there is a small cap around the maximum, where both are
negative.

5 Combining Higgs and Wilson line potential

In this section we will compute the classical and part of the one loop con-
tribut ion to the mass term in the Higgs-Wilson line potential. Already on the
classical level a few subtleties merit attention.

5.1 Classical effective action

It is best to illustrate the problem by the specific examples of the adjoint Higgs
field Σ and the fundamental Higgs field H.

The terms of interest in the original 4D action are the kinetic terms of the
two Higgses, minimally coupled to the gauge fields:

S =

∫
d~xdτ [Tr(DµΣ)2 + (DµH)†DµH + ....] (28)

To get the 3D effective action one would guess that the classical contribu-
tion would just be the 3D reduction of the kinetic terms. That would give us
terms like Tr[C,Σ]2.

This cannot be correct. We know on general grounds that the effective
action for Z(N) neutral fields like Σ is identical in all centergroup elements.
But this commutator term is not.

What couples in the 3D action to the Higgs is the phase of the loop p(C).
We define the matrix logp(C) through the diagonal form of the argument, and
under a gauge transform Ω we have

log p(CΩ) = Ωp(C)Ω† (29)

Then the coupling of the Higgses to the Wilson line is given in a gauge
invariant form in the effective action U(C) by:

U(C) =

∫
dzT 2[Tr[Im logp(C),Σ]2 + (Im logp(C)H)†(Im logp(C)H) + ....

(30)
The VEV of the Wilson line induces mass terms that merit comment:
i)The adjoint mass term disappears in the centergroup, since the commu-

tator vanishes there.
ii)The mass term for the fundamental Higgs does not vanishing the center-

group. Define |= log p(C)| ≤ π, then the mass term is the same for conjugate
vacua.
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iii)Outside the centergroup the induced Higgs masses are not necessarily
the same, i.e. SU(5) invariant. In general, the potential is not anymore function
of only TrΣ2 etc., but contains other invariants involving p(C).

5.2 Quantumcorrections to the Higgs potential

The quantum corrections are crucial to the understanding of the temperature
de pendence of the Higgs potential and hence for the occurence of a phase
transition. these corrections have been calculated for the trivial Wilson line
condensate.

In the presence of a non trivial condensate these corrections will be de-
scribed below.

Let us take the concrete example of SU(5). the Higgs potential in the
condensate characterised by exp ik 2π

5 takes the form:

π2T 4V (C) = M2(T, k)TrΣ2 +m2(T, k)H†H + λ1(TrΣ2)2 + λ2TrΣ
4

+αH†HTrΣ2 + βH†Σ2H (31)

The mass terms are temperature and k dependent through loop correc-
tions. In the one loop calculation that we completed the Σ mass has the
following corrections:

M2(T, 0) =

(
104λ1 +

188

5
λ2 + 60(1− ξ)g2 + 20α+ 4β

)
T 2

24
(32)

M2(T, 1) =

(
104λ1 +

188

5
λ2 + 60(1− ξ)g2 −

36

5
α−

36

25
β

)
T 2

24
(33)

The mass term contains a dependence on the condensate uniquely through
the couplings to the fundamental Higgs. This is a consequence of the Σ prop-
agators not depending on the condensate. The induced terms will not change
much the Higgs potential, so the SU(5) transition will not change essential
features in a non-trivial condensate.

On the other hand the transition in SO(10) and the electro weak are
changed by induced mass terms of order one:

m2(T ) = −m2 + T 2(Im logp(C))2 + O(couplings) (34)
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5.3 Some physical consequences

Striking features of the potential are:

i) CP conjugated states in the SM.
ii) Occurrence of thermals terms of order unity for Higgs fields with non-

trivial Z(N) charge.

The first point has been discussed5 and we will not go into it. they involve
pe se states with imaginary fermion number.

The second point has two important consequences. First, the transition
will be at a lower temperature Tc(ms) than in the stable state at Tc by a factor√

couplings. This follows by equating the temperature dependent mass tem in
eq. 34 to zero at the critical temperature.

Second, before the transition takes place, the system will undergo thermal
inflation. 21 This happens in both states with complex and real values for the
Wilson line in SO(10). In the SM it is a negligeable effect as will become clear
below.

Let us denote the VEV of the SO(10) Higgs H in the 16 representation by
v. The relevant terms in the effective action are then:

π2T 4V =
1

2

m2

v2
[H†H − v2)2 + T 2(kπ)2H†H + ... (35)

Here k = 1, or ± 1
2 according to wether p = −1, or ±i. As long as the

temperature is above the value Tout = m
kπ

we have no VEV for the Higgs,
and the energy density ε of the vacuum equals 1

2 (mv)2. This defines a second

temperature scale Tin = (mv)
1
2 . Below this scale the thermal contribution will

become small with respect to the vacuum energy density till we reach the lower
scale Tout. Below that scale the symmetry breaks, the Higgs gets the VEV v
and and the energy density becomes proportional to T 2, from eq. 35. So in
between these temperatures we have inflation.

There is a third scale, appearing in the Friedman equation coupling the
radius R of the universe to the energy density:

1

R2

dR

dt

2

=
ε(T )

MPl
2 (36)

During the inflationnary period the right hand side of this equation is
approximately constant and equals the square of v

MPlm
. This scale is the

Hawking-Gibbons temperature THG and lies below Tout. That is to say, it will
not play any role in the inflationnary period. This is a good feature, because
THG is a lower bound on the temperature during inflation.
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6 Conclusions

We have given an overview of the use of the Wilson line in high temperature
gauge field physics.

The effective potential of the Wilson line does not only give rise to sym-
metry breaking at high temperature. It provides in a natural way a gauge
invariant infra red cut off and is useful in establishing the perturbative series
for static quantities like free energy and Debije screening length. Many ap-
plications are possible, e.g. Callan-Symanzik type equations for the infra red
behaviour of hot gauge theory 25.
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