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Abstract

We present an additional test of the recent proposal for describing supersymmetry

breaking due to gaugino condensation in the strong coupling regime, by a Scherk-

Schwarz mechanism on the eleventh dimension of M-theory. An analysis of super-

symmetric transformations in the infinite-radius limit reveals the presence of a dis-

continuity in the spinorial parameter, which coincides with the result found in the

presence of gaugino condensation. The condensate is then identified with the quan-

tized parameter entering the modification of the Scherk-Schwarz boundary conditions.

This mechanism provides an alternative perturbative explanation of the gauge hier-

archy that determines the scale of low-energy supersymmetry breaking in terms of

the unification gauge coupling.
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The 10-dimensional (10D) E8 × E8 heterotic string, compactified on an appropriate

6D internal manifold, is a good candidate for describing the observed low-energy world. In

particular, compactification on a Calabi-Yau (CY) manifold leads to a 4D N = 1 supersym-

metric theory that can accommodate the gauge group and matter content of the standard

model. On the other hand, there is a mismatch between the gauge coupling unification

scale, MG ∼ 1016 GeV, and the heterotic string scale MH , which is determined in terms

of the Planck scale, Mp ∼ 1019 GeV, from the relation MH = (αG/8)1/2Mp ∼ 1018 GeV,

where αG ∼ 1/25 is the unification gauge coupling. However, this relation does not hold

if the compactification scale is small compared to MH , in which case the 10D theory is

strongly interacting.

It is now believed that the strong coupling limit of the 10D heterotic string theory

compactified on CY is described by the 11D M-theory compactified on CY×S1/Z2 upon

the identification [1, 2]:

M11 ≡ 2π(4πκ2
11)
−1/9 = 2π(2αGV̂ )−1/6 ; ρ−1 =

4

αG
M3

11M
−2
p , (1)

where κ11 is the 11D gravitational coupling, ρ is the radius of the semicircle S1/Z2, and V̂

is the CY volume. In this regime, the value of the unification scale can become consistent

with the M-theory scale M11 ∼ MG, if the radius ρ of the semicircle is at an intermediate

scale ρ−1 ∼ 1012 GeV, while for isotropic CY the compactification scale V̂ −1/6/2π is of

the order of M11. Fortunately, this is inside the region of validity of M-theory, ρM11 � 1

and V̂ κ
−4/3
11 � 1. As a result, the effective theory above the intermediate scale behaves as

5-dimensional, but only in the gravitational and moduli sector; the gauge sectors coming

from E8 × E8 live at the 4D boundaries of the semicircle.

In recent works [3, 4, 5], the intermediate scale ρ−1 was related with the scale of super-

symmetry breaking by means of a coordinate-dependent compactification of the eleventh

dimension, analogue to the Scherk-Schwarz mechanism [6]. The observable world living

at the boundaries remains unaffected and feels supersymmetry breaking only by gravita-
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tional interactions, which yield msusy ∼ ρ−2/Mp [3, 5]. Moreover we suggested [5] that this

(perturbative) mechanism describes ordinary (non-perturbative) gaugino condensation [7]

in the strongly coupled heterotic string. In particular, assuming that the basic relations

of gaugino condensation in the weakly coupled heterotic string, m3/2 = |W |eK/2 ∝ Λ3
c ,

also hold in the strong coupling regime, and using the fact that the superpotential W is

of order 1 (in Planck units) at the minimum, we found simple scaling relations with the

volume V̂ ∼ e−K : m3/2 ∼ V̂ −1/2 and Λc ∼ V̂ −1/6. Comparison with the duality relations

(1) yields the following identifications for the gravitino mass and the condensation scale:

m3/2 ∼ ρ−1 and Λc ∼M11 [5], respectively.

