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ISSUES IN QUANTUM{GEOMETRIC PROPAGATION

M.A. CLAYTON

Abstract. A discussion of relativistic quantum{geometric mechanics on phase space and its gener-

alisation to the propagation of free, massive, quantum{geometric scalar �elds on curved spacetimes

is given. It is shown that in an arbitrary coordinate system and frame of reference in a 
at spacetime,

the resulting propagator is necessarily the same as derived in the standard Minkowski coordinates

up to a Lorentz boost acting on the momentum content of the �eld, which is therefore seen to play

the role of Bogolubov transformations in this formalism. These results are explicitly demonstrated

in the context of a Milne universe.

1. Introduction

That a fundamental scale should exist in the `ultimate' theory of nature seems by now to be fairly

well accepted, and it is therefore of interest to examine a program that incorporates such a scale into

physics from the outset [28, 29, 31]. That the program involves a modi�cation of non{relativistic

quantum mechanics (without disturbing its agreement with experiment) is overshadowed by the

improved measurement{theoretic scenario that emerges, as well as the extension to a relativistic

quantum mechanical picture in both 
at and curved spacetimes; leading to a quantum gravitational

scenario. The twofold purpose of this manuscript is to give an overview of the basic ideas and results

of scalar Quantum{Geometric (QG) �eld theory on a curved spacetime, as well as to clarify QG

�eld propagation in 
at spacetime using a Milne universe for illustrative purposes. Even in such a

simple spacetime model the conventional �eld quantisation is not without it's ambiguities [4, 35].

That the conventional treatment of local quantum �elds, or the resulting formal `perturbative'

series, is not adequate follows from attempts to construct the simplest scalar quantum �eld theory.

These results indicate that, at best, the current perturbative treatment is not in accord with the

these rigorous results [16, Section 15.1.6] and it is felt that ultimately the model will turn out

to be trivial [18, Section 21.6]. Despite this, it is by now also well{established that the formal

perturbation theory that results from considering such models must have some physical validity,

due to the high accuracy of its agreement with experimental results [22, 13]. One of the remarkable

results from QG �eld theory is that the series that results from considering the analogous QG

�eld theory models formally reproduces the conventional series term by term in the sharp point

limit (i.e., when the fundamental length scale is taken to zero). Thus although the question of

triviality of such models has not been rigorously answered, the formal agreement of QG models

with experiment is established, even at such high accuracies.

Furthermore, the naive extension of local quantum �elds to curved spacetimes provides a \grossly

inadequate foundation for the theory [11]" as it requires an (approximate) timelike Killing vector

for its formulation [25]. Although QG �eld propagation is free of these criticisms [30], as we shall see

there are still issues to be resolved. However it is interesting that the consistent incorporation of a

quantum analogue of the strong equivalence principle into the formalism implies that the violation

of local energy{momentum that leads to ex{nihilo particle production in non{inertial frames of

reference in the conventional �eld theory cannot occur.

The plan of the manuscript is straightforward; we begin by giving an overview of Minkowski

space relativistic stochastic quantum mechanics and conclude the general discussion with the ge-

ometrization of this program and some results from generic 
at spacetime models. Following this,

we make some of these results more concrete by considering a Milne universe.
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2. Background

Here we will describe that part of relativistic QG mechanics that is necessary background to

consider the evolution of free QG scalar �elds in a classical, globally hyperbolic spacetime; further

details on interacting quantum �elds and gauge �elds has appeared elsewhere [31]. Although we

shall discuss relativistic QG �elds exclusively, The construction proceeds in an analogous manner

in the case of non-relativistic �elds [1], and may be reached through a group contraction of the

Poincar�e group of the relativistic QG formalism to the Galilei group of the non-relativistic QG

formalism [28].

Loosely speaking, the wave function  (x) of the conventional (local) theory which represents the

amplitude to �nd the system localised about a point x, is replaced in the QG formalism by a wave

function  (q; p) which contains information about the spatial localisation as well as the velocity of

the system. However whereas the local wave function of the former (and its extension to a local �eld

operator) is intended to allow for arbitrarily sharply localised position measurements of the state,

the outcome of measurements on the latter state may only be interpreted in a stochastic sense.

That is, instead of the practically unrealizable limit of measurements of the �eld at a point [6], the

outcome of the sharpest possible measurement of the position and momentum of a QG �eld would

indicate that the state is stochastically localised about q with a (stochastic) average momentum p.
The distribution of possible values about this outcome is related to the fundamental scale through a

resolution generator; a necessary byproduct of the reduction of the Poincar�e group action on phase

space, also leading to a conserved probability current with a positive{de�nite timelike component.

As we shall see, emphasis is placed on a local vacuum which represents (roughly speaking) a

micro-detector at stochastic rest, stochastically localised about the spacetime point in question.

Due to the fact that the formalism does not rely on the existence of a global vacuum for its

de�nition, the geometrization of the 
at spacetime theory in Section 2.2 survives the passage to

curved spacetimes.

2.1. Relativistic Quantum{Geometric Mechanics. To begin we must introduce some nota-

tion. The action of the Poincar�e group ISO0(1; 3) on the phase space manifold � = M
4 � V +

m � R
8

of pairs (q; p) with q 2 M
4 = (R4 ; �) from Minkowski space (� = diag(1;�1;�1;�1)) and

p 2 V +
m = fp 2 R

4 j p2 = m2; p0 > 0g from the positive mass hyperboloid is

(�; b) ? (q; p) = (�q + b;�p); � 2 SO(1; 3); b 2 R
4 ; (1a)

with Poincar�e group product and inverse given by

(�2; b2) ? (�1; b1) = (�2�1;�2b1 + b2); (�; b)�1 = (��1;���1b): (1b)

Here we will use the convention that, for example, q represents the vector components qA (A;B; : : : 2
f0; 1; 2; 3g), �q the product �A

Bq
B (so we will not indicate the contraction explicitly), and the

product of two vectors is written as p � q := pAqB�AB . From the de�nition of the Lorentz matrices

�AB = �A
C�

B
D�

CD we have that p � �q = ��1p � q where (��1)AB = �AC�BD�
D
C .

De�ning the product �m = � � V +
m � M

4 � V +
m of a maximal spacelike hypersurface � in M

4

and the forward mass hyperboloid, one introduces the Hilbert space of square{integrable functions

on these surfaces L2(�m) with inner product

h�1j�2i =
Z
�m

��1(q; p)�2(q; p)d�m(q; p); (2)

where the Poincar�e invariant measure is given by [28]

d�m(q; p) := 2p � d�(q)d
m(p); (3a)

d
m(p) = �(p2 �m2)d4p =
d3~p

2p0

���
p0=

p
~p2+m2

; (3b)

and d�A(q) is the volume element of the hypersurface � 2 M
4 . Note that d�m is normalised so

that on a spatial hyper-plane de�ned by q0 = 0 it reduces to d3~q d3~p.
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The induced spin zero representation of ISO0(1; 3) on �

U(�; b) : �(q; p)!
�
U(�; b)�

�
(q; p) = �

�
(�; b)�1 ? (q; p)

�
= �

�
��1(q � b);��1p

�
; (4)

was found (in contrast to the usual representations on momentum or con�guration space [5, Chapter

7]) to be highly reducible [29, Section 3.4]. Each irreducible sub-representation de�nes a subspace

of L2(�m) of functions of the form

�(q; p) =

Z
V +

m

e�iq�k~�
�p � k
m

�
~�(k)d
m(k) =

Z
V +

m

~��q;p(k)
~�(k)d
m(k); (5)

de�ning the Hilbert space PL2(�m). Here we have assumed that the irreducible sub-representations

are characterised by a real, rotationally invariant resolution generator ~�, which in this work will be

chosen as

~�(k) =

s
m3

~Zl;m
e�lk

0

; k 2 V +

m ; (6)

which is a minimum uncertainty state, and emerges as the unique ground state wave function of the

reciprocally invariant quantum metric operator [28, Section 4.5]. (Note that all of the relations given

here may either be viewed in Planck units [38, Appendix F] where all quantities are dimensionless,

or in units where ~ = c = 1 so that l and m�1 retain the dimensions of a length. In the former

case it is still useful to retain the parameter l in order to examine the sharp point limit l! 0.)

