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1 Introduction

The conjectured duality between the type I and heterotic SO(32) string theories [1, 2]

occupies a special position in the web of dualities. Together with the SL(2,Z) symmetry

of type IIB, it is the only duality that relates two string theories in their critical dimen-

sion. It can thus be analyzed in flat space-time, without the complications of curved-

compactification geometry. Furthermore, it is a duality between two drastically different

perturbative expansions. In heterotic theory there is a single diagram of given genus, and

ultraviolet divergences are cutoff by restricting the world-sheet moduli to a fundamental

domain. In type I theory, on the other hand, there are several unoriented surfaces with

boundaries at any given order, and ultraviolet finiteness results from subtle cancellations

of their contributions [3]. Finally, it can be argued [4] that the heterotic/type I duality is

the central piece of the duality web, from which all other dualities can be derived modulo

mild geometrical assumptions.

One of the aims of the present paper will be to strengthen the existing evidence

[1, 2, 5, 6, 7, 8, 9] for the equivalence of the type I and heterotic SO(32) theories. We will

in particular extend and sharpen the recent analysis by two of us [7] of special F4 and

R4 terms of the effective action in d = 8, 9 uncompactified dimensions1. As we will argue

in the following section, there are good reasons to believe that the one-loop heterotic

calculation of these couplings is exact. The only identifiable source of non-perturbative

corrections are heterotic five-brane instantons [24]. These need a six-dimensional compact

space to wrap around, and hence cannot contribute to the effective action in d > 4. The

situation on the type I side is on the other hand different: first, space-time supersymmetry

does not commute with the genus expansion, so that different terms of a superinvariant

can be generated at different orders [6]. Secondly, in d < 9 there are non-perturbative

corrections from D1 instantons, which are the duals of wrapped heterotic world-sheets

[2, 5]. Not surprisingly, the one-loop heterotic calculation translates therefore under the

standard duality map [1], into a sum of tree-level, perturbative and non-perturbative

contributions.

The pure-gauge one-loop corrections on the type I side have been computed previously

in refs. [25, 7]. They are given by a ten-dimensional super Yang-Mills expression with

a particular regularization of the (naively quadratically-divergent) decompactification

limit. The same contribution on the heterotic side comes as we will explain below from

a sum of infinite towers of BPS states, whose net effect is to unfold the fundamental

domain of the heterotic integral into the strip. This trick is well-known from the study of

1The structure of these higher-derivative operators in theories with sixteen supercharges has been of

interest recently [10, 11, 12, 13] for a different reason: they are closely related to the velocity-dependent

interactions of branes [14, 15, 16, 17, 18, 19, 20, 21, 22], which are being analyzed vigorously in testing

the Matrix Theory conjecture [23].
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finite-temperature partition functions [26, 27]. The decompactification limit also agrees

[6], even though it is regularized differently in the two expansions: the strip is replaced

by a fundamental domain on the heterotic side, and by the disk and projective-plane

diagrams on the type I side. It is a very interesting question, whether an analogous

geometric regularization exists for the divergent loop of eleven-dimensional supergravity

[28].

In what concerns the heterotic world-sheet instanton corrections, we will put them in

this paper in a form that can be plausibly motivated on the type I side. It is however

an open (and we feel instructive) problem, to learn how to calculate these corrections

directly from first principles. The logic can in fact be turned upside down: assuming

heterotic/type I duality, we can use the heterotic expression as a guide to elucidate the

rules of D-instanton calculus. These rules have been the subject of many interesting

papers recently [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. All of them involve inevitably some

guesswork, since in contrast to conventional field theory there is no functional-integral

formulation at one’s disposal. One particular tricky point concerns the correct counting

of multiply-wrapped Euclidean branes [30, 33, 35, 37]. Not surprisingly, what we find here

is that one must include all supersymmetric maps of the D-string world-sheet onto the

compactification torus, modulo (local and global) reparametrizations of the former. This

is of course the heterotic world-sheet prescription, which ensures in particular invariance

under the O(d,d) symmetry of space-time. It is tempting to conjecture that this is the

correct prescription in all instances, provided one extends reparametrization invariance to

include gauge transformations, when gauge fields live on the world volume of the brane.

This paper is organized as follows: Section 2 describes the one-loop heterotic calcu-

lation of special F4 and R4 terms, for vacua with sixteen unbroken (real) supercharges,

and its relation to the (almost holomorphic) elliptic genus [39, 40, 42, 43]. Section 3

reviews rather rapidly how the one-loop type I calculation of the pure-gauge F4 terms

reduces to a (regularized) ten-dimensional super Yang-Mills expression [25]. In section 4

we employ the unfolding trick to compare the heterotic and type I results in d = 9 non-

compact dimensions. We also explain how the mild non-holomorphicities of the elliptic

genus translate to higher-order perturbative corrections on the type I side. In section 5

we move on to d = 8, where world-sheet instantons start to contribute. We express their

contribution in terms of the elliptic genus of the complex structure that is induced from

target space onto the string world-sheet. This form can be motivated as arising from an

instantonic D-brane calculation on the type I side, as we explain in section 6. Section 7

contains some concluding remarks. A few useful formulae are collected in the appendix.
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2 One-Loop Heterotic Thresholds

The terms that will be of interest to us are those obtained by dimensional reduction from

the ten-dimensional superinvariants, whose bosonic parts read [44, 6]

I1 =t8trF
4 −

1

4
ε10BtrF

4, I2 = t8(trF2)2 −
1

4
ε10B(trF2)2

I3 =t8trR
4 −

1

4
ε10BtrR

4, I4 = t8(trR2)2 −
1

4
ε10B(trR2)2

I5 =t8(trR2)(trF2)−
1

4
ε10B(trR2)(trF2) .