In this letter we further analyse the mechanism of supersymmetry breaking in M-theory

by Scherk-Schwarz compactification on the eleventh dimension and present additional evi-

dence that it provides a dual description of gaugino condensation in the strongly coupled

heterotic string. We find that the goldstino is the (right-handed) fifth component of the 5D

gravitino, while there is a discontinuity in the supersymmetric spinorial transformation pa-

rameter around the end-point ±πρ of the semicircle. This discontinuity survives in the limit

ρ→∞, where the gravitino mass vanishes and supersymmetry is locally restored, in agree-

ment with the result previously found in the case of gaugino condensation in the strongly

coupled heterotic string [8]. Furthermore, the quantization of the condensate is related to

the quantized parameter entering the Scherk-Schwarz boundary conditions. Finally, con-

sistency of the proposed dual description requires that the hidden E8 be strongly coupled

at the M-theory scale, which determines ρ−1 in terms of αG at the desired intermediate

scale ∼ 1012 GeV. Consequently, the large hierarchy between the supersymmetry-breaking

scale in the observable sector and the Planck mass arises as a result of successive power

suppressions of the gauge coupling of the form (αG/16π2)4.

We start by first considering the N = 1 5D theory obtained from compactification of

M-theory on a CY manifold with Hodge numbers h(1,1) and h(1,2) [9]. In addition to the
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gravitational multiplet, the massless spectrum contains nV = h(1,1) − 1 vector multiplets

and nH = h(1,2) +1 hypermultiplets. The N = 1 supersymmetry transformations in the 5D

theory are [10]:

δemM = −
i

2
EΓmΨM

δΨM = DME + · · ·

δX a = −
1

2
vaα(6∂φ

α)E + · · ·

δφα =
i

2
vαa EX

a , (2)

where emM is the fünfbein, Γm = (γµ, iγ5) are the Dirac matrices 1, ΨM is the gravitino field,

E the spinorial parameter of the transformation, and the dots stand for non-linear terms.

Finally, X a and φα denote the fermionic and scalar components of vector multiplets while

vaα is the vielbein of the corresponding moduli space. Similar transformations hold for the

components of hypermultiplets for which our subsequent analysis can be generalized in a

straightforward way.

All fermions in eq. (2) can be represented as doublets under the SU(2) R-symmetry

whose components are subject to the (generalized) Majorana condition; in a suitable ba-

sis [11]:

Ψ ≡

 ψ1

ψ2

 = γ5

 ψ∗2

−ψ∗1

 , (3)

where Ψ describes any generic (Dirac) spinor of eq. (2) 2. In this notation, it is understood

that the γ-matrices act diagonally in the SU(2)R space. It is convenient to decompose

the spinors with respect to the four-dimensional chirality. Using the relations γ2
5 = 1

and γ∗5 = −γ5, which are valid in the above basis, it follows that γ5ψ1 = ±ψ1 implies

1The Γm matrices are defined by their anticommutation rules, {Γm,Γn} = 2ηmn, where the space-time

metric is ηmn = diag(1,−1,−1,−1,−1). They satisfy the relation Γ0 · · ·Γ4 = 1. The 4D matrices Γµ = γµ

(µ = 0, . . . , 3) are purely imaginary and Γ4 = iγ5 is real.
2Hereafter we will conventionally denote fermionic SU(2)R doublets with upper-case symbols and their

corresponding components with lower-case ones.
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γ5ψ
∗
1 = ∓ψ∗1 . We can then define:

ΨL ≡

 ψL

ψ∗R

 ΨR ≡

 ψR

−ψ∗L

 , (4)

in terms of the 4D chiral spinors ψL,R = ±γ5ψL,R , where ψ∗R,L ≡ (ψL,R)∗. This decomposi-

tion amounts, in terms of SU(2)R doublets, to the condition

Γ5ΨL,R = ±ΨL,R ; Γ5 =

 γ5 0

0 −γ5

 . (5)

The “chiral” spinors ΨL,R satisfy trivially the condition (3). Furthermore, it is easy to show

the relations

EL(γ
µ)2nΨR = 2iIm

{
εL(γµ)2nψR

}
, EL(γ

µ)2n+1ΨL = 2iIm
{
εL(γ

µ)2n+1ψL
}
,

EL(γ
µ)2nγ5ΨR = 2Re

{
εL(γµ)2nγ5ψR

}
, EL(γ

µ)2n+1γ5ΨL = 2Re
{
εL(γ

µ)2n+1γ5ψL
}
,

which are also valid when L and R are interchanged.