Considering the in�nitesimal form of the Poincar�e transformation in (4): (�; b) � (1; 0) + (�; �),

where � = 1

2
�ABM

B
A and � = �AP

A, we �nd that the generators fMA
B ; P

Ag of the Lie algebra
iso(1; 3) acting on PL2(�m) as

��(q; p) =
�
�AP

A + 1

2
�ABM

B
A

�
�(q; p) = i

�
�A ~PA + 1

2
�AB ~MB

A

�
�(q; p) (7)

satisfy the Lie algebra of ISO(1; 3)

[PA; PB ] = 0; [MAB ; PC ] = �ACPB � �BCPA; (8a)

[MAB ;MCD] = �ACMBD � �ADMBC � �BCMAD + �BDMAC ; (8b)

and are de�ned in terms of the eight operators [31, Section 4.4]

~PA := i@qA ;
~QA := qA � i@pA ; (9a)

as

PA = i ~PA; MAB = i ~MAB =: i( ~QA
~PB � ~QB

~PA): (9b)

Furthermore, the operators ~PA and ~QA satisfy the relativistic commutation relations

[ ~QA; ~PB ] = �i�AB ; [ ~QA; ~QB ] = [ ~PA; ~PB ] = 0; (10)

which is related to the relativistic generalisation of the Heisenberg uncertainty relations [31, Sec-

tion 3.8].

The collection of

~�q;p(k) :=
�
~U(�p=m; q)~�

�
(k) =

s
m3

~Zl;m
eik�q�

l
m
k�p =

s
m3

~Zl;m
eik��

�
; (q; p) 2 �; (11)

(�p=m is the boost to velocity p=m, and we have introduced the complex variables � := q � i l
m
p)

generated by the action of the Poincar�e group on the resolution generator, allows the de�nition of

the projection of � 2 L2(�m) onto PL
2(�m) via the kernel

K(q2; p2; q1; p1) :=

Z
V +

m

d
m(k)~�
�

q2;p2
(k)~�q1;p1(k) =

m3

~Zl;m

Z
V +

m

d
m(k)e
�ik�(�2��

�
1
); (12)

as

�(q0; p0) =

Z
�m

K(q0; p0; q; p)�(q; p)d�m(q; p): (13)
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Choosing the normalisation constant ~Zl;m as [31]

~Zl;m = (2�)4m5
K2(2lm)

2lm
; (14)

implies that h�1j�2i = h~�1j~�2i, and the kernel in (12) acts as a reproducing kernel on PL2(�m) [29,

Section 3.6]

K(�2; �1) = K�(�1; �2) =

Z
�m

K(�2; �)K(�; �1)d�m(�) =
2�m5

~Zl;m

K1

�
m
p
�(�2 � ��

1
)2
�

m
p
�(�2 � ��

1
)2

; (15)

where K1(z) is the modi�ed Bessel function of the �rst kind. (Note that the di�erence between

the normalisation factors appearing here and those in [31] is due to the fact that we are employing

momentum variables exclusively, as opposed to velocity variables.) Renormalising the kernel and

taking the l ! 0 limit results (in the distributional sense) in the positive frequency Pauli{Jordan

function [5, Appendix F] of the Klein{Gordon wave operator [32]

lim
l!0

i ~Zl;m

(2�)3m3
K(� 0; �)! K+(q0 � q) :=

i

(2�)3

Z
V +

m

exp
�
ik � (q0 � q)

�
d
m(k): (16)

Notice that for small arguments K2(x) � 2=x2, and therefore an in�nite renormalisation has been

performed in order to achieve this limit.

The alternative form of the inner product holding only on elements of PL2(�m) (the normalisa-

tion constant is given by Ẑm = m2K2(2lm)=K1(2lm) [31, page 105])

h�1j�2i = i
Ẑm

m2

Z
�m

��1(q; p)
$

@ qA�2(q; p)d�
A(q)d
m(p); (17a)

��1(q; p)
$

@ qA�2(q; p) := ��1(q; p)@qA [�2(q; p)]� @qA [�
�

1(q; p)]�2(q; p); (17b)

implies the existence of the system of covariance [29, Section 3.4] made up of positive operator{

valued measures

E(B) = i
Ẑm

m2

Z
B

j�q;pinA
$

@ qAh�q;pj d4q d
m(p) (18a)

(B � � is a Borel set), which satisfy the Poincar�e covariance relations

U(�; b)E(B)U(�; b)�1 = E(�B + b): (18b)

This in turn secures the interpretation of the integration of such measures over a Borel set B � �m

P�(B) = h�jE(B)�i =
Z
B2�m

j(P�)(q; p)j2d�m(q; p); (19)

as the outcome of a simultaneous measurement of stochastic position and momentum. The existence

of the Poincar�e covariant, conserved, probability current

JA(q) :=

Z
V +

m

2pA

m
j�(q; p)j2d
m(p); (20a)

U(�; b) : JA(q)! (�J)A
�
��1(q � b)

�
; @qAJ

A(q) = 0; (20b)

with positive{de�nite probability density J0 related to the measures (18a), not only secures the

probabilistic interpretation of the theory, but also guarantees that the integration over a hyper-

surface in the inner product (2) can be taken over any spatial hypersurface and not just spatial

hyper-planes. Since this will be of importance later on, it is useful to review the arguments leading

to this result, which is a generalisation of that appearing in [33, pages 57-8].

First generalise the current by considering the product of any two elements of PL2(�m)

JA21(q) :=

Z
V +

m

2pA

m
��2(q; p)�1(q; p)d
m(p); (21)
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which due to the Lorentz invariance of the momentum measure, transforms as

JA21(q)!
�
�(q)J21

�A�
��1(q)

�
q � b(q)

��
(22)

under a local Poincar�e transformation
�
�(q); b(q)

�
. Using the momentum space representation and

taking the partial derivative of (21) gives

@qAJ
A
21
(q) =

2im2

~Zl;m

Z
V +

m

d
m(k2)

Z
V +

m

d
m(k1)

Z
V +

m

d
m(p)

~��2(k2)
~�1(k1)p � (k1 � k2)e

�iq�(k2�k1)e�
l
mp�(k1+k2);

(23)

which (once again using invariance of d
m(p)) vanishes when one boosts to the rest frame of

(k1 + k2). (Note that this probability current is conserved for any choice of resolution generator

~�(k) provided that it is a real function of k [28, Section 2.8].) Integrating this over a region R � M
4

and making use of Gauss' law givesZ
R

d4q @qAJ
A
21
(q) � 0 =

I
@R

J21(q) � d�(q); (24)

which, when specialised to the region between two hypersurfaces �1 and �2 (corresponding to �1m
and �2m respectively) that coincide at spatial in�nity, givesZ

�1m

d�m(q; p)�
�

1(q; p)�2(q; p) =

Z
�2m

d�m(q; p)�
�

1(q; p)�2(q; p): (25)

For later reference it is useful to consider the form of an integral over an arbitrary hypersurface

�T0 labelled by the constant value of a function of the q variables T (q) = T0. The vector components

of the normal to the surface is then de�ned by nA(q) := �AB@qB [T (q)]=�
CD@qC [T (q)]@qD [T (q)], and

the surface measure may be written asZ
�m

d�m(q; p)!
Z
M�V +

m

2p � n(q)�
�
T (q)� T0

�
d4q d
m(p): (26a)

Introducing a new coordinate system (T; ~x) in which the time variable is constant on �T0 , the
gradient of q with respect to the spatial variables @~x[q(x)] (the pullback of the embedding map [24])

gives the induced surface metric 
ij(x) := ��AB@xi [qA(x)]@xj [qB(x)]. In this coordinate system the

surface measure is given byZ
�t
0
�V +

m

2p � n(x)
p

(x) d3~x d
m(p) =

Z
�t
0
�V +

m

2p � d�(x) d
m(p); (26b)

where the second form has been generalised to include the use of an arbitrary Lorentz frame; we

�nd that the spatial measure has taken on the standard form [38, Appendix B].

