
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Laboratory for Particle Physics

Divisional Report CERN/LHC 97-05 (VAC)

Control and Operational Models for Vacuum Equipment

P.M. Strubin and N. Trofimov

Abstract

Operational models which describe the behaviour and the physical values associated
with the vacuum equipment as seen by an operator have been studied for some time at
CERN. Recently, they have been completed by control models, which define in a formal
way the data structures required to access the physical values described in the
operational model. The control models also define the operations that an application
program has to send to the vacuum equipment to modify its state. Object Modelling
Techniques (OMT) have been used to formalise the description of the models.
In order to test the validity of the concepts, we have made a working prototype in the
LEP accelerator. This prototype is being built on top of the CERN SL-Equip equipment
access package and uses the "cdev" C++ library, developed at TJNAF, for the interface
to application programs. SL-Equip is used for data transmission between front-end
computers and vacuum equipment. We use the "cdev" networking facilities to
communicate between the workstation and the front-end computers, and the "cdev"
generic server as the framework for implementing the vacuum controls software. These
packages were used in order to minimise the required software investment, but also to
prove that these models are hardware and software independent.

Presented at 1997 Particle Accelerator Conference, Vancouver, 12-16 May 1997

Administrative Secretariat Geneva, Switzerland
LHC Division
CERN
1211 Geneva 23
24 July 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25216147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Control and operational models for vacuum equipment

P.M. Strubin and N. Trofimov, CERN, CH-1211 Geneva 23, Switzerland

Abstract

Operational models which describe the behaviour and the
physical values associated with the vacuum equipment as
seen by an operator have been studied for some time at
CERN. Recently, they have been completed by control
models, which define in a formal way the data structures
required to access the physical values described in the op-
erational model. The control models also define the op-
erations that an application program has to send to the
vacuum equipment to modify its state. Object Modelling
Techniques (OMT) have been used to formalise the de-
scription of the models.
In order to test the validity of the concepts, we have made
a working prototype in the LEP accelerator. This proto-
type is being built on top of the CERN SL-Equip equip-
ment access package and uses the "cdev" C++ library,
developed at TJNAF, for the interface to application pro-
grams. SL-Equip is used for data transmission between
front-end computers and vacuum equipment. We use the
"cdev" networking facilities to communicate between the
workstation and the front-end computers, and the "cdev"
generic server as the framework for implementing the
vacuum controls software. These packages were used in
order to minimise the required software investment, but
also to prove that these models are hardware and software
independent.

1 INTRODUCTION

Recent experience, when developing a common man ma-
chine interface for vacuum controls for all accelerators at
CERN [1], made evident that a significant amount of
work was induced by the variety of vacuum equipment and
access methods. Whereas the interface presented to the
operator is identical for all accelerators, the underlying
programs are quite different. The work presented here is
aiming at hiding the differences between equipment to the
application programmer as well as to provide him with a
clear description of how to control the vacuum equipment.
Starting from the operational model [2], a control model
is defined, which makes use of building blocks which we
call components. These components provide a uniform
way of representing physical data from which the applica-
tion program interface can be derived.
The application interface is built from a device server us-
ing the CDEV interface library. This server is the key to
present the control model in a coherent way to the appli-
cation programs.

2 M O D E L S

There are two concepts of a model which have to be
clearly defined, the operational model and the control
model.

2.1 The operational model

The operational model refers to the following:
- a narrative description of what the primary function and

behaviour of the device is;
- the enumeration of the various physical values of inter-

est which can be observed by means of the hardware and
firmware installed in the control unit of the vacuum de-
vice. There is no assumption about any data type, we
simply refer to variables and units applicable to the
physical values;

- the state that a given vacuum device can take in normal
operation, documented with the reasons which can lead
to a change of state (actuation, time-out, interlock,
fault, etc.);

- the commands (actuation) the vacuum device can accept
to modify its state and possible restrictions to these
commands;

- the settings of the various physical values of interest
and the calculation parameters that the device needs to
operate according to its specifications.

The operational model does not imply computer control
and is therefore applicable to manual or computer con-
trolled operation. It does not depend on a particular make
of the device, although some real implementation may
not fulfil all aspects of the operational model. Finally,
there should be no controls related definitions or concepts
in its description.