Upon compactification to D = 4 on the semi-circle S1/Z2 of radius ρ, one obtains

an N = 1 supersymmetric theory that, for large ρ, describes the strong coupling limit

of the heterotic string compactified on the same Calabi-Yau manifold as compactifies the

11-dimensional theory to D = 5 [1, 2]. The gauge group then appears at the two end-

points of the semicircle and consists of a subgroup of E8 × E8 together with some matter

representations depending on the particular embedding of the spin connection. For instance,

for the standard embedding into a single E8, one obtains an E6 sitting at one end (y = πρ)

together with h(1,1) 27’s and h(1,2) 27’s, and a pure E8 sitting at the other end (y = 0).

The Z2 projection is defined through the reflectionR of the fifth coordinate y parametriz-

ing S1, and has the following action on the 5D fermionic fields:

RΨ(xµ, y) ≡ ηΓ5Ψ(xµ,−y) , (6)
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with η = 1 for Ψ = Ψµ and η = −1 for Ψ = Ψ5,X . In terms of the spinors defined in

eq. (4),

RΨL,R(xµ, y) = ±ηΨL,R(xµ,−y) . (7)

The Z2 projection is defined by keeping the states that are even under R. It follows that

the remaining massless fermions are the left-handed components of the 4D gravitino ΨµL,

as well as the right-handed components of Ψ5R and XR. Taking into account the Z2 action

in the bosonic sector, which projects away the off-diagonal components of the fünfbein

(e5µ), the above massless spectrum is consistent with the residual N = 1 supersymmetry

transformations at D = 4 given by eq. (2) with a fermionic parameter E reduced to its

left-handed component EL.

In order to spontaneously break supersymmetry, we apply the Scherk-Schwarz mech-

anism on the fifth coordinate y [6]. For this purpose, we need an R-symmetry, which

transforms the gravitino non-trivially and imposes boundary conditions, around S1, which

are periodic up to a symmetry transformation:

ΨM(xµ, y + 2πρ) = e2iπωQΨM(xµ, y) , (8)

where Q is the R-symmetry generator and ω the transformation parameter. The continuous

symmetry is in general broken by the compactification to some discrete subgroup, leading

to quantized values of ω. For instance, in the case of ZN one has ω = 1/N and Q =

0, . . . , N − 1. For generic values of ω, eq. (8) implies that the zero mode of the gravitino

acquires an explicit y-dependence:

ΨM(xµ, y) = U(y)Ψ
(0)
M (xµ) + · · · ; U = ei

ω
ρ
yQ , (9)

where the dots stand for Kaluza-Klein (KK) modes.

Consistency of the theory requires that the matrix U commutes with the reflection R,

which defines the N = 1 projection [12, 13]. From eq. (6) one then finds:

Γ5U(−y) = U(y)Γ5 , (10)
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implying that the generator Q anticommutes with Γ5, {Q,Γ5} = 0 3 . The general solution

is [4]:

Q = sin θσ1 + cos θσ2 ; U =

 cos ωy
ρ

sin ωy
ρ
eiθ

− sin ωy
ρ
e−iθ cos ωy

ρ

 , (11)

where σ1,2 are the Pauli matrices representing SU(2)R generators and θ is an arbitrary (real)

parameter. For the particular value ω = 1/2 there is an additional solution to eqs. (8) and

(10) corresponding to [5]:

Q =

 θ1 0

0 θ2

 ; U =

 eiπθ1 0

0 eiπθ2

 cos
y

2ρ

(
ω =

1

2

)
, (12)

with θ1,2 arbitrary constants. Note however that this solution involves both n = 0 and

n = −1 KK-modes, which makes the effective field theory description of the spontaneous

supersymmetry breaking more complicated. For this reason, we restrict our subsequent

analysis to solution (11).