In the case where the �'s are replaced by the kernel (12) and we are therefore considering the

reproducing property (15), we �nd a stronger result. Considering any two spatial hypersurfaces �1m
and �2m with a surface at spatial in�nity C with (outward{pointing) normal r̂, the surface integral
in (24) then impliesZ

�1m

d�m(q; p)K(�2; q; p)K(q; p; �1)

=

Z
�2m

d�m(q; p)K(�2; q; p)K(q; p; �1) +

Z
C�V +

m

2p � r̂d�(q)d
m(p)K(�2; q; p)K(q; p; �1): (27)

The fact that for large spacelike separations dominated by the spatial interval �~q,m
p
�(�2 � ��

1
)2 �

mj�~qj � il(p2 + p1) ��q̂ and using the asymptotic behaviour of the modi�ed Bessel function of the

second kind [19, Equation 8.451 #6, page 963] K�(z) �
p
�=(2z)e�z as z ! 1, we �nd that as

the surface C is taken to spatial in�nity, it's contribution behaves as
R
dt d
e�2mj~qj=(m3j~qj), which

vanishes in the limit. Therefore for establishing the reproducing property of the kernel (12), any

maximal spacelike hypersurface at all will su�ce. Note however that if points on the surface C
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have light-like (or timelike) separation from points on both of �1m and �2m, then we cannot conclude

that its contribution vanishes in the limit since the kernel (15) will no longer vanish as C is taken

to spatial in�nity.

Before concluding this brief description of relativistic QG mechanics, we should make a few com-

ments on interacting �elds. Introducing a relativistic potential (e.g., a vector potential in the case

of the scattering of charged scalars o� a background electro-magnetic �eld) involves the projection

of the potential function onto PL2(�m), with the resulting dynamics given by an iterated kernel

very similar to that which will appear when we consider a curved background spacetime (65).

However, since the phenomena of pair creation in strong �elds is an experimental fact, one intro-

duces many{body, second{quantised QG �eld theory, in which the QG �eld operators are bona

�de densely de�ned operators on Fock space, in contrast to the conventional construction of local

�eld theory. Due to this fact, there are no divergences in the resulting perturbation series for the

scattering matrix, and therefore no in�nite renormalizations to be performed. Furthermore, in the

non-relativistic limit the role of the resolution generator � in such measurements are interpretable

as that of a con�dence function, and the outcome of a measurement as a stochastic or average

value only [1]. Then taking the sharp point limit l ! 0 leads identically to orthodox quantum

mechanics [29, Section 2.6]. Taking the sharp point limit �rst however, leads to the formal per-

turbative series of local quantum �eld theory in any particular model, but only after an in�nite

renormalisation is performed [31, Section 5.8]. Thus agreement of QG �eld theory models with the

remarkably accurate predictions of the formally de�ned perturbative series of conventional local

quantum �eld theory models [13, 22] is guaranteed at the formal level for small (but non{zero)

choice of the fundamental scale l, which one expects on fundamental grounds should be of Planck

length order [10].

2.2. Geometrization. The �rst step toward the generalisation of this structure to a curved space-

time manifoldM is to note that one need not ever consider the underlying momentum space struc-

ture in (5) at all, instead working completely within � [28, Section (2.2.7)]. Introducing the phase

space wave function of the rest frame leads to the local wave functions

�m(�) :=

Z
V +

m

e�ik�q~�(k � p=m)~�(k)d
m(k) =

Z
V +

m

~��� (k)~�(k)d
m(k); (28)

and generating the wave functions of the boosted and translated frames through the representation

of ISO0(1; 3) on the rest frame, leads to

��0(�) :=
�
U(�p0=m; q

0)�m
�
(�) = K(�; � 0): (29)

Considering the action of an arbitrary group element on one of these frames, we �nd [15]�
U(�; b)��0

�
(�) =

�
U(�; b)U(�p0=m; q

0)�
�
(�)

=
�
U
�
(�; b) ? (�p0=m; q

0)
�
�
�
(�) =

�
U(��p0=m;�q

0 + b)�
�
(�);

(30a)

and using the fact that ��p=m = ��p=m�R uniquely, where �R is the Wigner rotation and ��p=m
is the boost to the velocity �p=m, we �nd that�

U(�; b)�q0;p0
�
(�) =

�
U(��p0=m;�q

0 + b)�
�
(�) = �(�;b)?�0(�); (30b)

where we have used the fact that the rest frame is rotationally invariant U(�R; 0)� = �. Abstracting
away the phase space functional dependence and considering �� as a basis in PL2(�m), we de�ne

the set of quantum frames [29, Section 3.7]

Q :=
�
�� j � = q � i l

m
p; q 2 M

4 ; p 2 V +

m

	
�
�
�� j �� =

�
U(�p=m; q)�m

�
; q 2 M

4 ; p 2 V +

m

	
;

(31)

with the group action from (30)

U(g)�� = �g?� ; g 2 ISO0(1; 3): (32)
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The kernel (12) then plays the role of the overlap amplitude of these quantum frames

��0
����� = K(� 0; �) (33)

(and indeed may be considered as the local quantum metric in a curved spacetime [29, Section

5.2] [31, Section 4.5]). The fact that K(� 0; �) reproduces on PL2(�m) indicates that the operator

de�ned by

P�m :=

Z
�m

j��id�m(�)h�� j; (34)

acts either as continuous resolution of the identity on PL2(�m), or a projection from L2(�m) onto

PL2(�m). Therefore a scalar state may be decomposed on Q as

� =

Z
�m

d�m(�)�(�)�� ; (35a)

where

�(�) := h�� j�i =
Z
�m

��� (�
0)�(� 0)d�m(�

0) =

Z
�m

K(�; � 0)�(� 0)d�m(�
0): (35b)

(The structure described is actually a speci�c example of a more general procedure [2, 3].)

Since the frames in Q carry a representation of the Poincar�e group, in order to relate the Hilbert

space structure of PL2(�m) to a curved spacetime M the a�ne generalisation [23] PM of the

Lorentz frame bundle LM over M is employed. This bundle consists of all frames above each

x 2 M of the form u = (eA;a), where we will use a boldface letter to denote the vector itself

a = aAeA 2 TM (and continue to use, for example, a to denote the vector components) and

the linear frame is de�ned with respect to a particular coordinate frame via eA = E�
A@�. The

dual (coframe) basis is then given by �A = dx�EA
�, where the vierbeins satisfy the following

orthogonality relations EA
�E

�
B = �AB , and E�

AE
A
� = �

�
� . The structure group of PM is the

Poincar�e group ISO(1; 3) with right action on these frames de�ned by

u ? (�; b) = (eA;a) ? (�; b) = (e0A;a
0) =

�
eB�

B
A; (a

A + bA)eA
�
: (36)

In practice we will actually employ P0M, constructed from Lorentz frames with future{pointing

timelike and right{handed spatial basis vectors, which has ISO0(1; 3) as the structure group.
Implicit in this construction is the existence of a metric on M which has been used to reduce

the a�ne frame bundle AM to PM. With this metric comes the unique, metric compatible, Levi{

Civita connection, which is uniquely extendible to a connection on PM [23, Section III.3]. In a given

section (dependence on which will not be indicated) this connection determines the in�nitesimal

parallel transport, or covariant derivative, operator which acts on a tensor T associated to PM
through a tensor representation of the Poincar�e group with generators MA

B and PA satisfying (8),

along a path in M with tangent vector X 2 TM as [29, Section 2.6]

rXT = XAeA[T ] + ![X]T = XAeA[T ] +
�
1

2
!AB [X]MB

A + �̂A[X]PA
�
T; X 2 TM; (37)

where ! is the (Poincar�e) Lie algebra{valued, Levi{Civita, connection one form acting in the

representation of T , with action on a frame described by [14]

![X] : (eA;a)!
�
XB�CBAeC ;

�
XA +rX [a]