(2.1)

These are special because they contain anomaly-cancelling CP-odd pieces. As a result

anomaly cancellation fixes entirely their coefficients in both the heterotic and the type

I effective actions in ten dimensions. Comparing these coefficients is not therefore a

test of duality, but rather of the fact that both these theories are consistent [6]. In

lower dimensions things are different: the coefficients of the various terms, obtained from

a single ten-dimensional superinvariant through dimensional reduction, depend on the

compactification moduli. Supersymmetry is expected to relate these coefficients to each

other, but is not powerful enough so as to fix them completely. This is analogous to the

case of N=1 super Yang-Mills in six dimensions: the two-derivative gauge-field action is

uniquely fixed, but after toroidal compactification to four dimensions, it depends on a

holomorphic prepotential which supersymmetry alone cannot determine.

On the heterotic side there are good reasons to believe that these dimensionally-

reduced terms receive only one-loop corrections. To start with, this is true for their

CP-odd anomaly-cancelling pieces [45]. Furthermore it has been argued in the past [46]

that there exists a prescription for treating supermoduli, which ensures that space-time

supersymmetry commutes with the heterotic genus expansion, at least for vacua with

more than four conserved supercharges2. Thus we may plausibly assume that there are

no higher-loop corrections to the terms of interest. Furthermore, the only identifiable

supersymmetric instantons are the heterotic five-branes. These do not contribute in d > 4

uncompactified dimensions, since they have no finite-volume 6-cycle to wrap around.

Non-supersymmetric instantons, if they exist, have on the other hand too many fermionic

zero modes to make a non-zero contribution. It should be noted that these arguments

do not apply to the sixth superinvariant [44, 6]

J0 = t8t8R
4 −

1

8
ε10ε10R

4, (2.2)

which is not related to the anomaly. This receives as we will mention below both pertur-

bative and non-perturbative corrections.

2A notable exception are compactifications with a naively-anomalous U(1) factor [47].
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The general form of the heterotic one-loop corrections to these couplings is [39, 40]

Ihet = −N
∫
F

d2τ

τ2
2

(2π2τ2)d/2 Γd,d A(F ,R, τ) (2.3)

where A is an (almost) holomorphic modular form of weight zero related to the elliptic

genus, F and R stand for the gauge-field strength and curvature two-forms, Γd,d is the

lattice sum over momentum and winding modes for d toroidally-compactified dimensions,

F is the usual fundamental domain, and

N =
V (10−d)

210π6
(2.4)

is a normalization that includes the volume of the uncompactified dimensions [7]. To

keep things simple we have taken vanishing Wilson lines on the d-hypertorus, so that the

sum over momenta (p) and windings (w),

Γd,d =
∑
p,w

e−
πτ2
2

(p2+w2/π2)+iτ1p·w , (2.5)

factorizes inside the integrand. Our conventions are

α′ =
1

2
, q = e2πiτ , d2τ = dτ1dτ2 (2.6)

while winding and momentum are normalized so that p ∈ 1
L
Z and w ∈ 2πL Z for a

circle of radius L. The Lagrangian form of the above lattice sum, obtained by a Poisson

resummation, reads

Γd,d =
( 2

τ2

)d/2√
detG

∑
ni,mi∈Z

e
− 2π
τ2

∑
i,j

(G+B)ij (miτ−ni)(mj τ̄−nj) (2.7)

with Gij the metric and Bij the (constant) antisymmetric-tensor background on the

compactification torus. For a circle of radius L the metric is G = L2.

The modular function A inside the integrand depends on the vacuum. It is quartic,

quadratic or linear in F and R, for vacua with maximal, half or a quarter of unbroken

supersymmetries. The corresponding amplitudes have the property of saturating exactly

the fermionic zero modes in a Green-Schwarz light-cone formalism, so that the contribu-

tion from left-moving oscillators cancels out [40]3. In the covariant NSR formulation this

same fact follows from ϑ-function identities. As a result A should have been holomorphic

in q, but the use of a modular-invariant regulator introduces some extra τ2-dependence

[40]. As a result A takes the generic form of a finite polynomial in 1/τ2, with coefficients

that have Laurent expansions with at most simple poles in q,

A(F ,R, τ) =
rmax∑
r=0

∞∑
n=−1

1

τ r2
qn A(r)

n (F ,R). (2.8)

3Modulo the regularization, A is in fact the appropriate term in the weak-field expansion of the

elliptic genus [41, 42, 43]
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The poles in q come from the would-be tachyon. Since this is not charged under the gauge

group, the poles are only present in the purely gravitational terms of the effective action.