Inspection of the supersymmetry transformations (2), together with the requirement

that the fünfbein zero mode does not depend on y, shows that the y-dependence of the

supersymmetry parameter is the same as that of the gravitino zero-mode, i.e. E(xµ, y) =

U(y)E (0)(xµ) [6]. Supersymmetry in the 4D theory is then spontaneously broken, with the

goldstino being identified with the fifth component of the 5D gravitino, Ψ
(0)
5 . Indeed, for

global supersymmetry parameter, DµE (0) = 0, its variation is 4:

δΨ
(0)
5 = (U−1∂yU)E (0) + · · · ; U−1∂yU =

ω

ρ

 0 eiθ

−e−iθ 0

 , (13)

while no other fermions can acquire finite constant shifts in their transformations. The

reason is that the scalar components of the zero-mode supermultiplets are either inert

3Notice that condition (10) guarantees that the R-chirality of a spinor, ΨL,R(xµ, y), in the sense of

eq. (7), coincides with the Γ5-chirality of its zero-mode Ψ
(0)
L,R(xµ), in the sense of eq. (5). In this way one

can write the decomposition (9) for the chiral components of Ψ, i.e. ΨL,R(xµ, y) = U(y)Ψ
(0)
L,R(xµ).

4Note that the operator U−1∂yU turns a left-handed spinor, in the sense of eq. (5), into a right-handed

one.
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under the R-symmetry, and therefore y-independent, or otherwise become massive, and

y-dependent as φ(xµ, y) = v+U(y)φ(0)(xµ)+ · · ·, with v being a constant and the quantum

fluctuation φ(0) having zero vacuum expectation value (VEV). It is then clear from eq. (2)

that the variation of their fermionic superpartners vanishes in the vacuum, δX (0) = 0.

The kinetic term of the 5D gravitino,

−i/2ΨMΓMNPDNΨP ,

where ΓM1...Mn ≡ Γ[M1ΓM2 . . .ΓMn] is the totally antisymmetric product, gives rise to the

following 4-dimensional Lagrangian for the gravitino zero modes:

e−1L(0) = −
i

2
Ψ

(0)
M ΓMNPDNΨ(0)

P −
1

2
Ψ

(0)
µ

(
U−1∂yU

)
Γµνγ5Ψ

(0)
ν , (14)

where the matrix U−1∂yU is given in eq. (13). The first term in the r.h.s. of eq. (14) is

the kinetic term of the gravitino zero modes, while the second is a mass term for the Ψ(0)
µ

component. Notice that the goldstino component Ψ
(0)
5 remains massless, as it should.

The above arguments are also valid in the N = 1 theory, obtained by applying the Z2

projection defined through the R-reflection (6). The y-dependence of the remaining zero

modes is always given by eq. (9). The goldstino is now the right-handed component ψ
(0)
5R ,

which, from eq. (13), transforms as:

δψ
(0)
5R =

ω

ρ
eiθε

(0)∗
R + · · · (15)

The surviving gravitino is Ψ
(0)
µL in the notation of eq. (4). Its kinetic term can be read off

from the first term in the r.h.s. of eq. (14):

e−1L(0)
kin = −

i

2
Ψ

(0)
µLΓµνρDνΨ

(0)
ρL = −

i

2
ψ

(0)

µLΓµνρDνψ
(0)
ρL + h.c. (16)

while the second term yields a mass for the gravitino zero mode equal to ω/ρ:

e−1L(0)
m = −

1

2

ω

ρ
Ψ

(0)
µL

 0 eiθ

−e−iθ 0

Γµνγ5Ψ
(0)
νL =

1

2

ω

ρ

[
eiθψ

(0)

µLΓµνψ
(0)∗
νR + h.c.