A
�
eA
�
; (38a)

rX [a]
A := XB

�
eB [a

A] + aC�ABC
�
: (38b)

The components �ABC appearing in (38) are those of the torsion{free, Levi{Civita connection written

in terms of the structure constants [eA; eB ] = CAB
CeC of the Lorentz frame (eA; 0) as

�ABC = !AC [eB ] =
1

2
(CBC

A + CA
BC + CA

CB); (38c)

CBC
A := EA

�

�
eB [E

�
C ]� eC [E

�
B ]
�
; CA

BC := �AD�CECDB
E ; (38d)
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and satisfy the metric compatibility condition !(AB) = 0. The action of ! on the frame is an

in�nitesimal Poincar�e transformation of the form

![X] : (eA;a)! (eA;a) ?
�
![X];X +rX [a]

�
: (39)

Since parallel transport plays a fundamental role in QG �eld propagation in curved spacetimes,

it is worthwhile at this point to review the computation of the results of parallel transport in a

Poincar�e frame bundle. A frame that is parallel transported along a curve 
 with tangent X 2 TM
is one that does not change along 
, and may be written in a section s = (eA;a) as (eA;a) ? g
 .
Writing � as a parameterisation of 
, we have @� [(eA; a) ? g
 ] = 0 which gives [27, Section 10.1.4]

(eA;a) ?
�
![X];X +rX [a]

�
? g
 + (eA;a) ? X[g
 ] = 0; (40a)

and so the transition element satis�es

@� [g
 ] = �
�
![X];X +rX [a]

�
? g
 : (40b)

It is convenient to transfer this action to the components of a vector in the Mobius represen-

tation [21] where V 2 TM is written as a column vector in R
5 and the in�nitesimal Poincar�e

transformation as a 5� 5 matrix, which acts on V as

(�; �) ? X !
�
� �
0 0

� �
V
1

�
; � = �![X]; � = �

�
X +rX [a]

�
: (41)

The restriction !(AB) = 0 ensures that this may be looked upon as an in�nitesimal Poincar�e

transformation with generators that satisfy the Lie algebra of the Poincar�e group.

In this representation the exponential map (of iso(1; 3) into ISO(1; 3)) may be split up into a

Lorentz boost and a translation by a straightforward induction argument

exp(�; �) =

1X
n=0

1

n!
(�; �)n =

�
exp(�); (exp(�)� 1)��1�

�
; (42)

where exp(�) is the exponential map of so(1; 3) to SO(1; 3). Also by induction, the product of N
such exponential maps may be re{represented as

1Y
k=N

exp(�k; �k) =

 
1Y

k=N

exp(�k);

NX
m=1

�m+1Y
k=N

exp(�k)

��
exp(�m)� 1

�
��1m �m

!
: (43)

Note that the product is ordered:
Q
1

n=N gn := gN � gN�1 � � � g2 � g1, and that (exp(�) � 1)��1 :=�P
1

n=0 �
n=(n+ 1)!

�
.

If we consider parallel transport along a curve 
 : [�i; �f ] � R !M, one �nds [27] that the �nite

ISO0(1; 3) parallel transport map that is generated by the in�nitesimal connection may be written

as

g
�

(�f ; �i)

�
= Pexp

�Z �f

�i

�
�(�); �(�)

�
d�
�
; (44)

where P is the path ordering operator (larger values of the parameter � appearing to the left).

Computing this `path integral' by splitting up the time interval up into N equal pieces [31]: �� =
(�f � �i)=N = �n � �n�1, �i = �0, �f = �N , �n = �i + n�� and writing

g
(�n+1; �n) = P exp
�Z �n

�n�1

�
�(�); �(�)

�
d�
�
� exp

��
�(�n); �(�n)

�
��
�
; (45)

noting that the evolution along 
 is composable: g
(�n; �n�2) = g
(�n; �n�1)g
(�n�1; �n�2), and
taking the N !1 limit in which the approximation becomes exact, the transition element is given

by

g
(�N ; �0) = lim
N!1

0Y
n=N�1

exp
��
�(�n); �(�n)

�
��
�
: (46)
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Using the above results for the representation of the Lie algebra, this is equal to (in the N ! 1
limit)

g
(�N ; �0) =
�
Pexp

�Z �f

�i

�(�)d�
�
;

Z �f

�i

d� Pexp
�Z �f

�

�(� 0)d� 0
�
�(�)

�
: (47)

In practice these results will be applied to geodesics that are forward{pointing in the chosen time

coordinate, so that the path ordering may be replaced by time ordering; however in general note

that the P operator disappears in cases where [�(�); �(� 0)] = 0.

It will be useful to display the behaviour of this transition element under a change of Poincar�e

frame. Writing the transition element corresponding to parallel transport along a path beginning

at x and ending at x0 in a section s0 as gs
0


 (x
0; x), if the section is related to another choice by

s0(x) = s(x)?g(x), from the structure of (40) we see that the transition elements are related by [27]

gs
(x
0; x) = g(x0) ? gs

0


 (x
0; x) ? g(x)�1: (48a)

In particular, the relationship between an arbitrary Poincar�e section s =
�
eA;a

�
and the related

Lorentz section s0 := (eA; 0) is

gs
(x
0; x) =

�
1;a(x0)

��1
? gs0
 (x0; x) ?

�
1;a(x)

�
; (48b)

where we have used s = s0 ? (1;a).

2.3. Quantum Propagation. With the Poincar�e frame bundle P0M and the set of quantum

frames Q (31), we have what may be considered as the classical and quantum counterparts of the

same physical entity, namely, the frames of reference on which properties of the physical system are

measured. Since both sets of frames transform under a representation of the Poincar�e group, the

problem of how to relate the two sets is resolved by de�ning the principle quantum frame bundle

over M as Q0M = P0M �ISO0(1;3) Q, which is the G{product [23, page 54] of the Poincar�e frame

bundle with Q. A typical element of Q0M is given by the associated quantum frame

�
u(x)
� =

�
u(x); ��

�
; (49)

which is a pair consisting of a Poincar�e frame u(x) and a quantum frame �� . The �bre bundle

structure of Q0M is completed by de�ning the projection map back to the underlying manifold

�
�
�
u(x)
�

�
= x 2M; (50)

and the local trivialisation map onto the typical �bre which is isomorphic to PL2(�m)

�u(x)
�
�
u(x)
�

�
= �u(x)

�
u(x); ��

�
= �� : (51)

Equivalence classes are identi�ed via the left action

g ? (u; ��) =
�
u ? g�1; U(g) ? ��

�
=
�
u ? g�1; �g?�

�
; (52a)

from which it is clear that

�u?g
�1

= U(g)�u;
�
�u?g

�1��1
= (�u)�1U(g�1): (52b)

This product `solders' the quantum frames Q to the Poincar�e frames P0M of M, and parallel

transport as de�ned by the Levi-Civita connection in P0M is then transferable to the frames in Q.