This can be verified explicitly in eq. (2.9) below. The 1/τ r2 terms play an important role in

what follows. They come from corners of the moduli space where vertex operators, whose

fusion can produce a massless state, collide. Each pair of colliding operators contributes

one factor of 1/τ2. For maximally-supersymmetric vacua the effective action of interest

starts with terms having four external legs, so that rmax = 2. For vacua respecting half

the supersymmetries (N=1 in six dimensions or N=2 in four) the one-loop effective action

starts with terms having two external legs and thus rmax = 1.

Much of what we will say in the sequel depends only on the above generic properties

of A. It will apply in particular in the most-often-studied case of four-dimensional vacua

with N=2. For definiteness we will, however, focus our attention to the toroidally-

compactified SO(32) theory, for which [39, 40]

A(F ,R, τ) = t8 trF
4 +

1

27 · 32 · 5

E3
4

η24
t8 trR

4 +
1

29 · 32

Ê2
2E

2
4

η24
t8 (trR2)2

+
1

29 · 32

[E3
4

η24
+
Ê2

2E
2
4

η24
− 2

Ê2E4E6

η24
− 27 · 32

]
t8 (trF2)2

+
1

28 · 32

[Ê2E4E6

η24
−
Ê2

2E
2
4

η24

]
t8 trF

2trR2 .

(2.9)

Here t8 is the well-known tensor appearing in four-point amplitudes of the heterotic string

[48], and E2k are the Eisenstein series which are (holomorphic for k > 1) modular forms of

weight 2k. Their explicit expressions are collected for convenience in the appendix. The

second Eisenstein series Ê2 is special, in that it requires non-holomorphic regularization.

The entire non-holomorphicity of A in eq. (2.9), arises through this modified Eisenstein

series.

In the toroidally-compactified heterotic string all one-loop amplitudes with fewer than

four external legs vanish identically [49]. Consequently eq. (2.3) gives directly the effec-

tive action, without the need to subtract one-particle-reducible diagrams, as is the case

at tree level [50]. Notice also that this four-derivative effective action has infrared diver-

gences when more than one dimensions are compactified. Such IR divergences can be

regularized in a modular-invariant way with a curved background [51, 52]. This should

be kept in mind, even though for the sake of simplicity we will be working in this paper

with unregularized expressions.

3 One-loop Type-I Thresholds

The one-loop type I effective action has the form

II = −
i

2
(T +K+A+M) (3.1)
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corresponding to the contributions of the torus, Klein bottle, annulus and Möbius strip

diagrams. Only the last two surfaces (with boundaries) contribute to the F4, (F2)2 and

F2R2 terms of the action. The remaining two pure gravitational terms may also receive

contributions from the torus and from the Klein bottle. Contrary to what happens on the

heterotic side, this one-loop calculation is corrected by both higher-order perturbative

and non-perturbative contributions.

For the sake of completeness we review here the calculation of pure gauge terms

following refs. [25, 7]. To the order of interest only the short BPS multiplets of the open

string spectrum contribute. This follows from the fact that the wave operator in the

presence of a background magnetic field F12 = B reads

O = M2 + (p⊥)2 + (2n+ 1)ε+ 2λε (3.2)

where ε ' B+ o(B3) is a non-linear function of the field, λ is the spin operator projected

onto the plane (12), p⊥ denotes the momenta in the directions 034 · · ·9, M is a string

mass and n labels the Landau levels. The one-loop free energy thus formally reads

II = −
1

2

∫ ∞
0

dt

t
Str e−

πt
2
O (3.3)

where the supertrace stands for a sum over all bosonic minus fermionic states of the open

string, including a sum over the Chan-Paton charges, the center of mass positions and

momenta, as well as over the Landau levels.

Let us concentrate on the spin-dependent term inside the integrand, which can be

expanded for weak field

e−πtλε =
∞∑
n=0

(−πt)n

n!
(λε)n . (3.4)

The n < 4 terms vanish for every supermultiplet because of the properties of the helicity

supertrace [7], while to the n = 4 term only short BPS multiplets can contribute. The

only short multiplets in the perturbative spectrum of the toroidally-compactified open

string are the SO(32) gauge bosons and their Kaluza-Klein dependents. It follows after

some straightforward algebra that the special F4 terms of interest are given by the

following (formal) one-loop super Yang-Mills expression

II = −
V (10−d)

3 · 212π4

∫ ∞
0

dt

t
(2π2t)

d
2
−1

∑
p∈∗Γ

e−πtp
2/2 × t8TradjF

4 (3.5)

where ∗Γ is the lattice of Kaluza-Klein momenta on a d-dimensional torus, and the trace

is in the adjoint representation of SO(32).

