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Abstract the homoclinic and/or heteroclinic intersections, the invari-
%nt manifolds related with different fixed points are con-
ngcted with each other generating the homoclinic tangle.
the transverse dynamics of a flat beam in a circular machiﬁ%;isns‘tfcrté‘srﬁl tlsost‘)rt]:ivlinl gdtobbelzt:;s dtl)::;e;:; tlt]/ltiel :ct)arlb[lzlll]tysl?-
dominated by nonlinear magnetic errors. In particular, th ' oy o .
problem of computing the dynamic aperture, i.e. the regio ws the proof of the existence of.hyperbollc f|xeq points
in phase-space where stable motion occurs, is consider((::*)éll.oW period (one or two) for generic area-preserving poly-

The main result is that the boundary of the stability domai'ﬁmm'a.I maps of Fhe plane, thus ;howmg thaF our method IS
enerically applicable to determine the stability domain.

is given by the invariant manifolds emanating from the out?

ermost unstable fixed point of low period (one or two). This
study extends previous results obtained for reversible area- 2 POLYNOMIAL MAPS AND FIXED

preserving polynomial maps of the plane. POINTS

In this paper the phase-space of generic 2D area-preserv
polynomial mappings is studied. These mappings modeli

1 INTRODUCTION 2.1 A classification Theorem

) L , . In 1969 [5], Hénon showed that every quadratic mapping
One of the main topics in the study of nonlinear Hamilto-

i : . a of the plane can be reduced to the simple form
nian systems is the determination of the region in phase-
space where bounded motion occurs (also called stability
domain or dynamic aperture). For two-dimensional non-
linear systems, it is possible to define unambiguously an

) . . _where the parametef represents the constant jacobian.
area in phase-space where the motion is stable for arbltriair— P P J

ily long periods. Around the origin, which is usually cho- riedland and Milnor [4] found a way to generalize the

: ; sult obtained by Eron to arbitrary degree polynomial
sen to be a stable fixed point, there are closed curves ({nﬁ)aps. The result of their studies can be summarized as fol-

KAM tori), and wherever the nonlinear frequency satisfief
a resonant condition, the invariant curves are broken into
islands. When nonlinearities are dominant, one reachesTyEOREM 1 Every polynomial map can be written as
stability border beyond which a fast escape to infinity octhe composition of

curs. This stability border is what we have called the dy-

namic aperture. In this picture the KAM tori separate dif- ha ha ha,

ferent phase-space domains: therefore, there exists a last (F0>71) = (@1,82) = @ T, (2)
connected invariant curve whose interior represents a set
stable initial conditions. Outside this curve, there can only
be islands of stability, scattered in the sea of initial condi- ha,(z,y) = (y,pi(y) — 6;z) (3)
tions which escape to infinity.

The evaluation of the stability domain is not only an im-andp;(y) is a polynomial of degreé; > 2. This compo-
portant issue from a theoretical point of view, but also a kegition can be chosen so that the leading coefficient, i.e. the
problem in many applications. For instance, the size of thepefficient of the highest degree, in each polynomjak
stability domain is the main source of concernin the desigit 1, and so that the next highest coefficient is zero. The
of a circular particle accelerator. This parameter impos@®sulting normal form is unique up to a finite number of
tight constraints on the magnetic lattice of the machine anshoices.

a good insight into the sources of instabilities is necessary

to ensure good performance_ Thus every pOlynomial transformation is defined induc-
Our approach to the problem of determining the stabilitjively by z;+1 = pi(z;) — d;zi—1, with

domain of a 2D polynomial map, which generalizes the &

results of [1-3], consists in computing the invariant man-  Pi(zi) = £;" + (terms of degree d; —2).  (4)

ifolds of the outermost hyperbolic fixed point. Thanks toIt is readily seen that this normal form depends on exactly

* Present address: CERN PS Division d; + ---d,, parameters.

(2,9) ¥ (4,47 + c — &), )

f‘lerehdi is a generalized ldhon map, namely




2.2 Fixed points of area-preserving maps For the purpose of this study, a simpler approach has
beenimplemented. In fact, it turns out, that it is sufficient to
iterate many times a set of initial conditions belonging to a
9(z,y) = (z,1). 5) small part of'thgse man.if.olds in the vicinity ®fy . More-

’ ’ over, these initial conditions can be chosen on the eigen-
The solutions of Eq. (5) can be classified by consideringalues of the linearized map provided their distance to the
the trace of the linearizatiog,, around the fixed point. In hyperbolic fixed point is sufficiently small.
the area-preserving case, the situation is as follows

A fixed point of a polynomial mag is a root of the equa-
tion

<2 the fixed point iselliptic 4 STABILITY DOMAIN

[Tr(g;,)|{ =2 the fixed point iparabolic (6) :

> 2 the fixed point ishyperbolic 4.1 Analytical results
The stability domairk of a polynomial map is defined as

In the first case the fixed point ®ablewhile in the third the region in phase-space where stable motion occurs. An

case it isunstable The following result can be proved: injtial condition(zo, yo) is stable if the sequence of iterates

(Zn,yn) = g*(xo,yo) is bounded for both positive and

negativen. One can prove [4] thakl is compact and of

positive Lebesgue measure.

