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Abstract

We present the first calculation of QED radiative corrections to deep-in-
elastic electron–photon scattering in terms of those variables that are re-
constructed in measurements of the photon structure function in electron–
positron collisions. In order to cover the low-Q2 region, we do not invoke
the QCD-improved parton model but rather express our results in terms of
the photon structure functions. Both analytical and numerical results are
given.
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QED radiative corrections distort the usual kinematics of deep-inelastic scattering
(DIS) and hence have to be taken into account for precise structure-function measure-
ments. In the case of the proton structure function, the Born kinematics (corresponding
to non-radiative events) of charged lepton–nucleon scattering is fully constrained by two
measurable variables. The arguments of F2(x,Q2), Bjorken-x and the squared momentum
transfer Q2, can directly be determined from either the scattered lepton or the hadronic
system. Alternatively, the kinematics can be fixed by two “mixed” variables such as the
polar angles of the scattered lepton and the hadronic system. Photon radiation affects
different variables differently but, in general, several variables can be reconstructed ex-
perimentally and hence one can has experimental cross checks on the size of radiative
corrections [1].

The situation is more complicated for measurements of the photon structure function
in electron–positron collisions. At given e+e− c.m. energy

√
s = 2Eb (Eb is the beam

energy), three variables are needed in order to specify the Born kinematics since the
target-photon energy is not known. (Actually, for precision measurements also the effects
of the non-zero target mass P 2 have to be considered.) Moreover, there is just one way
to experimentally reconstruct three independent variables.

The angle θ and energy E of the tagged electron give the leptonic DIS variables yl and
Q2
l as follows:

yl = 1−
E

Eb
cos2 θ

2
, Q2

l = 4EEb sin2 θ

2
. (1)

A measurement of the hadronic mass Wh (which involves an unfolding of Wh from the
visible hadronic energy Wvis) yields the “mixed” Bjorken-x variable

xm =
Q2
l

Q2
l +W 2

h

. (2)

In general, neither xm nor Ql coincide with the actual arguments xh and Qh of the
photon structure function F2(xh, Q

2
h), see e.g. (13) or Fig. 3 below. Consider DIS of

electrons on (quasi-real) photons in the presence of an additional photon (Fig. 1):

e(l) + γ(p)→ e(l′) + γ(k) +X(pX) , (3)

and define leptonic and hadronic DIS variables:

ql = l − l′ qh = pX − p = ql − k

W 2
l = (p+ ql)

2 W 2
h = (p + qh)

2 = p2
X

Q2
l = −q2

l Q2
h =−q2

h

xl = Q2
l /2p · ql xh = Q2

h/2p · qh

yl = p · ql/p · l yh = p · qh/p · l

(4)

Obviously, leptonic and hadronic variables do not coincide (Q2
h 6= Q2

l , etc.); they agree
only for nonradiative events, i.e. if k = 0.

In this paper we present the O(α) correction to DIS in terms of the experimentally
relevant variables xm, Q2

l , and yl:

d3σ

dxm dyl dQ2
l

= gB(xm, yl, Q
2
l , s) + gcorr(xm, yl, Q

2
l , s) . (5)
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Figure 1: Photon bremsstrahlung from the tagged lepton line in deep-inelastic scattering
off an equivalent photon.

Since the accessable Q values are far below the weak scale, we can safely neglect weak
corrections apart from the running of the electromagnetic coupling α(Q2). For the case
of charged lepton–nucleon scattering it is known [2] that QED corrections are very well
approximated by calculations in the leading-log approximation (LLA), that is the QED
corrections are dominated by photon radiation off the tagged-lepton line (Fig. 1). For the
case of electron–photon scattering, there might be additional, sizeable corrections to the
untagged electron line. However, we shall show in the next paragraph that these are, in
fact, small.

