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Abstract

Since about 10 years survival plots have been used to evaluate single–particle long–term stability. In a re-
cent paper (M. Giovannozzi et al.) this concept has been reviewed, using a dynamic aperture (Dyn.Aper.)
definition based on the average over different ratios of emittances. It has been shown that the survival
times evaluated according to this procedure decay with the inverse of the logarithm of the number of
turns in several different systems. In this paper the validity of this conjecture is tested in the case of the
latest LHC lattice which has been studied extensively.

The inverse log conjecture also predicts a non–zero Dyn.Aper. at infinite times calledD1. The
tracking data are analysed for the LHC lattice to determine the relation betweenD1 and the onset of
chaos determined through Lyapunov exponents. Two different methods to automate the prediction of the
Lyapunov exponent are tested and are compared withD1.
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1 Introduction
In Ref. [1] (see also Ref. [2]) it has been shown that for several dynamical systems the

evolution of the Dyn.Aper.D(N) as a function of turn numberN is well described by the
following equation here called theInverse Log Conjecture:

D(N) = D1

 
1 +

b

log10(N)

!
: (1)

TheD1 can be interpreted as the Dyn.Aper. after an infinite number of turns while theb appears
to be a measure of the range of amplitudes where particle loss will take place, e.g. a valueb = 3

means that after 1’000 turns the Dyn.Aper. is still a factor of two larger thanD1. For this
relation to work a precondition is to average the Dyn.Aper. over the four dimensional phase
space as described in Ref. [3]:

D(N) =

 Z �=2

0

[D�(N)]4 sin(2�)d�

!
1=4

; (2)

where� is related to emittance ratio�II=�I by:

� = atan
q
�II=�I ; (3)

e.g.(� = 45�) corresponds to a emittance ratio of(�II=�I = 1). As the tracking for the LHC is
usually done in the full six dimensional phase space one could argue that an average over the six
dimensions is needed. This is not done for the following reasons: firstly the nonlinear coupling
between longitudinal and transverse planes is small which allows the separate treatment of the
longitudinal plane, secondly for the LHC tracking the initial conditions in the longitudinal phase
space are not varied but fixed to one set of pessimistic (large) values and lastly the tracking
effort would have to be increased by another factor of ten. One aim of this report is to check
the conjecture for the LHC version 4 which has been extensively studied (see Ref.[4]). Another
aim is the understanding of the relation betweenD1 and the onset of chaos.

2 Fitting Technique
One can rewrite Eq. 1 as follows:

D(N) � log
10
(N) = D1 � log

10
(N) +D1 � b; (4)

wherelog
10
(N) is treated as an independent variable on the right–hand side. ThusD1 denotes

the slope andD1 � b the offset of a linear function which describesD(N) � log
10
(N). A linear

regression yields both quantities with a certain error�. The error ofD(N) is calculated to be:

�(D(N)) = �(D1) + �(D1 � b)
1

log10(N)
(5)

It should be noted that the multiplication ofD(N) with log
10
(N) in Eq. 4 puts a stronger weight

on loss boundaries where they are most relevant, i.e. at larger turn numbersN .

3 Conjecture Test
Figure 1 summarises the tracking data and the fitting result for one realization of the

imperfect LHC: the tracking has been performed for 17 emittance ratios up to106 turns. For
the emittance ratio of one (� = 45�) the tracking has been prolonged to107 turns. A linear
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regression fit according to Eq. 4 is performed up to105 and106 turns. The fits are extrapolated
to 107 turns and quoted with their errors. The data for� = 45� which deviate from the phase
space averaged data at small turn numbers are consistent with both fits beyond106 turns within
their errors. Moreover, reducing the number of angles to 9 changes the predictedD1 by a mere
1.1%.

A bit worrying is the fact (see Figure 2) that both the fittedD1 and the error of the fit are
increasing between105 and106 turns. The figure shows that this is due to a monotonically in-
creasing sliding fit ofD1 after a few thousand of turns, i.e. the Dyn.Aper. decreases less rapidly
than the linear fit does imply. Using the conjecture fit for 60 machine realization (Figure 3) re-
veals a small anti correlation betweenD1 andb which could mean that the linear relation of
Eq. 4 is based on a too simple assumption. On the other hand the figure also shows that the
fit constants and the Dyn.Aper. scaled from105 to 106, using the inverse log conjecture, have
small errors. Even though the significance of the fit parameters remains unclear the fit with two
parameters may still be useful to extrapolate the Dyn.Aper. to larger turn numbers.

To check this assumption emittance ratio scans have been extended up to106 turns for 5
different realizations of the random errors (see Figure 4). The fit involving data up to105 turns
and the tracking data for106 turns agree within the error bars of the extrapolation.

4 Chaos andD1
Since many years the chaotic boundary has been used to estimate the long–term Dyn.Aper.

(see Ref. [5]).D1 determined from the conjecture fit should agree with the onset of chaos be-
cause both quantities describe the stability boundary in phase space. Agreement of the two
independent methods would giveD1 a physical meaning at least in a heuristic manner.