This expression is quadratically UV divergent, but in the full string theory one must

remember to (a) regularize contributions from the annulus and Möbius uniformly in

the transverse closed-string channel, and (b) to subtract the one-particle-reducible di-

agram corresponding to the exchange of a massless (super)graviton between two trF2

tadpoles, with the trace being here in the fundamental representation of the group.
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The net result can be summarized easily, after a Poisson resummation from the open-

channel Kaluza-Klein momenta to the closed-channel windings, and amounts to simply

subtracting the contribution of the zero-winding sector [25, 7]. Using also the fact that

TradjF4 = 24trF4 + 3(trF2)2 we thus derive the final one-loop expression on the type I

side

II = −
V (10)

210π6

∫ ∞
0

dt

t2

∑
w∈Γ\{0}

e−w
2/2πt × t8

(
trF4 +

1

8
(trF2)2

)
. (3.6)

The conventions for momentum and winding are the same as in the heterotic calculation

of the previous section.

The calculation of the gravitational terms is more involved because we have no simple

background-field method at our disposal. It can be done in principle following the method

described in ref. [8]. There is one particular point we want to stress here: if the one-

loop heterotic calculation is exact, and assuming that duality is valid, there should be

no world-sheet instanton corrections on the type I side. Such corrections would indeed

translate to non-perturbative contributions in the heterotic string [53], and we have just

argued above that there should not be any. The dangerous diagram is the torus which can

wrap non-trivially around the compactification manifold. The type I torus diagram is on

the other hand identical to the type IIB one, assuming there are only graviton insertions.

This latter diagram was explicitly calculated in eight uncompactified dimensions in ref.

[54], confirming our expectations: the CP-odd invariants only depend on the complex

structure of the compactification torus, but not on its Kähler structure. This is not true

for the CP-even invariant J0.

4 Circle Compactification

Let us begin now our comparison of the effective actions with the simplest situation,

namely compactification on a circle. There are no world-sheet or D-string instanton

contributions in this case, since Euclidean world-sheets have no finite-area manifold in

target space to wrap around. Thus the one-loop heterotic amplitude should be expected

to match with a perturbative calculation on the type I side. This sounds at first puzzling,

since the heterotic theory contains infinitely more charged BPS multiplets than the type

I theory in its perturbative spectrum. Indeed, one can combine any state of the SO(32)

current algebra with appropriate S1-winding and momentum, so as to satisfy the level-

matching condition of physical states. The heterotic theory thus contains short multiplets

in arbitrary representations of the gauge group.

The puzzle is resolved by a well-known trick, used previously in the study of string

thermodynamics [26, 27], and which trades the winding sum for an unfolding of the

fundamental domain into the half-strip, −1
2
< τ1 <

1
2

and τ2 > 0. The trick works as

7



follows: starting with the Lagrangian form of the heterotic lattice sum,

(2π2τ2)1/2 Γ1,1 = 2πL
∑

(m,n)∈Z2

e−2πL2|mτ−n|2/τ2 . (4.1)

one decomposes any non-zero pair of integers as (m,n) = (jc,−jd), where j is their

greatest common divisor (up to a sign). We will denote the set of all relative primes

(c, d), modulo an overall sign, by S. The lattice sum can thus be written as

(2π2τ2)1/2 Γ1,1 = 2πL
[

1 +
∑

j∈Z\{0}

∑
(c,d)∈S

e−2πL2j2|cτ+d|2/τ2
]

. (4.2)

Now the set S is in one-to-one correspondence with all modular transformations,

τ̃ =
aτ + b

cτ + d
=⇒ τ̃2 =

τ2

|cτ + d|2
(4.3)

such that −1
2
< τ̃1 ≤

1
2

. Indeed the condition ad − bc = 1 has a solution only if (c, d)

belongs to S, and the solution is unique modulo a shift and an irrelevant sign a b

c d

→ ±
 1 l

0 1

 a b

c d

 . (4.4)

By choosing l appropriately we may always bring τ̃ inside the strip, which establishes

the above claim.

Using the modular invariance of A, we can thus suppress the sum over (c, d) ∈ S and

unfold the integration regime for the j 6= 0 part of the expression. This gives

Ihet = −
V (9)L

29π5

[∫
F

d2τ

τ2
2

A +
∫

strip

d2τ

τ 2
2

∑
j 6=0

e−2πL2j2/τ2 A

]
. (4.5)

There is one subtle point in this derivation [27]: convergence of the original threshold

integral, when A has a 1
q

pole4, requires that we integrate τ1 first in the τ2 →∞ region.

Since constant τ2 lines transform however non-trivially under SL(2,Z), the integration

over the entire strip would have to be supplemented by a highly singular prescription.

The problem could be avoided if integration of the m 6= 0 terms in the Lagrangian

sum (i.e. those terms that required a change of integration variable) were absolutely

convergent. This is the case for L > 1, so expression (4.5) should only be trusted in this

region.