o the outermost fixed point is always hyperbolidis ~ Consider the following set
even ord is odd and the leading term is positive;

THEOREM 2 Given an area-preserving polynomial map
g of degreed then

OK = W* (Yiyp) U MW" Yhyp)- @)
e the outermost fixed point gf is always hyperbolic if R U R
d is odd and the leading term is negative. wherey, . is the outermost hyperbolic fixed point. In case
the degree of is odd and the coefficient of the leading term
3 INVARIANT MANIFOLDS is negative, the hyperbolic fixed point used in Eq. (7) refers

. . . to the second iterate of the mgp, while in the other cases
For a hyperbolic fixed poink,y,, the eigenvectors of the it represents the fixed point gf It is readily seen thadC

Iinearizat?on of the mayg, aroupdxhyp deﬁ.”e Mo lin- is invariant under the dynamics generatedghbyence, an
;ahar I?r?ts r||nz tgenﬁ)lanﬁ ! alo::g )\:Vh'ﬁzi;he Totlonnltr:dut(i:re]:d tt)’cyrbit cannot cross this set. The geometrical structu@of
haei/iou?a ed map has an expa g or a contracting b extremely complex. In fact, the invariant manifolds ema-
' - . nating from different hyperbolic fixed points of the map or
We can extend these sets to the original nonlinear gyap 9 yb P P

i.e. it is possible to define two manifolds emanatin frorri{[S second iterate, present homoclinic and, possibly, hete-
" P ) ) 9 roclinic intersections. This ensures thiaencloses a finite
the unstable fixed point, called’" (Xnyp) andW* (Xnyp),

having the same expanding (superscript u) or contractirisagion of phase-space. Furthermore, the manifolds ema-
(superscript s) behaviour. The eigenvectorgore tan- ting from hyperbolic fixed points of higher period, i.e.

gential toWW"* (Xnyp) at the fixed point. solutions of m

The invariant manifolds have at least the hyperbolic fixed 9" (z,y) = (z,y) (8)
point as intersection. An additional intersectiofiom, might also have intersections wif: the result is a dense
is either called homoclinic or heteroclinic depending ometwork of manifolds emanating from the outermost hyper-
whether the two intersecting manifolds emanate from thgolic fixed point, with an infinite number of intersections.
same hyperbolic fixed point. Provided the two manifoldShe dynamics outsidk is trivial: no bounded motion can
are non-tangential at the poirg.., it can be proven that occur and the same happens for points trapped inside the
the set of intersections is countable. Therefore, unless th@moclinic tangle.
two manifolds coincide completely, which occursin the in-  Finally, points belonging to the region insi@é are sta-
tegrable case, they will oscillate around each other. ble, as they cannot leave this region without crosgiiy
Due to the area-preserving character of the map, the argad violating the invariance property.
enclosed between two successive intersections remains
constant. As the perloo! of the mqtlon tencjs to infinity aPy o Numerical results
proaching the hyperbolic fixed point, the distance between
successive intersections decreases exponentially, leadingitee result presented in this paper have been obtained with
larger and larger oscillations close to the hyperbolic fixethe programGIOTTO [7]. GIOTTO allows the study of
point. the dynamics of 2D systems using numerical tools (such

Efficient algorithms have been developed [6] to construats frequency analysis, evaluation of Lyapunov exponents,
the whole set3V"*(x,yp,). They allow the reconstruction visualization of phase-space portrait, computation of fixed
of the invariant manifolds with a uniform accuracy using goint computation and evaluation of homoclinic tangle) as
relatively small number of initial conditions together withwell as analytical tools (such as normal forms).
efficient interpolation schemes. The first model analyzed consists of a polynomial map



of degree six L7

he =hso h3; (9)
where
hs = (y,y* +ay+B—2)  hy=(y,y°+7y—=). (10)

The parameters have been set equal to the following values
a = —0.856, 8 = —0.164, v = —0.120. In Fig. 1, the key
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Figure 2: Stability domain (black area) and invariant mani-
folds emanating from the outermost unstable fixed point of
period one fohy, .
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Figure 1: Stability domain (black area) and the invariant
manifolds emanating from the unstable fixed point of pe-
riod one ofhg.

result is shown (the black area represents th&3efThis

has been computed by simply iterating the nhgpver a
rectangular grid of initial conditions and plotting the initial
conditions which stay bounded aft&b000 turns. On top

of the setlC, 9K is superimposed. It is apparent titHt
boundsk. 2

. -2 2
hThehnext stepdvvlould pe to consider an odd degree Mag,y, e 3: Stability domain (black area) and invariant mani-
The chosen models are: folds from the outermost unstable fixed point of period two

hos = h}. o hs, 1) forhs-.

where . -
of low period is sufficient to reconstruct the border of the

by = (y, 2y’ +ay+6—-z)  hsy = (y,4°+yy+d—z). stability domain, thanks to the phenomenon of homoclinic
(12) and heteroclinic intersections.
The parameters have been set equakto= -0.712,
8 = —0272, v = 0.268, § = 0.680 for hg,, while 5 REFERENCES
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