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Abstract

This paper describes an algorithm to compute the fixed
points (closed orbit or higher order fixed points) in a circu-
lar machine together with the linear transformation around
it by tracking trajectories on a small number of turns. It can
be applied to a phase space with an arbitrary number of di-
mensions. It is particularly useful to check the consistency
between trajectory tracking and transfer matrix calculation
in any optics code.

1 INTRODUCTION

The computation of closed orbit coordinates and its asso-
ciated transfer matrices was proposed a long time ago for
the 2-D case [1]. It made it possible to find a bug in the old
AGS [2] optics program and to make it possible to find the
off-momentum closed orbit coordinates in any case.

This algorithm has been generalised to the 6-D case for
any fixed point periodicity. It can be applied in its actual
form to any dimension number, 6 being the value needed
for betatron oscillations in accelerators. Some basic checks
have been done and the numerical accuracy has been es-
timated. The generalisation to non-linear computation is
suggested.

2 THE ALGORITHM.

In the most general circular machine, a given trajectory is
defined by its 6 conjugate coordinates expressed with re-
spect to any origin. If the transverse motion is not chaotic,
it can be considered as an oscillation around a periodic or-
bit of order p. At a given location of the machine, the pe-
riodic orbit is represented as a fixed point which has the
same coordinates after a number of turnsp. Let’s denote
Xpi the 6-vector giving the coordinates of the trajectory at
thepith passage.Xc is the 6-vector giving the coordinates
of the fixed point. The amplitude of the oscillation around
the fixed point at thepith passage close to the fixed point is
defined by the vectorXpi and we have :Xpi = Xc + Xpi.

If we make the differenceDi between the actual coordi-
nates at the passagespi andp(i� 1), we write :

Di = Xpi �Xp(i�1)

= [Xc + Xpi]�
�
Xc + Xp(i�1)

�

= Xpi �Xp(i�1)

The vectorDi can hen be computed from the actual co-
ordinates obtained from tracking. Let’s call M the linear
transfer matrix over one fixed point period which describes
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oscillations around the fixed point with infinitely small am-
plitudes. By definition :

Xpi = MXp(i�1) (1)

Adding Xp(i�1) on both sides of equation (1) and re-
expressing it on the right by means of equation (1) rewritten
by changingi to i� 1, we obtain :

Di = MD(i�1) (2)

It is now possible to construct a matrix equation by putting
the k vectorsD1;D2; ::;Dk side by side. Using equation
(2), we obtain readily :

(D2;D3; ::;Dk+1) = M(D1;D2; ::;Dk) (3)

from which the transfer matrixM can be obtained by :

M = D2D1
�1 (4)

The columns of thek � k matrix D1 are made with the
column vectorsD1;D2; ::;Dk while those of the matrixD2

are made with the vectorsD2;D3; ::;Dk+1.
A first consequence of this calculation is that tracking

a trajectory overp(k + 1) periods is sufficient to obtain
the elements of the transferk � k matrix around a fixed
point of periodp. It is not necessary since the symplecticity
condition imposes to thek2 elements ofM , (k � 1)k=2

independent relations and reduces the number of equations
needed to determine the matrix. However it is better to
keep equation 4 to determine the transfer matrix since our
algorithm is aimed at checking optics calculations. In this
respect, it is useful to check the symplecticity condition on
this matrix.

Once the transfer matrix is obtained, it is straightforward
to compute the fixed point coordinates by simple algebra.
We obtain :

Xc = (M � I)�1(MX0 �X1)

It is extremely important to realize that the algorithm is
exact for infinitesimal oscillation amplitudes. As the coor-
dinates obtained by tracking are always finite, it is obvious
that the algorithmmust be iterated in order to obtain rel-
evant results. This is not a problem as the fixed point co-
ordinates obtained in the first iteration provides already a
good approximation of a trajectory with a small oscillation
amplitude.

It is important to note that, in this context, it does
not make sense to compute a detuning with amplitude by
means of this algorithm by computing the tunes around a
closed orbit (p=1) from the matrixM which varies depend-
ing on the starting point of the trajectory.
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3 PRACTICAL IMPLEMENTATION

The programs fm6D and fm4D have been written in C++

to compute the fixed points coordinates and the matrixM

defined above from the files of coordinates created by the
MAD [3] program. In fact the dimension of the coordinate
vector can be changed easily as the code uses general algo-
rithms for 2n dimensions. The two versions respectively in
4D and 6D have been made for convenience.

There is a general portability problem concerning the
number of digits used in the tracking tables. It is of course
extremely important to use the maximum accuracy for the
tables. The best solution is obviously to use the algorithm
inside the program itself, so that this problem disappears.

The two codes use the MAD algorithm [4] to compute
the eigen-values an “tunes” of the oscillations around the
fixed point.

The errors inherent to the algorithm have been investi-
gated for the case of a computation around a closed or-
bit (fixed point of order 1). Because of the finite ampli-
tude of the oscillations, there is a detuning due to the non-
linearities present in the machine which varies depending
on the sequence of turns chosen for the computation. This
is not worrying since the computation has to be iterated.
Usually two iteration give the exact tunes around a stan-
dard closed orbit. After the calculations, the coordinates
computed with the closed orbit and the transfer matrix are
compared with those obtained by tracking. Their difference
is given in order to have an additional idea on the accuracy
of the calculation. For instance, if the oscillation amplitude
is too large, the difference between the absolute value of
the oscillation amplitude computed with the transfer matrix
and that obtained from tracking will be of the same order
of magnitude as the oscillation itself on average.

4 TESTS

The algorithm has been tested to check the off-momentum
calculation of the tunes in MAD. In a previous version of
the code there was a second order in momentum deviation
missing. This has been corrected successfully and checked
with the present algorithm applied to the off-momentum
closed orbit calculation.

The accuracy problem has been investigated by adding
random errors to the tracking table. It has been proved to
be useful to keep this option for checking purpose as the
errors can be large if the differences between the succes-
sive coordinates are too small. This can be done by means
of an optional parameter in the program command. It has
been observed that a small relative error of some 10�5 in
the6th component makes an error as large as the value of
the closed orbit coordinates themselves (amplitudes of the
order of some milimeter for a dynamic aperture of the order
of 10mm).

5 EXTENSION OF THE ALGORITHM

Two generalisations can be foreseen, they have not yet been
implemented.

� In order to have a more reliable value of the matrix in
a single pass computation, we can use more turns than
needed and compute the matrix which fits the best the
oscillation hypothesis. We can write the relationship 4
but now the matricesD1 andD2 are rectangular. The
solution of the minimisation problem is :

Mf = D2D1
T
(D1D1

T
)�1

The iterative procedure gives actually much better re-
sults. This procedure could be useful only to check
calculations after a long tracking has been performed.

� Instead of computing a linear transfer map, it is possi-
ble to compute a non-linear one. The number of turns
is simply larger since there are more coefficients to
compute. It is not obvious that the accuracy of such a
procedure gives relevant results. However this is the
only possibility to obtain for instance detuning with
amplitude from this algorithm.

6 CONCLUSION

The computation of optics quantities like tunes from track-
ing is useful for checking purposes. The symplecticity of
the tracking can be checked, as well as the consistency of
calculations of tunes with transfer matrices of FFT for a
machine with errors or for off-momentum orbits. Further
developments of the algorithm could concern the study of
stability around higher order fixed points.
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