Let us now proceed to evaluate this expression. The fundamental domain integrals

can be performed explicitly by using the formula [40]

∫
F

d2τ

τ2
2

(Ê2)rΦr =
π

3(r + 1)
[c0 − 24(r + 1)c−1] (4.6)

4(Physical) massless states do not lead to IR divergences in four-derivative operators in nine

dimensions
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Figure 1: A type I diagram with Euler characteristic χ = −1. This contributes to the (trF2)2 piece of

the effective action, only in degeneration limits such as the one depicted above.

where

Φr(q) =
∞∑

n=−1

cnq
n (4.7)

is any modular form of weight −2r which is holomorphic everywhere except possibly for

a simple pole at zero. As for the strip integration, it picks up only the O(q0) term in

the expansion of A. Modulo the non-holomorphic regularization, only the SO(32) gauge

bosons contribute to the elliptic genus at this order, in agreement precisely with the

result of the type I side! For k ≥ 1 let us define more generally∫ ∞
0

dτ2

τ1+k
2

∑
j 6=0

e−2πL2j2/τ2 =
2Γ(k)ζ(2k)

(2πL2)k
≡
Nk

L2k
, (4.8)

where L is the radius of the compactification circle. The one-loop SO(32) heterotic action

takes finally the form

Ihet = −
V (10)

210π6

{
π

3

[
F4 −

1

8
F2R2 +

1

8
R4 +

1

32

(
R2
)2]

+

+
N1

L2

[
F4 +

1

8
(F2)2 −

5

16
F2R2 +

31

240
R4 +

19

192

(
R2
)2]
−

−
5

16π
×
N2

L4

[
3(F2)2 − 5 F2R2 + 2

(
R2
)2]

+
21

64π2
×
N3

L6
(F2 −R2)2

}
.

(4.9)

To simplify notation we have written here F4 instead of t8 trF4, (F2)2 instead of

t8 trF2trF2 etc.

We have expressed the result as an expansion in inverse powers of the compactification

volume. Since the heterotic/type I duality map transforms (σ-model) length scales as

L2
h = L2

I/λI (4.10)
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with λI the open-string loop counting parameter, this expansion can be translated to a

genus expansion on the type I side. The Euler number of an non-orientable surface is

given by χ = 2−2g−B−C where g is the number of holes, B the number of boundaries

and C the number of cross-caps. The leading term corresponds to the disk and projective

plane diagrams and is completely fixed by ten-dimensional supersymmetry and anomaly

cancellation [6]. To check this one must remember to transform the metric in both V (10)

and the tensor t8 appropriately. Notice that the type I sphere diagram, which is the same

as in type IIB, only contributes to the J0 invariant which we are not considering here.

The subleading o(L−2) terms correspond to the annulus, Möbius strip, Klein bottle and

torus diagrams, all with χ = 0. For zero background curvature these agree with the type

I calculation [7] as described in section 3.

The last two terms in the expansion (4.9) correspond to diagrams with χ = −1,−2.

These contributions must be there if the duality map of ref. [1] does not receive higher-

order corrections. Such corrections could anyway always be absorbed by redefining fields

on the type I side, so that if duality holds, there must exist some regularization scheme

in which these higher-genus contributions do arise. These terms do on the other hand

come from the boundary of moduli space. For instance the χ = −1 contribution to the

(F2)2 term comes from the boundary of moduli space shown in figure 1. It could thus

be conceivably eliminated in favour of some lower-dimension operators in the effective

action.

It is in any case striking that a single heterotic diagram contains contributions from

different topologies on the type I side. Notice in particular that the divergent w = 0 term

in the one-loop field theoretic calculation, regularized on the heterotic side by replacing

the strip by a fundamental domain, is regularized on the type I side by replacing the

annulus by the disk.

5 Two-torus Compactification

The next simplest situation corresponds to compactification on a two-dimensional torus.

There are in this case world-sheet instanton contributions on the heterotic side, and our

aim in this and the following sections will be to understand them as (Euclidean) D-string

trajectory contributions on the type I side. The discussion can be extended with little

effort to toroidal compactifications in lower than eight dimensions. New effects are only

expected to arise in four or fewer uncompactified dimensions, where the solitonic heterotic

instantons or, equivalently, the type I D5-branes can contribute.

The target-space torus is characterized by two complex moduli, the Kähler-class

T = T1 + iT2 =
1

α′
(B89 + i

√
G) (5.1)

and the complex structure

U = U1 + iU2 = (G89 + i
√
G)/G88 , (5.2)
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where Gµν and Bµν are the σ-model metric and antisymmetric tensor on the heterotic

side. The one-loop thresholds now read

Ihet =
V (8)

29π4

∫
F

d2τ

τ2
Γ2,2 A(F ,R, τ) , (5.3)

where the lattice sum takes the form [55]

Γ2,2 =
T2

τ2
×

∑
M∈Mat(2×2,Z)

e2πiTdetMe
−
πT2
τ2U2
|(1 U)M( τ

−1
)|

2

. (5.4)

The exponent in the above sum is (minus) the Polyakov action,

SPolyakov =
1

4πα′

∫
d2σ(
√
gGµνg

αβ∂αX
µ∂βX

ν + iBµνε
αβ∂αX

µ∂βX
ν) , (5.5)

evaluated for the topologically non-trivial mapping of the string world-sheet onto the

target-space torus, X8

X9

 = M

σ1

σ2

 ≡
m1 n1

m2 n2

σ1

σ2

 . (5.6)

The entries of the matrix M are integers, and both target-space and world-sheet coor-

dinates take values in the (periodic) interval (0, 2π]. To verify the above assertion one

needs to use the metrics

Gµν =
α′T2

U2

 1 U1

U1 |U |2

 , gαβ =
1

τ 2
2

 |τ |2 −τ1

−τ1 1

 . (5.7)