]
. (17)
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Note, however, that the above analysis in the N = 1 case is valid, strictly speaking,

for values of y inside the semicircle, obtained from the interval [−πρ, πρ] through the

identification y ↔ −y. This leads to a discontinuity in the transformation parameter E

around the end-point y = ±πρ, since U(−πρ) = U−1(πρ):

E(−πρ) 6= E(πρ) . (18)

This discontinuity survives even in the large-radius limit ρ→∞ where the gravitino mass

vanishes and supersymmetry is restored locally. This phenomenon is reminiscent of the one

found in ref. [8], where the discontinuity at the weakly coupled end y = πρ is due to the

gaugino condensate of the hidden E8 formed at the strongly coupled end y = 0. In fact

the two results become identical for the transformation parameter E in the neighbourhood

y ∼ πρ, in the limit ρ→∞:

lim
ρ→∞

εL(y) |y∼πρ = cosπω ε(0)
L + ε(y) sinπω eiθε(0)∗

R . (19)

On the other hand, it is easy to see that the goldstino variation vanishes in this limit,

since the discontinuity in ∂yε(y)L is proportional to δ(y) sin(yω/ρ). The transformation

parameter εL(y) is thus identified with the spinor η′ of ref. [8], which solves the unbroken

supersymmetry condition δψ5R = 0.

Note that despite the change of 4D chirality, both terms in the r.h.s. of eq. (19) are

invariant under theR reflection (6), which defines the N = 1 projection. Indeed, the second

term containing the R-odd right-handed spinor ε
(0)∗
R is multiplied by ε(y), which is also odd

under R. The proportionality constant sin πω plays the role of the gaugino condensate in

the dual description and vanishes only for integer values of ω for which the Scherk-Schwarz

mechanism becomes trivial. In general ω is quantized, as we discussed earlier, which is

consistent with the quantization of the gaugino condensate through its equation of motion

that relates it with the VEV of the antisymmetric tensor field strength [14].

In the presence of gaugino condensation, the discontinuity (18) was interpreted as a

topological obstruction that signals supersymmetry breaking when effects of finite radius
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would be taken into account [8]. Here we have shown that the same discontinuity, in the

infinite-radius limit, is reproduced by the Scherk-Schwarz mechanism. Moreover, in ref. [5]

we have provided independent evidence that the finite-radius effects are also described

by the Scherk-Schwarz mechanism on the eleventh dimension, in the region of validity of

M-theory, ρM11 � 1, where the 10D heterotic string remains strongly coupled.

In the description of gaugino condensation by the Scherk-Schwarz mechanism, the con-

densation scale is identified with the M-theory scale M11. This implies that the hidden E8 is

strongly coupled and should not contain any massless matter in the perturbative spectrum.

Consistency then requires that the corresponding gauge coupling be large, α8(M11) >
∼ 1.

On the heterotic side, this condition follows from the minimization of the gaugino con-

densation potential, which relates the value of the condensate to the quantized VEV of

the antisymmetric tensor field strength. On the M-theory side, this provides a constraint

that naively fixes the 4D unification coupling αG to be in a non-perturbative regime. For-

tunately, there are important M-theory threshold effects that invalidate this conclusion.

These effects can be understood from the lack of factorization of the 7-dimensional internal

space as a direct product of the semicircle with a Calabi-Yau manifold, CY×S1/Z2 [2]. As

a result, the Calabi-Yau volume V̂ becomes a function of ρ and takes different values at

the two end-points of the semicircle. In the large-radius limit, one finds:

V̂ (0) = V̂ (πρ)− 2π4ρM−3
11

∣∣∣∣∫
CY

ω

4π2
∧ (trF ′ ∧ F ′ − trF ∧ F )

∣∣∣∣ , (20)

where ω is the Kähler form of CY and F ′ (F ) is the field strength of the strongly (weakly)

coupled E8 sitting at the end-point y = 0 (y = πρ). The integral in the r.h.s. is a linear

function of the h(1,1) − 1 Kähler class moduli for unit volume, which belong to 5D vector

multiplets. Its natural value is M−2
11 up to a proportionality factor of order 1 [2].