Given a section s(x) =
�
eA(x);a(x)

�
of P0M, the associated quantum frames are given by

�
s(x)
� =

�
�s(x)

��1
�� ; (53)

which on account of (52) satis�es

�
s?g
� = (�s?g)�1�� = (�s)�1U(g)�� = (�s)�1�g?� = �s

g?� : (54)

For simplicity we will adopt the notationD
�
s(x)
�0

����s(x)
�

E
:=
D
�s(x)�

s(x)
�0

����s(x)�s(x)
�

E
= h��0 j��i = K(� 0; �) (55)



ISSUES IN QUANTUM{GEOMETRIC PROPAGATION 10

for the overlap amplitude (33) of quantum frames in a given �bre of QM. Similarly, the continuous

resolution of the identity (34) becomes an identity in each �bre of Q0M

P
s(x)
�m

=

Z
�m

����s(x)

�

E
d�m(�)

D
�
s(x)

�

���: (56)

Then, if the outcome of parallel transport along a path 
 connecting two points x; x0 2M in the

section s(x) as computed in section 2.2 is the map s(x) ! s(x0) ? g
(x
0; x), then this induces the

change of quantum frame

�
s(x)
� ! �
(x

0; x)�
s(x)
� = �

s(x0)?g
(x
0;x)

� = �
s(x0)

g
(x0;x)?�
; (57)

from which we de�ne the propagator for parallel transport along 
 in the section s as the amplitude

Ks

(x0;x)(x

0; � 0;x; �) :=
D
�
s(x0)

�0

����
(x0; x)�s(x)

�

E
=
D
�
s(x0)

�0

����s(x0)

g
(x0;x)?�

E
= K

�
� 0; g
(x

0; x) ? �
�
; (58)

and from (12) we also know that K(� 0; g ? �) = K(g�1 ? � 0; �). An important consequence of (58)

is the behaviour of the propagator under changes of Poincar�e gauge. From

K
s?g

(x0;x)

(x0; � 0;x; �) = Ks

(x0;x)

�
x0; g(x0) ? � 0;x; g(x) ? �

�
; (59a)

we deduce that

K
�
� 0; gs?g
 (x0; x) ? �

�
=K

�
g(x0) ? � 0; gs
(x

0; x) ? g(x) ? �
�

=K
�
� 0; g(x0)�1 ? gs
(x

0; x) ? g(x) ? �
�
;

(59b)

where gs
 is the transition element from parallel transport in the Poincar�e section s. Clearly (59b)

expresses the consistency of the action of the Poincar�e group on the Poincar�e frames (48) and the

propagator. An important special case of this that will arise later is when we take sL = (eA; 0)
and g =

�
1; a(x)

�
, and we are therefore relating the amplitude in a Poincar�e gauge to the related

Lorentz frame.

Notice that the construction of Q0M has attached the entire Hilbert space PL2(�m) to each

point x 2M, and the reproducing kernel (55) and therefore the resolution of the identity (56) act

within each �bre of Q0M. Although the entire set of states in each �bre is not easily physically

interpretable (unless spacetime is 
at, in which case each �bre may be identi�ed [32] as will be

discussed further below), since the formalism depends on parallel transport and the local overlap

amplitudes (58) it is necessary to have the entire space reproduced locally. The states that are

interpretable in a straightforward manner are those which are stochastically localised at the point

of contact of the Poincar�e frame with M, and are therefore described in a section s =
�
eA;a(x)

�
by the collection [30, 31, 32]

�̂(x) := �a(x)� i l
mp; p 2 V +

m ; (60)

where recall that a non{zero a(x) indicates that the section is a translation of the related Lorentz

section sL(x) := (eA; 0) by �a(x), and so transforming (60) back to the related Lorentz frame

results in the collection of quantum frames of all possible momenta stochastically localised at the

origin of the frame �̂(x) = �i l
m
p.

The assignment (60) is unique in any section of P0M, and given a change of frame

s(x) =
�
eA(x);a(x)

�
=
�
e0A(x);a

0(x)
�
?
�
�(x); b(x)

�
=: s0(x) ?

�
�(x); b(x)

�
; (61a)

the action is transferred to the quantum frame

�̂(x)!
�
�(x); b(x)

�
? �̂(x) = �(x)(�a(x) � i lmp) + b(x) = �a0(x)� i lmp

0; (61b)

where we have identi�ed the components of the momentum in the primed frame p0 = �(x)p as well
as the components of the translation vector a0(x) = �(x)a(x)� b(x). This recognises the fact that
due to the nature of the construction of the bundle Q0M, in general � may be considered as a

vector in the complexi�ed tangent space TMC

��� :=
�
q � a(x)� i l

m
p
�A
eA(x) =

�
q � i l

m
p
�A
eA(x)� a(x): (62)
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The transformation property (61) implies that the form of the propagator for parallel transport in

a section s is invariant under an arbitrary change of frame

Ks

(x0;x)

�
x0; �̂(x0);x; �̂(x)

�
= K

s?g�1


(x0;x)

�
x0; g(x0) ? �̂(x0);x; g(x) ? �̂(x)

�
; (63)

and guarantees the consistency of the choice of local frame with poincar�e invariance, where the

frame is transported as before, and the outcome of parallel transport along a path 
 between

frames localised at x0 and x is de�ned by

Ks

(x0;x)

�
x0; �̂(x0);x; �̂(x)

�
:=
D
�
s(x0)

�̂(x0)

����
(x0; x)�s(x)

�̂(x)

E
=
D
�
s(x0)

�̂(x0)

����s(x0)

g
(x0;x)?�̂(x)

E
=K

�
�̂(x0); g
(x

0; x) ? �̂(x)
�
:

(64)

The picture that emerges from this is that the Poincar�e frame (eA(x);a(x)) related to the classical

spacetime manifold is replaced by the set of quantum states �̂(x) which represents the set of states

of all possible momenta which are stochastically localised at x. Combined with the exponential

map that generates Riemann normal coordinates in a suitably small neighbourhood of a point

(limited by the magnitude of the local curvature [26, Sections 8.6 and 11.6]), this also allows an

interpretation of the quantum frame wave function ��0(�) which is expressed in terms of 
at, tangent

space coordinates, as the wave function of an extended state in spacetime in accordance with the

discussion in Section 2.1. It is in this sense that QG propagation is said to be geometrically local

(i.e., occurring within individual �bres above M) but not topologically local (i.e., not interpretable

as arbitrarily precisely localizable quantum states in M).

Although the propagator for parallel transport (58) or (64) provides an appropriate description

of quantum propagation in the case of Minkowski spacetime (and, as we will see, in any frame of

reference whatsoever), due to the path dependence of parallel propagation in curved spacetimes,

in general it does not provide a reproducing kernel. The recti�cation of this situation is to con-

struct the quantum{geometric propagator [31, Section 4.6] by iterating the propagator (58) over all

broken, forward{pointing, geodesic paths between the initial and �nal points, in analogy with the

computation of the transition element in Section 2.2.

Begin by considering a foliation of the spacetime into spacelike hypersurfaces �t labelled by the

value of a time parameter t. Given an initial point xi 2 �ti and a �nal point xf 2 �tf , a sequence

of hypersurfaces �tn is de�ned by the �nite time intervals as before: �t = (tf � ti)=N = tn � tn�1,
t0 := ti, tN := tf , and using the propagators for parallel transport along geodesics 
(xn; xn�1) with
endpoints xn 2 �tn , the quantum{geometric propagator is de�ned as the limit [32]

Ks
�
xf ; �̂(xf );xi; �̂(xi)

�
:=

lim
N!1

1Y
n=N�1

Z
�tn�V

+

m

d�m(xn; pn)K
s

(xn+1;xn)

�
xn+1; �̂(xn+1);xn; �̂(xn)

�
�Ks


(x1;x0)

�
x1; �̂(x1);x0; �̂(x0)

�
; (65a)

where by construction, this satis�es the curved spacetime analogue of (15) (where t2 > t > t1)

Ks
�
x2; �̂(x2);x1; �̂(x1)

�
=Ks�

�
x1; �̂(x1);x2; �̂(x2)

�
=

Z
d�(x; p)Ks

�
x2; �̂(x2);x; �̂(x)

�
Ks
�
x; �̂(x);x1; �̂(x1)

�
:

(65b)

The measure appearing in equation (65) is de�ned by d�m(x; p) := 2p �d�(x)d
m(p), and although

at �rst sight the resulting construction would appear depend on the gauge to a greater degree than

does (63), the fact that it is not may be seen by making use of (61). The reproducing property of

the QG{propagator embodies the spirit of the `principle of path independence' as formulated by

Teitelboim [36, 25] and extended by the present author [8, 7], although the extent to which results

depend on the choice of foliation is not clear at this time.