The Polyakov action is invariant under global reparametrizations of the world-sheet,σ1

σ2

→
 a −b

−c d

σ1

σ2

 , (5.8)

which transform

τ →
aτ + b

cτ + d
, and M →M

 d b

c a

 . (5.9)

Following Dixon, Kaplunovsky and Louis [55], we decompose the set of all matrices M

into orbits of PSL(2,Z), which is the group of the above transformations up to an overall

sign. There are three types of orbits,

invariant : M = 0

degenerate : detM = 0, M 6= 0

non− degenerate : detM 6= 0

11



A canonical choice of representatives for the degenerate orbits is

M =

 0 j1

0 j2

 (5.10)

where the integers j1, j2 should not both vanish, but are otherwise arbitrary. Distinct

elements of a degenerate orbit are in one-to-one correspondence with the set S, i.e. with

modular transformations that map the fundamental domain inside the strip, as in section

4. In what concerns the non-degenerate orbits, a canonical choice of representatives is

M = ±

 k j

0 p

 with 0 ≤ j < k , p 6= 0 . (5.11)

Distinct elements of a non-degenerate orbit are in one-to-one correspondence with the

fundamental domains of τ in the upper-half complex plane.

Trading the sum over orbit elements for an extension of the integration region of τ ,

we can thus express eqs. (5.3,5.4) as follows

Ihet = −
V (8)T2

29π4
×

{∫
F

d2τ

τ2
2

A +
∫

strip

d2τ

τ 2
2

∑
(j1,j2)6=(0,0)

e
−
πT2
τ2U2
|j1+j2U|

2

A

+ 2
∫
C+

d2τ

τ 2
2

∑
0≤j<k
p6=0

e2πiTpk e
−
πT2
τ2U2
|kτ−j−pU|

2

A

}
≡ Ipert + Iinst.

(5.12)

The three terms inside the curly brackets are constant, power-suppressed and exponen-

tially-suppressed in the large compactification-volume limit. They correspond to tree-

level, higher perturbative and non-perturbative, respectively, contributions on the type

I side. The discussion of the perturbative contributions follows exactly the analogous

discussion in section 4. The only difference is the replacement of eq. (4.8) by

∫ ∞
0

dτ2

τ 1+k
2

∑
(j1,j2)6=(0,0)

e
−
πT2
τ2U2
|j1+j2U|

2

=Γ(k)
(
U2

πT2

)k ∑
(j1,j2)6=(0,0)

|j1 + j2U |
−2k

=
2Γ(k)ζ(2k)

(πT2)k
E(U, k).

(5.13)

where E(U, k) are generalized Eisenstein series [56]. In the open-string channel of the type

I side this takes into account properly the (double) sum over Kaluza-Klein momenta [7].

Notice that the holomorphic anomalies in A lead again to higher powers of the inverse

volume, which translate to higher-genus contributions on the type I side. Notice also

that the k = 1 term has a logarithmic infrared divergence, which must be regularized

appropriately, as discussed in the introduction.

We turn now to the novel feature of eight dimensions, namely the contributions of

world-sheet instantons. Plugging in the expansion (2.8) of the elliptic genus, we are lead

12



to consider the integrals

In,r =
∫
C+

d2τ

τ 2
2

e
−
πT2
τ2U2
|kτ−j−pU|

2 1

τ r
2

e2iπτn (5.14)

Doing first the (Gaussian) τ1 integral, one finds after some rearrangements

In,r =
1

k

√
U2

T2
e2iπn(

j+pU1
k

)e2πkpT2

∫ ∞
0

dτ2

τ
3/2+r
2

e
−
πT2
U2

(k+
nU2
kT2

)2τ2e−πp
2T2U2/τ2 (5.15)

The τ2 integration can now be done using the formula

∫ ∞
0

dx

x3/2+r
e−ax−b/x =

(
−
∂

∂b

)r√
π

b
e−2
√
ab (5.16)

where a = πT2

U2
(k + nU2

kT2
)2 and b = πp2T2U2 are both proportional to the volume of the

compactification torus. The leading term in the large-volume limit is obtained when all

derivatives hit the exponential in the above expression. Using (5.16) we find

In,r =
1

k|p|T2

(
k

|p|U2

)r
e2πk(p−|p|)T2e2iπn[

j+pU1
k

+i|p|
U2
k

]
(
1 + o(

1

T2

)
)

(5.17)

and plugging back into eq. (5.12) we get

Ihetinst ' −
2V (10)

210π6

∑
0≤j<k
p>0

1

kpT2
e2πiTpk A

(
j + pU

k

)
+ c.c. (5.18)

This equality is exact for the holomorphic parts of the elliptic genus. Correction terms

have the form of an order-rmax polynomial in inverse powers of the volume, as we will

discuss in a minute.

Expression (5.18) has an elegant rewriting in terms of Hecke operators HN [57]. On

any modular form Φr(z) of weight −2r, the action of a Hecke operator, defined by [58]

HN [Φr](z) =
1

N2r+1

∑
k,p>0
kp=N

∑
0≤j<k

k2r Φr

(
pz + j

k

)
, (5.19)

gives another modular form of the same weight. The Hecke operator is self-adjoint with

respect to the inner product defined by integration of modular forms on a fundamental

domain. Using the above definition one finds

Ihetinst ' −
2V (10)

210π6

∞∑
N=1

1

T2
e2πiNT HN [A](U) + c.c. (5.20)

In the above form the result might be easier to compare with a calculation based on the

heterotic matrix string theory [59].