2.2 The control model

The control model refers to the following:
- define in a formal way the data structures required for the

application programs to access the various physical val-
ues described in the operational models, including related
information like time-stamp or validity;

- define in a formal way the data structure required for the
application programs to recognise and handle abnormal
operating conditions or faults;

- describe in an semi-formal, although exhaustive, way
the transitions between the possible states defined in the
operational models of the vacuum devices as a result of
external or internal events, typically using some form of
state transition diagrams;

- define in a formal way the procedures (operations) re-
quired by the application programs to send the events
(actuation) required for operating the vacuum devices;

- define in a formal way the aggregation of the above
mentioned data structures to emulate the modelled vac-
uum devices. This aggregation is referred to as configu-
ration.

All formal definitions must be independent from any pro-
gramming language, but should be easily translated into a
real language.

3 REQUIREMENTS OF APPLICATION
PROGRAMS

All application programs must be able to control vacuum
devices in an identical way, using the same configuration.
Main functionality related to vacuum equipment which
should be accessible via the model is to evaluate the cur-
rent state of a device, to be able to modify it and to ac-
quire all relevant physical values.
Auxiliary information for the evaluation of the current
state, like the time when the state was last observed or
changed and the reason for a change must be provided to
the application programs. If a request to change state
fails, the application programs must be able to work out
the reason of the failure.
Similarly, the application programs must be able to ob-
tain, together with the relevant values from the physical
process, the time a value was last evaluated, the limits of
validity, the resolution and the units in which a physical
value is represented.

4 CONTROL MODELS OF VACUUM
DEVICES

A vacuum device will in general be a piece of vacuum
equipment, like a gauge or a pump, associated to its cor-
responding power supply or controller and connected to
the control system of an accelerator through an appropri-
ated network.

4.1 Functional components

Functional components define a common way to represent
the functions and data available in a vacuum device. They
can be looked at as building blocks through which access
to the information of specific devices can be granted. We
do not describe real data access channels here.
For the purpose of vacuum equipment modelling, we de-
fine seven basic types of the functional components.
Each component type represents certain device capability
and holds a number of data items, or properties, that ap-
plications can observe and, in some case, modify.
For example, Continuous Input (CInput) models the ana-
logue measurement capability. It provides read only ac-
cess to the measured value of the associated physical
value, as well as some related properties, such as the valid
range, the units of measurement, achievable resolution,
etc. A pressure returned from a gauge can typically be
represented by a Continuous Input.
It is possible to describe these functional components
using class hierarchy and association:

Input
status: STRING
value: any
timestamp: TIMESTAMP
refreshInterval: TIMESTAMP

open()
close()
update()

Continous
min: float
max: float
units: STRING
resolution: float
format: STRING

setUnits()

Enumerated

validValues: LIST

CInput

State
entryTime: TIMESTAMP
previousState: ENUM
reason: STRING
timeRemaining: TIMESTAMP

EInputValidate CInput Validate EInput

... ...

... ...

Figure: 1 Example of components used to feed data into a
model

Components are defined as a result of the analysis of the
requirements of application programs. They may be ex-
tended to include more information, but care must be
taken not to try to adapt the functionality of the vacuum
devices to the any arbitrary definition of components.

4.2 Control models

A control model is based on a set of functional compo-
nents and a state model. Hence, the control models for
vacuum devices are built by aggregating functional com-
ponents around a generic vacuum device class. The be-
haviour of a controlled vacuum device is described by its
state model. The generic vacuum device class is the way
to provide the interface to this state model for an applica-
tion.
A configuration database describes which physical values
can be read, which need settings and what type of compo-
nents are used to access the physical values. This is not
to be confused with the database describing the topology
(or grouping) of equipment.

5 INTERFACE TO APPLICATION
PROGRAMS

The application programs only know a device via its con-
trol model. The exact level at which the model becomes
first visible in a control system depends on the system
architecture and specific design choices made in the
equipment interface. It should be at the lowest possible
level in order to minimise unnecessary data transfer and
reformatting.
A software process (or a number of processes) maintains
an image of the state and of the data generated by a vac-
uum device for the application programs and forwards data
from the application programs to the vacuum device, us-
ing the data structures described in the control model.
The representation of the various data structures for an
application within a specific implementation is derived
from the control model.