The target photon γ(p) is part of the flux of equivalent photons around the non-tagged
lepton. To leading order in α, this flux has a momentum density given by the Weizsäcker-
Williams expression fγ/e(z), where z is the longitudinal momentum fraction of the target
photon with respect to its parent lepton:

fγ/e(z) =
α

2π

{
Y+(z)

z
ln
P 2
max

P 2
min

− 2m2
ez(

1

P 2
min

−
1

P 2
max

)

}
. (6)

Here we have defined Y+(z) = 1+(1−z)2, P 2
min = (z2m2

e)/(1−z), P
2
max = (1−z) (Ebθmax)

2,
and θmax is the anti-tag1 angle. In the following we put P 2 ≡ −p2 = 0 and neglect electron
masses everywhere except in (6). Moreover we substitute P 2

max by P 2
max + P 2

min so that
we can easily extend the z range to 1. QED radiative corrections to this formula follow
immediately from our previous paper [3]. The corrections can (and must) be resummed
and, within the LLA, the corrected expression is obtained by replacing Y+(z) in (6) by
Z+(z, µ2) defined by

Z+(z, µ2) = Y+(z)

{
exp

[
α

π

(
ln
Q2

m2
e

− 1

)
ln(1− z)

]}

+
α

π
ln
Q2

m2
e

{
z

(
1−

z

2

)
ln z + z

(
1−

z

4

)}
(7)

Here µ is the hard scale of the photon-induced subprocess. A numerical evaluation of (7)
shows that the corrections are indeed small, below the few-percent level.

1i.e. all events in which the parent lepton scatters at an angle larger than θmax are rejected.
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Figure 2: a) Initial- and final state bremsstrahlung. b) Compton contribution.

The Born cross section of (5) is given by

gB(x, y,Q2, s) =
2πα2 Y+(y)

x2y2sQ2
fγ/e(

Q2

xys
)F2(x,Q2)

{
1 +R(x,Q2, y)

}
, (8)

where

R(x,Q2, y) =
−y2

1 + (1− y)2

FL(x,Q2)

F2(x,Q2)
, (9)

and F2,L are the photon structure functions (we have dropped the superscript γ).
In the LLA, photon radiation from the tagged lepton line can (in a gauge-invariant

way) be subdivided into photon bremsstrahlung from the initial electron line, the final
electron line, and the Compton process, see Fig. 2. For the cross section relevant for
experimental analyses, which is differential in xm, Q2

l , and yl, there is no contribution
from final-state radiation as the calorimeter measurement combines the electron with the
nearby photon(s).

The initial state radiation correction to the triple differential cross section in eq. (5)
can be written as the following convolution

gISR(xm, yl, Q
2
l , s) =

∫ 1

0
dx1 De/e(x1, Q

2
l )[

Θ
(
x1 − x

0
1

) x̂2
m

x2
mx1

gB(x̂m, ŷl, Q̂
2
l , ŝ)− g

B(xm, yl, Q
2
l , s)

]
(10)

where

x0
1 ≡

xm (1− yl) s+ (1− xm)Q2
l

xm (s−Q2
l )

, (11)

and De/e(x,Q
2) is the structure function for the initial-state electron evaluated at the

scale given by the squared momentum transfer Q2 = Q2
l :

De/e(x,Q
2) =

α

2π
ln

(
Q2

m2
e

)
1 + x2

1− x
. (12)

It represents the probability of finding, inside a parent electron, an electron with longi-
tudinal momentum fraction x. The Born cross section is written in terms of the reduced
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Table 1: Corrections in per cents due to initial-state radiation (parameters see text).

Q2
l /GeV2

104 c 3.3

104 −11.6 −2.1

103 c −14.6 −7.3 −1.9

103 −15.6 −8.4 −4.8 −1.1

102 c −15.9 −8.6 −5.3 −3.4 −0.6

102 −16.0 −8.7 −5.3 −3.8 −2.6 −0.3

101 c −16.1 −8.9 −5.4 −3.6 −2.9 −2.0 −0.4

10 −17.3 −8.5 −3.7 −0.3 2.0 3.6 5.2 6.5

c/10−4 c 10−4 10−3 c 10−3 10−2 c 10−2 10−1 c 10−1 1

xm (c =
√

10 ≈ 3.16)