Let us complete now the calculation, by taking into account the sub-leading terms in

the large-volume limit. Using eq. (5.16) we can in fact evaluate explicitly the integrals

13



(5.14). After some long but straightforward algebra the correction terms can all be

expressed in terms of the induced moduli

U =
j + pU

k
and T = kpT . (5.21)

In,1 → In,1 ×
(

1 +
1

T2
(nU2 +

1

2π
)
)
, (5.22)

In,2 → In,2 ×

(
1 +

1

T2
(2nU2 +

3

2π
) +

1

T 2
2

(n2U2
2 +

3nU2

2π
+

3

4π2
)

)
. (5.23)

These terms can be rewritten elegantly by using the operator

� ≡ U2
2∂U ∂̄U (5.24)

This is a modular invariant operator, which annihilates holomorphic forms. The correc-

tion terms for all r = 0, 1, 2 are summarized by the expression

U r
2 e
−2iπUn

(
1 +

1

πT2
�+

1

2

1

π2T 2
2

(�2 − �/2)

)
U −r2 e2iπUn. (5.25)

The instanton sum is modified accordingly to

Ihetinst = −
2V (10)

210π6

∑
instantons

1

T2
e2πiT

(
1 +

1

πT2
�+

1

2

1

π2T 2
2

(�2 − �/2)

)
A(U) + c.c. .

(5.26)

One final rearrangement puts this to the form

Ihetinst = −
2V (10)

210π6

∑
instantons

1

T2
e2πiT

(
∞∑
s=0

1

s!

1

T s2
(−iD)s(U2

2 ∂̄U)s
)
A(U) + c.c. . (5.27)

where here D is the covariant derivative, which acting on a modular form Φr of weight

−2r gives a form of weight −2r + 2,

DΦr =
(
i

π
∂U −

r

πU2

)
Φr . (5.28)

Some properties of covariant derivatives are summarized in the appendix.

The virtue of this last rewriting is that the sth operator in the sum annihilates ex-

plicitly the first s terms in the expansion of the elliptic genus in powers of 1
U2

. From the

general form of A, eq. (2.8) we conclude that only the terms with s ≤ 2 (s ≤ 1) con-

tribute in the case of sixteen (eight) unbroken real supercharges. The modular-invariant

descendants of the genus, obtained by applying the sth operator on A, determine in fact

the corrections to other dimension-eight operators in the effective action. The full effec-

tive action can be expressed in terms of generalized holomorphic prepotentials, a result

that we will not develop further here.
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(k,0)

(j,p)

U
{
︸ ︷︷ ︸

1

Figure 2: Embedding of the lattice Γ′ (D1-brane) in the lattice Γ (compactification torus).

6 D-instanton Interpretation

We would now like to understand the above result from the perspective of type I string

theory. The world-sheet instantons on the heterotic side map to D-brane instantons, that

is Euclidean trajectories of D-strings wrapping non-trivially around the compactification

torus. A Euclidean trajectory described by eq. (5.6) defines a sublattice (Γ′) of the

compactification lattice (Γ). If ei=1,2 are the two vectors spanning Γ, then Γ′ is spanned

by the vectors e′i = Mjiej (figure 2). Under a change of basis for Γ (Γ′) the matrix M

transforms by left (right) multiplication with the appropriate elements of SL(2,Z). Using

reparametrizations of the world-sheet we can thus bring the basis e′i into the canonical

form, eq. (5.11), as described in the previous section (see also figure 2).

Now the key remark is that on the heterotic world-sheet we have an induced complex

structure and Kähler modulus, which for positive p are given by

U =
j + pU

k
and T = kpT . (6.1)

For negative p’s, describing anti-instantons, we must take the absolute value of p and

complex conjugate these expressions. One can check these facts by inspection of figure 2,

or by computing explicitly the pull-backs of the metric and antisymmetric tensor field,

Ĝαβ = Gµν∂αX
µ∂βX

ν , B̂αβ = Bµν∂αX
µ∂βX

ν . (6.2)

Notice that N = kp is the total number of times the world-sheet wraps around the

compactification torus. In terms of induced moduli the instanton sum (5.18) takes the

form

Iinst ' −
2V (10)

210π6

∑
instantons

1

T2

e2πiT A(U) + c.c. . (6.3)

The various terms of this expression have a simple interpretation on the type I side.
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Figure 3: A D1-brane instanton correction to trF 4.

The action of a wrapped D-string is [61]

SD−string =
1

2πα′λI

∫
d2σ

√
|detĜI | −

i

2πα′

∫
B̂I (6.4)

where BI is the type I 2-form coming from the RR sector. Using the heterotic/type I

map

T het2 = T I2 /λI , Bhet = BI (6.5)

and the fact that the world-sheet area of the D-string is 4π2T I2 , we see that the exponential

of this Nambu-Goto action reproduces exactly the exponential in the instanton sum, eq.