Even though we have been primarily describing parallel transport and QG propagation in Q0M,

it is easily adapted to a scalar �eld by constructing the Klein{Gordon quantum bundle E0M =
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Q0M �ISO0(1;3) PL
2(�m). A section of E0M would represent an assignment of scalar �eld modes

above each point in M expanded in terms of the quantum frames as

���x =

Z
�m

�x(�)�
s(x)

� d�m(�); (66)

which is just (35) expressed in each �bre of Q0M. Alternatively, making use of the identi�cation of

the stochastically localised frames, a complete description of initial data for a scalar �eld is given

by

���� =

Z
��V +

m

�
�
x; �̂(x)

�
�
s(x)

�̂(x)
d�m(x; p): (67)

Parallel transport is transferred to the local components by considering the amplitudes to �nd the

scalar �eld in those modes that are stochastically localised about the �nal point

���
(x; x0) : ����t
0

! ���k�t =

Z
�t
0
�V +

m

�
�
x0; �̂(x0)

�
�
(x; x0)�

s(x0)

�̂(x0)
d�m(x0; p)

!
Z
�t
0
�V +

m

�
�
x0; �̂(x0)

�
Ks(x)



�
x; �̂(x);x0; �̂(x0)

�
�
s(x)

�̂(x)
d�m(x0; p);

(68)

where in the second form the result of parallel transport has been projected back onto the stochas-

tically localised modes. The iteration of this parallel transport operation over all forward{pointing

geodesic arcs reproduces (65), and the time evolution of the initial data is given by replacing the

propagator for parallel transport with the quantum{geometric propagator

����t =

Z
�t
0
�V +

m

�
�
x0; �̂(x0)

�
Ks
�
x; �̂(x);x0; �̂(x0)

�
�
s(x)

�̂(x)
d�m(x0; p); (69)

generating a section of E0M from the initial data (67).

It is worthwhile at this stage to make a few comments on the integrals appearing in (65). In

Minkowski spacetime, the reproducing property (27) may be rewritten in the following wayZ
�m

d�m(�)K(� 00; �)K(�; � 0) =

Z
��V +

m

d�m(x; p)K
�
� 00; g
(x; x0) ? �̂(x0)

�
K
�
g
(x; x0) ? �̂(x0); �

0
�
;

(70)

where we have used the fact that the outcome of parallel transport in this case just gives the

separation vector between the two points (this will be discussed in more detail below), and so

x0 may be chosen arbitrarily as all dependence on it will cancel identically. In (70) we recognise

the form of the surface integral in (26), and in fact have a special case of the integrals appearing

in (65). Thus we �nd that what is happening (operationally) in (65) is that the outcome of parallel

transport g
(x; x0) ? �̂(x0) is (at least for spacetimes with small enough curvature) a map from

the hypersurface � that spans R3 , and may therefore be considered to be a surface integral in the

same sense as (70). (Note that the outcome of the integration in curved spacetimes will depend in

general on x0 in a nontrivial way, so the kernel is not expected to reproduce identically. Physically

the iteration may be viewed in analogy to a multi{slit experiment: a quantum state, initially

stochastically localised on the Cauchy surface �ti will propagate indiscriminantly along all possible

broken geodesic paths to a �nal state localised on �tf .

It is useful to see how this construction proceeds over a 
at (Minkowski) spacetime, however

considering an arbitrary coordinate chart (assumed for simplicity to be global), frame of reference

and family of hypersurfaces on which to construct the quantum geometric propagator. To begin,

note [15] that any section of the Poincar�e frame bundle may be written as an arbitrary Poincar�e

transformation of the parallel propagation of a Lorentz frame at O (taken as the origin of coor-

dinates) as s(x) := sO(x) ? gO(x), where sO(x) := (eOA(x); 0) and eOA(x) is the chosen frame at

O parallelly transported to all points of M, expressed in terms of some arbitrary coordinate sys-

tem. (This can easily be generalised to the parallelly propagated frame sk(x) :=
�
eOA(x);�XM (x)

�
,
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where XM is the Minkowski coordinate vector of the point x 2 M again expressed in some arbi-

trary coordinates). If the arbitrary section is written as s(x) =
�
e0A(x);a(x)

�
, then the choice of

Poincar�e transformation may be written as gO(x) =
�
�O(x); 0

�
?
�
1;a(x)

�
, and so (59a) relates the

propagator in s to that in sO

Ks



�
x0; �̂(x0);x; �̂(x)

�
=K

�
�̂(x0); gs
(x

0; x) ? �̂(x)
�

=K
�
�̂(x0); gO(x

0)�1 ? gsO
 (x0; x) ? gO(x) ? �̂(x)
�

=K
�
�i lm�O(x

0)p0; gsO
 (x0; x) ? (�i lm�O(x)p)
�
;

(71a)

where we have used the fact that by de�nition �̂(x) =
�
1;a(x)

��1
? (�i lmp). Since we know that

the outcome of parallel transport in sO is given by gsO(x0; x) =
�
1;XM (x)�XM (x0)

�
where XM (x)

is coordinate components of the point x in the Minkowski coordinate system related to O, the
propagator in a generic frame s may be written as

Ks
�
x2; �̂2(x2);x1; �̂1(x1)

�
= Ks




�
x2; �̂2(x2);x1; �̂1(x1)

�
= K

�
~�2(x2); ~�1(x1)

�
; (71b)

~�n(xn) := XM (xn)� i lm�O(xn)pn: (71c)

This result has some very intriguing features; not only is the spatial dependence identical to

that of the stochastic quantum mechanics result (12) (and so equivalent to the hyper-plane results

quoted in [32, 9, 15]), but the only di�erence between the results in a general frame and those in a

hyper-plane slicing is the presence of the Lorentz factors acting on the momenta at the endpoints.

This is not surprising since one should be able to view the propagator in a 
at spacetime as a boost

back to the Minkowski frame, a trivial parallel transport that just induces a translation factor, and

a boost back to the general frame at the endpoint of propagation. Indeed, right away we see that

what replaces the Bogolubov transformations of the conventional local quantum �eld theory on a

curved background [11], is a physically reasonable shift of the momentum spectrum of the state.

As a speci�c example, consider an initial state that is at rest at O in the Minkowski frame. The

amplitude to �nd the state stochastically localised about a point x with stochastic momentum p
on a later hypersurface �t is evidently given by

�
�
x; �̂(x)

�
= K

�
~�(x);�iln0

�
; (72)

where n0 = (1;~0) and x 2 �t. Clearly only the momentum spectrum is distorted by the relative

motion of the initial state and observer.

Lest one think that the QG propagator from (65) will be somewhat more complicated than (71b),

note �rst of all that since we are dealing with a globally 
at spacetime, the propagators for parallel

transport are path independent and so one would not expect there to be a more general propagator

built from it that would give a di�erent result. However, explicitly considering the integralZ
�t�V

+

m

d�m(x; p)K
�
~�(x2);XM (x)� i lm�O(x)p

�
K
�
XM (x)� i lm�O(x)p; ~�(x1)

�
; (73a)

and transforming the momentum variables as p! �O(x)
�1p we �ndZ

�t

2p � �O(x)d�(x)

Z
V +

m

d
m(p)K
�
~�(x2);XM (x)� i l

m
p
�
K
�
XM (x)� i l

m
p; ~�(x1)

�
: (73b)

Now we see that the argument XM (x) � i l
m
p is precisely the Minkowski coordinates evaluated in

the parallelly propagated frame eOA(x), and furthermore the boosted measure �O(x)d�(x) is just
the surface measure evaluated in these same hyper-plane frames (the surface measure transforms

as a vector under changes of frame [38, Appendix B]). By assumption the chosen coordinates x
constitutes a global chart (at least in some open region containing �), and therefore x! XM (x) is
smooth and invertible. The measure may therefore be written in terms of XM , the result of which

is an integral over �t written in terms of standard Minkowski coordinates. This is a special case

of (27), which may be used to complete the proof that the propagator (71b) reproduces, and is

therefore equivalent to the quantum{geometric propagator Ks de�ned by (65).
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3. Propagation in a Milne Spacetime

We now turn to a speci�c illustration of the results of the last section, for simplicity choosing to

work in a Milne universe which has constant time slices that are partial Cauchy surfaces (timelike

geodesics are complete to the future). This simple case gives further insight into the problems

of the conventional local quantum �eld theory, since there exists in the literature inequivalent

quantisations of a scalar �eld on hyperboloids of Minkowski space [20, 12, 34]. At present, there are

authors who claim that the hyperboloids are inappropriate for imposing the canonical commutation

relations and de�ning an inner product [35], whereas others [4] claim that one must make an

appropriate choice of orthonormal mode expansion. In either case one must appeal to the behaviour

of the propagator or orthonormal mode functions in the extension of the Milne universe to the

Rindler wedge, even though physics in this region of spacetime should (in a truly local theory) have

no e�ect on the causal evolution of a system in the Milne universe. This is merely a re
ection of

the nonlocal nature of the vacuum of conventional local quantum �eld theory [17].