Following eq. (1), the gauge coupling constants at the two end-points are related to the

corresponding volumes as [1]:

1

αG
= 2M6

11V (πρ) ;
1

α8(M11)
= 2M6

11V (0) , (21)
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where αG is the unification coupling of the weakly coupled gauge group and the reduced

volumes are defined by V̂ ≡ (2π)6V . Imposing now the constraint α8(M11) >
∼ 1 and using

eqs. (21) and (20), one finds ρ ∼ ρcrit where ρcrit corresponds to the critical value at which

the volume at the strongly coupled end vanishes and the hidden E8 decouples from the

low-energy spectrum:

ρ−1
crit =

αG

16π2
M3

11

∣∣∣∣∫
CY

ω

4π2
∧ (trF ′ ∧ F ′ − trF ∧ F )

∣∣∣∣
∼

αG
16π2

M11 ' 2× 10−4M11 (22)

Note that this condition can also be thought of as resulting from a minimization of the

(positive semi-definite) 4D gaugino condensation potential, which is proportional to V (0)

and, thus, vanishes at zero volume.

It is remarkable that the above relation provides the hierarchy necessary to fix ρ−1 at

the intermediate scale ∼ 1012 GeV, when one identifies the M-theory scale M11 with the

unification mass ∼ 1016 GeV inferred by the low-energy data [2, 3]. In fact, from eq. (17),

ρ−1 determines the value of the gravitino mass and the scale of supersymmetry breaking for

the gravitational and moduli sector in the 5-dimensional bulk. Supersymmetry breaking is

then communicated to the observable sector, living at the boundary y = πρ, by gravita-

tional interactions yielding a low-energy supersymmetry breaking msusy ∼ ρ−2/Mp, which

is at the TeV range [3, 5]. Thus, this mechanism provides an alternative “perturbative”

explanation of the gauge hierarchy, where the smallness of the ratio msusy/Mp ∼ 10−16 is

provided by powers of the unification coupling ∼ (αG/16π2)4 instead of the conventional

non-perturbative suppression ∼ e−1/αG . Of course in both cases, the remaining open prob-

lem is to determine the actual value of the gauge coupling αG. In the present context of

M-theory, this amounts to fixing the volume of the Calabi-Yau manifold V (πρ).
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Note added

After completion of this work we have received the paper of ref. [15], where an indepen-

dent analysis of supersymmetry breaking in M-theory is performed. There is however an

important numerical difference in the estimate of the radius ρ of the semicircle due to the

different definition of the unification scale. In fact, in ref. [15] MG is identified with V̂ −1/6,

instead of M11 which is also of the order of the mass of the first KK-excitation V −1/6 (up

to a factor of (2αG)−1/6 ∼ 1.5). As a result, our determination of ρ−1 from the second

relation of eq. (1) yields a value which is around three orders of magnitude below the one

of ref. [15]. A similar difference holds for the determination of ρ−1
crit in eq. (22) for the same

reason. Another difference concerns the gaugino masses. We would like to stress that the

vanishing of supersymmetry breaking in the observable sector is true only if this sector lives

on a strict 4D boundary of the 5D world. This implies that there are no KK excitations

along the eleventh (5th) dimension with quantum numbers of the Standard Model, and

thus, there are no threshold corrections to the (observable) gauge couplings. This reduces

to a condition on the compactification manifold implying, in particular, that the volume

V (πρ) is independent of ρ. If this requirement is not satisfied, gaugino masses, as well as in

general scalar masses, will be proportional to the gravitino mass [12, 13]. Such a scenario

is however phenomenologically inconsistent since soft masses are pushed at the intermedi-

ate scale ∼ 1/ρ unless if the quantization condition of the Scherk-Schwarz parameter ω in

eqs. (9,11), that corresponds to the gaugino condensate superpotential, can be avoided.
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[7] J.-P. Derendinger, L.E. Ibáñez and H.P. Nilles, Phys. Lett. B155 (1985) 65; M. Dine,

R. Rohm, N. Seiberg and E. Witten, Phys. Lett. B156 (1985) 55; C. Kounnas and

M. Porrati, Phys. Lett. B191 (1987) 91.
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