(6.3). The inverse factor of the volume comes from the integration of the longitudinal

translation zero modes. Finally the elliptic genus of the D-brane complex structure,

should come from the functional integration over the (second quantized) string fields

in the instanton background. A typical diagram contributing to the F4 coupling is

shown in figure 3. For the purely holomorphic pieces of the elliptic genus the result is

topological, so it should be expected to coincide with the heterotic σ-model calculation

of refs. [39, 40, 42, 43]. Put differently, massive string modes and higher-order terms

in the effective D-string action are expected to play no role in the calculation. It is an

interesting and open problem to obtain this result directly on the type I side.

The other interesting lesson from expression (5.18) concerns the counting of distinct

instanton solutions. The prescription in this case is to include all supersymmetric (holo-

morphic) wrappings modulo world-sheet reparametrizations of the D-brane. One may

conjecture that this prescription stays valid for higher-dimensional branes, provided one

also mods out world-volume gauge symmetries when present. This statement sounds ob-

vious for world-sheet instantons on the heterotic side, but is non-trivial when considering

for example the solitonic five-brane.
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7 Concluding Remarks

Perhaps the most interesting question raised in this paper, is the calculation of the D-

brane instanton contribution to the effective action. Although the topological nature of

this calculation makes it plausible that the (leading) answer should be proportional to

the elliptic genus, as suggested by the heterotic/type I duality, it would be very inter-

esting to see how this will come about from explicit string diagrams. This is important,

since it would open the way for doing other semiclassical D-brane instanton calculations,

particularly in the background of the type I D5-brane. This latter is a heterotic zero-size

instanton [62], for which the field-theoretic calculation rules remain to be found.

Another interesting check would be the explicit evaluation of the higher-order pertur-

bative contributions. Depending on the world-sheet regularization, these could appear

through corrections to lower-dimension operators, as in the case of vacua with eight

unbroken supercharges [8]. We believe that the presence of these terms is enforced by

supersymmetric Ward identities, and it would be interesting to derive these in detail.

Similar issues actually arose in the study of D4-D0 brane scattering [19], where the

background geometry seems to require a subleading two-loop open-string contribution.

Finally, we find particularly intriguing the way in which string theory regularizes what

seems otherwise as a field-theoretic super Yang-Mills expression. It could be very in-

teresting to contemplate similarly the eleven-dimensional supergravity loop [28], whose

regularization may admit an analogous geometric interpretation.
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A Modular functions

Holomorphic modular forms Φr(τ) of weight −2r are invariant under τ → τ + 1 and

transform as

Φr → τ2r Φr under τ → −
1

τ
. (A.1)

The set of modular forms, relevant for our purposes, are the Eisenstein series

E2k = −
(2k)!

(2πi)2kB2k

G2k , (A.2)

with B2k the Bernouilli numbers and

G2k(τ) =
∑

(m,n)6=0

(mτ + n)−2k . (A.3)

for k > 1. For k = 1 the Eisenstein series diverges. Its modular invariant regularization,

denoted by a hat and used in this paper, is

Ĝ2(τ) = lim
s→0

∑
(m,n)6=0

(mτ + n)−2|mτ + n|−s . (A.4)

The (hatted) Eisenstein series are modular forms of weight 2k. The ring of holomorphic

modular forms is generated by E4 and E6. If we include (non-holomorphic) covariant

derivatives (to be discussed below) then the generators of this ring are Ê2, E4, E6.

Expressed as power series in q = exp(2iπτ), the first few of the Eisenstein series are

E2(q) = 1− 24
∞∑
n=1

n qn

1− qn
(A.5)

E4(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
(A.6)

E6(q) = 1− 504
∞∑
n=1

n5qn

1− qn
. (A.7)

The modified first Eisenstein series is

Ê2 = E2 −
3

πτ2

. (A.8)

The Dedekind function is

η(τ) = q1/24
∞∏
n=1

(1− qn) (A.9)

We can write the (weight 12) cusp form η24 and the modular invariant j-function in terms

of E4 and E6

η24 =
1

26 · 33

[
E3

4 − E
2
6

]
, j =

E3
4

η24
=

1

q
+ 744 + · · · (A.10)
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There is a (non-holomorphic) covariant derivative that maps modular forms of weight

−2r to forms of weight −2r + 2:

Φr−1 =
(
i

π
∂τ −

r

πτ2

)
Φr = −2

(
q∂q +

r

2πτ2

)
Φr ≡ D Φr . (A.11)

The covariant derivative satisfies the Leibnitz rule:

D (Φr1Φr2) = Φr1DΦr2 + (DΦr1)Φr2 . (A.12)

Note that a double derivative on a weight −2r form is

D2Φr ≡
(
i

π
∂τ −

r − 1

πτ2

)(
i

π
∂τ −

r

πτ2

)
Φr . (A.13)

The following formulae allow the computation of the covariant derivative of any form:

D Ê2 =
1

6
E4 −

1

6
Ê2

2 , D E4 =
2

3
E6 −

2

3
Ê2 E4 (A.14)

D E6 = E2
4 − Ê2 E6 . (A.15)
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