(“hatted”) variables, gB(x̂m, ŷl, Q̂
2
l , ŝ). The scaling behavior of the relevant variables is

Q̂2
l = x1Q

2
l = Q2

h , ŷl = 1− (1− yl)/x1 =
yh
x1

, ŝ = x1s ,

x̂m = xh =
Q̂2
l

Q̂2
l +W 2

h

=
xmx1

x1 + (1− x1)(1− xm)
. (13)

We find the following result for the Compton contribution to the total cross section

σ[ee→ eeX] =
yl dyl
1− yl

dxm
xm (1− xm)

dQ2
l

Q4
l

dz

z

dQ2
h

Q2
h

(1− xm)Q2
l

(1− xm)Q2
l + xmQ

2
h

Σ , (14)

where

Σ(xh, xl, yl, Q
2
h, Q

2
l , z) = α3 Y+(yl) zfγ/e(z){[

1 +
(

1−
xl
xh

)2
]
F2(xh, Q

2
h)−

(
xl
xh

)2

FL(xh, Q
2
h)

}
. (15)

Note that Σ is a very smooth function, hardly dependent on its arguments. Only at very
low Q2

h, gauge invariance forces F2 (and hence Σ) to vanish linearly with Q2
h → 0. The

fall-off at xh → 1 may be very slow due to the pointlike contribution to F γ
2 (in contrast

to F p
2 ).

The argument xh of F2 is here related to the integration variables via

xh =
xmQ

2
h

(1− xm)Q2
l + xmQ

2
h

, (16)
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Table 2: Corrections in per mille due to the Compton process (parameters see text).

Q2
l /GeV2

104 c 15.4

104 0.07 1.2

103 c 0.07 0.3 1.0

103 0.1 0.4 0.5 1.1

102 c 0.2 0.7 0.9 0.8 1.1

102 0.2 0.9 1.4 1.3 1.0 1.1

101 c 0.3 1.1 1.7 2.0 1.7 1.1 1.1

10 0.5 1.9 3.3 4.4 4.7 3.8 2.6 2.1

c/10−4 c 10−4 10−3 c 10−3 10−2 c 10−2 10−1 c 10−1 1

xm (c =
√

10 ≈ 3.16)

and the integration limits read

1− xm
xm

Q2
l

Q2
l

yl z s−Q2
l

<Q2
h < yl z s−

1− xm
xm

Q2
l

Max

{
W 2

min +Q2
l

yl s
,

Q2
l

yl xm s

}
< z < 1 . (17)

In tables 1 and 2 we present the size of the radiative corrections for (logarithmically
distributed) bins ranging from 10−4 up to 1 in xm and 3.2 GeV2 up to 3.2× 104 GeV2 in
Q2
l . For example, the bin in the lower left corner corresponds to 10−4 < xm < 3.2× 10−4

and 3.2 < Q2
l < 10 GeV2. The numbers are for a typical LEP kinematics, namely 2Eb =√

s = 175 GeV, Wh > 2 GeV, anti-tag angle θmax = 30 mrad, minimum tagging angle
θtag = 30 mrad, minimum tagging energy Etag = 0.5Eb, and we have used the SaS 1D
distribution functions of the photon [4]. While the corrections from the Compton process
are small, the correction from initial-state radiation are sizeable and cannot be neglected.

As an example of the distortion of the Born (non-radiative) kinematics we show in
Fig. 3 the distributions in Q2

l and Q2
h for the same kinematical situation: the scale entering

the structure function (Qh) does differ substantially from the one (Ql) measured from the
scattered electron. A Fortran program (“RADEG”) that computes the corresponding
correction factors either for fixed x, y,Q2 or for user-defined bins in these variables, with
integration inside the bin, is available from the authors.
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Figure 3: Q2 distributions of numbers of events (for an integrated luminosity of 500 pb−1)
for initial-state radiation (upper left), the sum of Born and initial-state radiation (upper
right) and Compton (lower left) events; Q2

h distributions as solid lines, Q2
l ones as dashed

lines (parameters see text). The Q2
l range was restricted to 10 < Q2

l < 15 GeV2.
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