6 CLASS HIERARCHY FOR VACUUM
DEVICES

Analysis of the control models reveals the common func-
tionality and capabilities between vacuum devices. This
leads to the definition of a class hierarchy in which the
common features are placed at the top. Specialisation of
these generic classes provides the interface to more spe-
cific vacuum equipment, like gauges. Common function-
ality, like pressure measurement, can be added as another
abstract class, from which “gauges” would inherit. Fi-
nally, further specialisation will lead to the classes repre-
senting the real equipment.

VacuumDevice
status: EInput
state: State
actuation: EOutput

Gauge

powerSupplyFault: Indicator
externalInterlock: Indicator
overPressure: Indicator

IonGauge

emission: Regulator
degasCurrent: Regulator
degasTime: COutput
filament: EOutput

Valve
PressureMeasurement

pressure: CInput

IonPump

ModulatedIonGauge

residualPressure: CInput
modulationTime: COutput

... ...

... ...

Figure: 2 Part of the Device Class Hierarchy

7 IMPLEMENTATION OF A PROTOTYPE
IN LEP

The prototype implementation in the LEP control system
employs the client-server architecture (Fig. 3). The
VacModel servers are running on the front end computers
(LynxOS on VME/PowerPC) and provide a model based
view of the vacuum equipment for the applications run-
ning in the workstations (HP-UX). The VacModel server
uses the standard LEP equipment access software (SL-
Equip) [4] to communicate with the equipment, and the
existing Oracle database as primary source of all the con-
figuration data.
The server implementation is based on the "CDEV Ge-
neric Server Engine", a collection of C++ classes devel-
oped at TJNAF [3]. The CDEV (Control DEVice) class
library aims at providing an object-oriented interface be-
tween an application and underlying accelerator control
software. Basic concepts of the CDEV application pro-
gramming interface are very close to our control model
definition, so the mapping is rather simple and straight-
forward.

cdev client library

VacModel Service

cdev client library

VacModel Server

SL-EQUIP

Equipment

Application

cdev client library

VacModel Service

cdev client library

VacModel Server

SL-EQUIP

Equipment

Application

cdev network library (CLIP)

Figure: 3 Overview of implementation

The device class hierarchy (Fig 2) can easily be expressed
in the CDEV Device Definition Language and the com-
ponents of the control model map directly to the CDEV
device attributes. Using standard CDEV messages, an
application can read, write or monitor values of the com-
ponents' properties. All required communication func-
tionality is provided by the CDEV library classes. The
specific VacModel software essentially binds the CDEV
framework to the LEP database and equipment access en-
vironment.

8 CONCLUSIONS

Operational models have already been successfully applied
in several projects, but the large variety of access methods
meant that a significant amount of work was required
whenever a new device was added or an application was
ported to a different environment. Control models aim at
minimising this effort and the first prototype implementa-
tion in LEP shows that this is quite possible.
This prototype was built using existing “general purpose”
libraries, like CDEV and SL-Equip, which demonstrates
that a generic description of equipment leads itself to an
easy implementation on real hardware and software plat-
forms.

9 REFERENCES
[1] ‘A data driven graphical user interface for vacuum

applications’, L. Kopylov, M. Mikheev,
N. Trofimov (IHEP Protvino), P. Strubin,
M. Steffensen (CERN), ICALEPCS 1995, Chicago,
USA.

[2] ‘Using models to allow for object oriented program-
ming of the vacuum control systems’, R. Gavaggio,
M. Steffensen and P. M. Strubin, EPAC 1994,
London, UK.

[3] ‘CDEV: An Object-Oriebnted Class Library for De-
veloping Device Control Applications’, J. Chen,
G. Heyes, W. Akers, D. Wu and W.A. Watson
(CEBAF), ICALEPS 1995, Chicago

[4] ‘The Equipment Access Software for a Distributed
UNIX-Based Accelerator Control System’, N. Trofi-
mov, S. Zelepoukine, E.Zharkov (IHEP Protvino),
P. Charrue, C. Gareyte, H. Poirier (CERN),
ICALEPS 1993, Berlin