In the case of QG propagation similar issues arise. Although we are dealing with a region of

spacetime which is 
at, since the hypersurfaces are asymptotically null the propagator does not

reproduce on them. Indeed as we shall see, one cannot perform the sum in (65) in this case since

the integrals are not convergent. This presents no conceptual problem since this form of quantum

propagation is fundamentally nonlocal, however it does emphasise the role of strictly spacelike

hypersurfaces; indeed it is not clear that one could formulate QG propagation of initial data given

on a null or partially null hypersurface.

3.1. The Milne Universe. The Milne universe that we will consider here is the region of Min-

kowski space (we will write the conventional Minkowski coordinates as (tM ; xM ; ~y)) that is in the

causal future of the origin in the tM � xM plane, while the remaining two spatial directions will be

covered by the 
at coordinate vector ~y. Speci�cally, with the (t; x; ~y) coordinate domain t > 0 and

�1 < x; ~y <1, the Milne (coordinate frame) metric will be given by

g = diag(1;�t2;�1;�1); g�1 = diag(1;�t�2;�1;�1); (74a)

so that
p�g = t or E := det(EA

�) = t, depending on whether one works in the coordinate frame

or the Lorentz frame f@t; ex; @~yg with dual coframe basis (dt; �x; d~y) where

�x := t dx; ex := t�1@x: (74b)

Since the metric has the form of a 
at Euclidean metric in the y � z plane, we will employ the

vector symbol in that sector to simplify the notation. Making use of the coordinate transformation

between the adopted Milne coordinates and the standard Minkowski coordinates

tM = t cosh(x); xM = t sinh(x); t =

q
t2M � x2M ; x = tanh�1(xM=tM ); (75)

shows that the metric (74) covers the tM > 0, �tM < xM < tM , and �1 < ~y < 1 region

of Minkowski space. The chosen Lorentz frame may be related to the 
at Minkowski coordinate

frame by

�
@t ex @~y

�
=
�
@tM @xM @~y

� 24cosh(x) sinh(x) ~0

sinh(x) cosh(x) ~0
~0 ~0 1

3
5 := (@xA

M
)�(x)�1; (76)

which is the usual Lorentz frame transformation eA ! e0A = eB�
B
A, and implies that the Milne

frames are related to the standard Minkowski frames via a boost along the x̂ axis by �x, which
has been de�ned as the Lorentz boost �(x)�1.

3.2. Geodesics. It is a straightforward calculation to show that the only non{zero components of

the Levi{Civita connection one{form (38c) are

!tx := �txx�
x = dx = t�1�x = !xt := �xxt�

x; (77)
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the geodesics of which are of course straight lines. However, since they will not appear so in Milne

coordinates, and to demonstrate how the calculation of the propagator proceeds, we will compute

the geodesics explicitly.

The tangent to a geodesic will be written as uA = (ut; ux; ~u) := EA
�d� [x

�] where d� indicates the

derivative with respect to the geodesic parameter � , so that ut = d� [t], u
x = td� [x], and ~u = d� [~y],

and the geodesic equations are

d� [u
t] + (ux)2=t = 0; d� [u

x] + utux=t = 0; d� [~u] = 0: (78)

This, combined with the normalisation g(u; u) = ��, results in

ut = �
p
(u0=t)2 + S; ux =: u0=t; ~u =: ~u0; (79)

where S := (~u0)
2 + ��, the + and � signs refer to forward and backward{pointing geodesics

respectively, and

�� =

8><
>:
+1 for timelike geodesics

0 for null geodesics

�1 for spacelike geodesics

: (80)

Using ut, the geodesic equations may be reparameterised in terms of the time coordinate as

dtx = � u0

t2
p
(u0=t)2 + S

; dt~y = � ~u0p
(u0=t)2 + S

: (81)

Integrating these gives the geodesics

�1 � �0 =�

8><
>:

t
S

p
(u0=t)2 + S

���t1
t0

for S 6= 0

t2

2ju0j

���t1
t0

for S = 0
;

x1 � x0 =� u0

ju0j

8><
>:
ln
�
ju0j=t+

p
(u0=t)2 + S

����t1
t0

for S 6= 0

ln
�
1=t
����t1
t0

for S = 0
;

~y1 � ~y0 =� ~u0(�1 � �0):

(82)

We have included the full set of solutions of the geodesic equations in order to discuss the

following important issue. If we consider an initially future{pointing spacelike geodesic emanating

from x0 (in the ~y = 0 plane) on the surface labelled by t = t0 (which requires that ju0j > t0),
then (79) tells us that these geodesics continue to be forward{pointing until tmax := ju0j. At this
point, ut = 0 and juxj = 1, and we see that the geodesic is tangent to �tmax , after which the geodesic
then becomes past{pointing. Using (82) we �nd the maximum spatial distance that the geodesic

may `travel' before encountering some later surface �t1 is found by choosing ju0j = t1, resulting

in �xmax = ln
�
t1=t +

p
(t1=t)2 � 1

�
. In order to connect points on �t0 to points on �t1 with

�x > �xmax, one has to consider geodesics that pass through �t1 as a forward{pointing geodesic,

continue on until it tangents at �ju0j for some ju0j > t1 at which point it becomes past{pointing,

and then continues on to reach �t1 for a second time. (This is straightforward to see if one considers

the surfaces as hyperboloids in Minkowski space, and draws straight lines between arbitrary points

on nearby hypersurfaces.)

A similar scenario arose in the consideration of parallel propagation in a Robertson{Walker

spacetime [9], however in that case the geodesic could be smoothly matched (at �xmax) to a geodesic
that remained within the spatial hypersurface, and could therefore be used to connect all points

with greater separation. Here we will assume that some choice of path has been made to join such

points in the construction of the QG{propagator (65); since the spacetime is 
at, all choices yield

the same transition element. This is justi�ed post facto by the agreement of the resulting propagator

with that derived using the standard Minkowski space hyper-planes as the foliation of spacetime.

However in a curved spacetime where parallel transport is path{dependent, the QG{propagator
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may have to be constructed with some care as to how to make such a choice. In principle, this

should follow from taking the semi-classical limit of quantum{geometric gravitational propagation

given in [31, Chapter 8], although it is possible that a study of di�eomorphism invariance of a

semi-classical model may shed some light on this issue.

3.3. Parallel Transport. Since we are interested in hypersurfaces of constant t, the geodesics

may be reparameterised by t (as in (81)) and all integrals in � may be converted to integrals in t.
Using (77), the matrices appearing in (41) (and the remainder of that section) are given by

1

2
!AB(u) ~M

B
A + ~�A(u) ~PA =1

2
!AB(u) ~M

B
A + (uA +ru[a]

A) ~PA

=uxt�1 ~M1
0 + (uA +ru[a]

A) ~PA:
(83)

Considering any geodesic with endpoints relating the value of the time coordinate to the value of

the x coordinate as for example x1 := x(t1), from (47) one �nds that the exponential determining

the Lorentz transformation has as it's argument

�
Z �2

�1

ux

t
d� = �

Z t2

t1

dx

dt
dt = �(x2 � x1); (84a)

and so the Lorentz boost is given by

�(t2; t1) := exp
�
�
Z �2

�1

ux

t
d�K1

�
= �(x2)�(x1)

�1; (84b)

where �(x) was de�ned in (76), and the hyperbolic angle addition formulae: cosh(a + b) =

cosh(a) cosh(b)+ sinh(a) sinh(b) and sinh(a+ b) = cosh(a) sinh(b)+ sinh(a) cosh(b) have been used.