It is well known that there cannot be a rigorous non–zero loss boundary over infinite
number of turns in a system with more than two degrees of freedom due to the loss of particles
in the Arnold web (see Ref.[6]). However tracking studies for various systems have clearly
shown that there always seems to be a hard core of stability in the amplitude space which is
equivalent to a non–zeroD1.

Two models have been tested: the four dimensional H´enon model and the LHC case
for which the conjecture fit is shown in Figure 1. Due to its simplicity the first model can be
tracked for a large number of angles and turn numbers (40 and107 respectively). The LHC has
been tracked for only 17 angles and106 turns which has required two weeks of CPU time of a
powerful 10 processor workstation cluster [7].

The two models are meant to be independent: the LHC is tracked at its nominal set of
tunes (Qx=63.28,Qy=63.31) while the tunes of the H´enon model are chosen so as to maximise
the chaotic regime (Qx=0.168,Qy=0.201) [8]. TheTop LeftandBottom Leftpart of figure 5
depict the Dyn.Aper. versus emittance ratio of the H´enon and LHC model respectively, each
curve corresponding to a different number of turns. The variations of the Dyn.Aper. can be
large and depend on the choice of the tunes and on the realization of the random errors. For
the phase space averaged Dyn.Aper. the conjecture fit agrees well with the tracking data in both
cases (seeTop RightandBottom Rightof Figure 5).

Chaos is detected by tracing the path of two initially close–by particles. This method
is preferred over the original one introduced by Benettin et al. [9] as in this context the most
sensitive measure is more relevant than the precise knowledge of the Lyapunov exponent.

Owing to the fact that the automatic detection of the onset of chaos is much more difficult
than the reliable but time consuming inspection by eye a new approach has been attempted. Two
different values can be automatically extracted from the tracking data: in the first method the
distance in phase space must exceed a threshold which is larger than the final separation of any
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two regular (initially close–by) particles at the end of the tracking, whereas in the second method
the motion is deemed chaotic when the slope, calculated from the evolution of the distance in
phase space in a double logarithmic scale, is outside a certain interval of slope values (for regular
motion the slope is one). In the following these techniques are called thedistanceand theslope
method respectively. For simplicity the threshold and the slope interval are kept constant but it
may be advantageous to vary them as a function of turn number.

The distance method is certainly safe due to its definition. However, it is an optimistic
estimate because weakly chaotic particles may not have enough time to separate beyond the
chosen threshold. The slope method is less precisely defined: it may be optimistic in case the
motion is so weakly chaotic that the slope is not affected but it could also be pessimistic because
it can pick up large oscillations of particles which are close to some resonance but which are
nevertheless regular. The slope method is chosen as the preferred indicator as it is usually more
pessimistic and more consistent with the inspection by eye. It should be mentioned that both
methods can be improved by using frequency analysis [10] which allows to eliminate most of
the regular oscillations from the evolution of the distance in phase space.

In the case of the H´enon model the slope method is pessimistic (Top right in Figure 5)
and very close to theD1 fit. From the above discussion it is not surprising thatD1 itself varies
widely as a function of turns. As expected the distance method is optimistic at low turn numbers.
At 107 turns, however, all three curves converge to almost the same point. It should be noted
that this behaviour has been reproduced at two other tune working points. Tab. 1 summarises
the results for all three cases.

Table 1: Results for the H´enon Model

Turn Number Qx Qy D1 Chaos (Slope Method)Chaos (Distance Method)
105 0.168 0.201 114.6 118.1 122.3
107 119.7 121.8 120.0
105 0.201 0.168 – 123.7 127.3
107 125.3 125.1 125.1
105 0.201 0.112 – 69.8 73.6
107 72.7 72.9 71.7

For the LHC the distance and the slope method are both optimistic (Bottom right in
Figure 5). The fact that the slope method is optimistic means that the Dyn.Aper. of the LHC
is determined by very weak chaotic motion. Still, at large turn numbers the chaotic boundary
determined by the latter method agrees quite well withD1.

In both models the fit ofD1 appears to be pessimistic in an intermediate turn number
regime. In fact, in all studied LHC casesD1 is a too pessimistic estimate of long–term stability.

5 Conclusion
The inverse log conjecture has been thoroughly tested for the LHC version 4. Although

doubts remain about the physical meaning ofD1 andb the fit can be used to extrapolate the
Dyn.Aper. from105 to 106 turns. There are indications that this extrapolation can be further
extended to107 turns.

The chaos andD1 border seem to converge for large turn numbers for both the H´enon
and the LHC model.
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Figure 1:Fits of Eq. 4 from102 to 105 and106 as well as the extrapolation to107 turns for one
realization of the imperfect LHC
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Figure 2:D1 determined from a cumulative fit and a sliding fit
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Figure 3:Scaled Dyn.Aper. and the conjecture fit parametersD1 andb
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Figure 5:The H́enon model – Top Left: Stable amplitude versus emittance ratio between102

and107 turns, Top Right: Survival plot, conjecture fit and chaos boundaries,
The LHC model – Bottom Left: Stable amplitude versus emittance ratio between102 and106

turns, Bottom Right: Survival plot, conjecture fit and chaos boundaries
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