If one works in the Lorentz section s0 = (eA; 0), the translational contribution is given by

b(t2; t1) =�
Z �2

�1

d� �(�2; �)u(�) = ��(x2)
Z t2

t1

dt�
�
x(t)

�
u(t)=ut(t)

=� �(x2)

Z t2

t1

dt

2
4cosh

�
x(t)

�
sinh

�
x(t)

�
~0

sinh
�
x(t)

�
cosh

�
x(t)

�
~0

~0 ~0 1

3
5
2
4 1

t@tx
@t~y

3
5 : (85)

The contribution to the y � z plane is straightforward to integrate, and the remainder is the two

component vector in the t� x plane

�
Z t2

t1

dt

�
cosh

�
x(t)

�
+ t@t[x] sinh

�
x(t)

�
sinh

�
x(t)

�
+ t@t[x] cosh

�
x(t)

�� : (86)

The second term in each of these is of the form t@t[sinh or cosh]
�
x(t)

�
and may be integrated by

parts, cancelling o� the �rst term and leaving the surface contributions, giving the total contribution

to the translation

b(t2; t1) = ��(x2)

2
4t2 cosh(x2)� t1 cosh(x1)
t2 sinh(x2)� t1 sinh(x1)

(~y2 � ~y1)

3
5 = �(x2)�(x1)

�1b(x1)� b(x2); (87a)

where we have de�ned the vector

b(x) := (t; 0; ~y): (87b)

Note that b(x) := bAeA is the Minkowski coordinate vector XM := xAM@xAM
translated to this frame.

Using these results the Poincar�e transformation (46) is given by

g
(t2; t1) =
�
�(x2; x1); b(x2; x1)

�
=
�
�(x2);�b(x2)

�
?
�
�(x1);�b(x1)

��1
: (88)

Choosing instead the Poincar�e frame sk := (eA;a) with

a = �(t� t0 cosh(x� x0); t0 sinh(x� x0); ~y � ~y0) = �(x)��1
0
b0 � b(x); (89)

we �nd that in this case b � 0. Here the vector �a(x) may be seen to be the translation of

the Minkowski coordinate vector XM � (XM )0 := (xAM � (xM )A
0
)@xA

M
to the Lorentz frame, where
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(tM )0 = t0 cosh(x0), (xM )0 = t0 sinh(x0), �0 := �(x0) and b0 := b(x0). Using (48) these two

transition elements may be related by

gs0
 (x2; x1) =
�
1;a(x2)

�
? g

sk

 (x2; x1) ?

�
1;a(x1)

��1
: (90)

In the case at hand, we have that g
 is a Lorentz boost in the Poincar�e section sk chosen with a

as in (89), and so transforming back to the Lorentz frame s0 does not a�ect the Lorentz contribu-
tion (84b), only introducing the translational factor

b(t2; t1) =a(t2)� �(t2; t1)a(t1);

=�(x2)�
�1

0
b0 � b(x2)� �(x2)�(x1)

�1
�
�(x1)�

�1

0
b0 � b(x1)

�
=�(x2)�(x1)

�1b(x1)� b(x2);

(91)

which is the Lorentz frame result (87).

3.4. The Quantum{Geometric Propagator. The computation of the parallel transport ele-

ments allows one to write down the propagator for parallel transport corresponding to (64) for each

of the choices of section s0 and sk, which turn out to give an identical (up to a constant factor that

either cancels or is removed by choosing (xM )0 = 0) result

Ks0

(x2;x1)

�
x2; �̂(x2);x1; �̂(x1)

�
=K

�
XM (x2)� i lm�(x2)

�1p2;XM (x1)� i lm�(x1)
�1p1

�
; (92)

where we have identi�ed XM (x) = �(x)�1b(x) as the components of the Minkowski coordinate

vector (note that b(x) := xM but XM (x) = xM , that is, the �rst is the actual vector translated

to the new frame whereas the second is the components of the vector transformed). Using the

measure d�m(x; p) = 2p0t0 d
3x d
m(p), the integral analogous to (73a) isZ

�t

2p0t0 dx d
2~y

Z
V +

m

d
m(p)K
�
~�(x2);XM (x)� i l

m
�(x)�1p

�
K
�
XM (x)� i l

m
�(x)�1p; ~�(x1)

�
(93)

where we have identi�ed ~�(xn) := XM (xn) � i lm�(xn)
�1pn. Following the argument at the end

of Section 2.3, we transform the momentum variables (this time p ! �(x)p) resulting in p0 =

p � n(x) ! p � �(x)�1n(x) where n(x) := (1;~0) is the normal to the surface evaluated in the

frame eA(x). The vector �(x)
�1n(x) may be written as nM(xM ) = (tM=t; xM=t;~0), which are the

vector components of the normal to �t (n
A
M := �AB@xB

M
[t]{which in this case is already normalised)

evaluated in the Minkowski frame associated with the coordinates tM ; xM ; ~y. The surface integral
may also be rewritten as

R
�t
0

t dx d2~y �
R
M
�(t � t0)t dt dx d

2~y, which is translated to Minkowski

coordinates to give
R
M
�
�q

t2M � x2M � t0
�
dtM dxM d2~y. Thus we have transformed the integral

into one over a hyperboloid in Minkowski space, the surface contribution to which, as we noted

following (27), does not vanish, and the kernel (92) does not reproduce (in fact the integral (93) is

divergent).

4. Discussion

We have shown how the construction of the free QG propagator on a classical background

spacetime proceeds, and furthermore shown that it fails for the Milne universe that we considered.

The problem is that we have been using hypersurfaces that are only partial Cauchy surfaces of the

spacetime, which are not su�cient due to the fundamentally non-local nature of QG propagation.

If one had a truly local theory, then one would expect that the evolution of any system to the future

of a Milne hypersurface would be completely determined by data on this surface. Indeed, one may

consider a system which has radiated away prior to tM = 0 (so that the Milne sector is 
at). In

terms of any foliation that consists of global Cauchy surfaces, the quantum{geometric propagator

will not be exactly equivalent to that of a 
at spacetime, even for points that are well within the


at region of spacetime. It is clear that the construction in Section 3 cannot see this, and the

lack of complete information is re
ected in the fact that the propagator sum (65) is ill{de�ned. In



ISSUES IN QUANTUM{GEOMETRIC PROPAGATION 18

general the foliation of spacetime must consist of global Cauchy surfaces (and therefore spacetime

must be globally hyperbolic) in order to derive a consistent result.

Although the actual construction of a quantum{geometric propagator in a curved spacetime has

not been carried out as yet, the knowledge of its general form in a 
at spacetime already has some

remarkable features. Not only is the 
at spacetime propagator (71b) well{de�ned for any choice

of coordinates, Poincar�e frame of reference, or foliation of spacetime into spacelike hypersurfaces,

but the results of propagation viewed by di�erent observers is re
ected by physically reasonable

boosts of the observed momentum spectrum of a state which takes the place of the Bogolubov

transformations of conventional �eld theory.

Thus we are naturally lead to consider the observer dependence of conventional quantum �eld

theory on curved spacetime. In particular, the ex{nihilo particle production in Rindler spacetimes

and it's interpretation as the thermal radiation of a detector [37] may be assessed in the context of

a theory that is consistently extendible in a straightforward manner to curved spacetimes. Further-

more, the preliminary results [32, 9] lead to the consideration of particle production in an expanding

universe, as well as a study of the possibility of macroscopic acausal e�ects due to the presence of

strong curvatures.

It is also interesting to look for nontrivial e�ects of a consistent quantum �eld theory on a curved

background in cosmological scenarios by considering the back-reaction of the presence of the scalar

�eld on the classical spacetime through the local average quantum stress{energy hTABi. Although
the ultimate formulation of Quantum{Geometric Gravity [32] is expected to be di�eomorphism

invariant, this type of (ultimately approximate) model may not be. It would therefore be interesting

to determine how this lack of di�eomorphism invariance manifests itself, and therefore determine

the limitations of this type of semi{classical model.
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