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Abstract

We present a phenomenological model for the initial conditions needed in a one-


uid hydrodynamical description of ultrarelativistic nuclear collisions at CERN{

SPS. The basic ingredient is the parametrization of the baryon stopping, i.e. the

rapidity distribution, as a function of the thickness of the nuclei. We apply the

model to S + S and Pb + Pb collisions and �nd after hydrodynamical evolution

reasonable agreement with the data.
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1 Introduction

One of the main motivations of heavy ion experiments is the investigation of the

nuclear equation of state away from the ground state. However, it is very di�cult

to deduce from the �nal multi-particle state, i.e. from the experimental particle

distributions, model independent statements about the equation of state. It is

not even granted, that the time and volume available are large enough to create a

form of matter which can be described using (in�nite volume) thermodynamics.

Nevertheless, the only possibility to obtain information on the equation of state

at large temperatures and densities is via dynamical models of these collisions.

One popular approach to the dynamics of heavy ion collisions is the use of one-


uid hydrodynamics [1, 2, 3]. Hydrodynamical simulations at energies below 10 A

GeV (BEVALAC and SIS) usually start with the approaching nuclei before their

initial impact and include the initial compression. In such a treatment the nuclei

fuse to a single 
uid, implying, at zero impact parameter, a complete stopping

of equal size nuclei. At higher energies, as at the CERN{SPS, RHIC and LHC,

this is not justi�ed, and one must be able to incorporate nuclear transparency in

the description. Instead of trying to describe the production and equilibration

within hydrodynamics, one starts the calculation from initial conditions which

specify the hydrodynamic state of the system at initial time t0. Initial conditions

parametrize the production and equilibration dynamics.

The aim of this article is to present a parametrization of the initial baryon

stopping, i.e. initial baryon rapidity distribution, in terms of the thickness of the

incoming nuclei. The parametrization should be valid for all symmetric collisions

at a given cms energy. Here we concentrate on CERN{SPS collisions at
p
s � 20

GeV per nucleon. After having found such a parametrization there are only a few

additional parameters left like, e.g. the initial time. This makes the determination

of the initial state from experimental data, usually done by trial and error, less

arbitrary.

2 Baryon Stopping

The experimental net baryon rapidity distribution dNB
=dy is in general a function

of
p
s and the mass numbers A and B of the colliding nuclei. The mass numbers

determine the mean number of interactions which an individual nucleon su�ers.

The rapidity distribution of �nal free baryons, dNB
=dy (

p
s;A;B), is measured

in several experiments. However, since we want to study the evolution of the

colliding system after its formation at time t0, we need the knowledge of dNB
=dy

at t0. This information can only be obtained by models, which describe the
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Figure 1: a) Rapidity distribution of protons in p + p collisions for three di�erent

energies normalized to their maximum: Experimental data: 'x'
p
s = 4:9 GeV [4], 'o'p

s = 6:9 GeV [4], '+'
p
s = 27:5 GeV [5]; The line corresponds to the parametriza-

tion (1) described in the text.

b) Parametrization of the rapidity distribution of the initial baryons for various num-

bers of average nucleon{nucleon collisions hni normalized to the maximum. Going

from the edge to the center the lines correspond to hni = 0:1 (dotted), hni = 1 (full),

hni = 2 (dashed-dotted), hni = 4 (dashed) and hni = 8 (dotted). The line for hni = 1

is the same as the parametrization in Fig. 1a.

initial production stage of the nuclear collision well. Cascade type models may

in principle provide this information. Our approach is much simpler. All physics

of baryon stopping is included in the parametrization of dNB
=dy with the �nal

justi�cation coming from the comparison to the experiment.

To motivate our parametrization we start from what is known in p + p col-

lisions. In order to compare various collisions at di�erent energies, we use the

scaled rapidity xy = y=ymax, where y is measured in the cms frame of the col-

liding protons. In Fig. 1a we show the rapidity distribution dN=dy of protons

for three values of
p
s, plotted against xy and normalized to 1 at the maximum.

Going from lower to higher energies, the central region (y � 0) becomes more

depleted indicating increasing transparency of colliding nucleons with increasingp
s. The maximum, however, seems to stay �xed around xy = 0:85 independent

of
p
s.

In Fig. 1a we also show a parametrization of the dN=dy as we interpolate

the data to
p
s = 20 GeV as appropriate for CERN{SPS nuclear collisions. The

following consideration went into the parametrization. We compose the distribu-

tion out of two parts, one dominant in the target and the other in the projectile
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fragmentation region. The rise in dN=dy going from the center to forward (or

backward) regions is roughly exponential. Therefore we start out with two expo-

nential functions of third order polynomials:

dN

dy
=

dN
Proj

dy
(xy) +

dN
Tar

dy
(xy) = (1)h

CProj exp(ax
3

y + bx
2

y + cxy) + CTar exp(�ax3y + bx
2

y � cxy)
i
(1� x

2

y) :

The factor (1�x
2

y) is chosen to cut o� the distribution at the phase space bound-

ary. The �t in Fig. 1a is given by a = 1:5, b = 0, c = 3:0, and CProj = CTar with

values of C's determined via the normalization.

We now assume that the initial baryon rapidity distribution dNB=dy in a

nuclear collision has the same functional form as Eq. (1), but the parameters a; b

and c depend on the nuclear thickness a participating beam (target) nucleon sees

on its way through the target (beam) nucleus. The task is to �nd this dependence.

The thickness function is de�ned as

TA(~�) =

Z
dz �A(z; ~�) ; (2)

where �A(~r) is the nuclear density for a nucleus of mass number A, z is the

longitudinal and ~� the transverse variable: ~r = (z; ~�). We take a Woods-Saxon

parametrization for the nuclear density

�A(~r) =
�0

exp[(j~rj �RA)=aR] + 1
; (3)

with

RA = 1:12 fm�A
1=3 � 0:86 fm�A

�1=3 (4)

aR = 0:54 fm, and �0 = 0:17 fm�3 [7].

We expect that the stopping depends not only on the thickness but also on an

interaction strength, like the inelastic cross section. Then the natural quantity

for the parametrization of stopping is

hni(~�) = �pp TA(~�) ; (5)

where we use �pp = 32 mb, the total inelastic cross section for p+ p collisions at

SPS energy. In the Glauber model [6] hni(~�) is the average number of interactions
su�ered by a nucleon colliding with a nucleus at impact parameter ~b = ~�. The

value of �pp is not important since hni will be multiplied by adjustable parame-

ters. We should like to emphasize that hni should be considered as a reasonable
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quantity to describe the strength of stopping of a nucleon and it need not be

interpreted as the number of interactions except at the limit of small hni. In

particular, for hni = 1 we should have the same rapidity distribution as in p+ p

collisions.

We impose the following limits. Since jxyj � 1 the parameter a becomes

important at the edge of the phase space. For TA ! 1 we expect a to vanish

because the nucleons are shifted gradually to xy = 0. The limit a! 0 is achieved

by a / 1=TA. More generally we could assume power behaviour but the inverse

dependence turns out to be su�cient.

In Eq. (1) the actual stopping is expressed through the parameter b which is

zero for hni = 1 and negative for hni > 1, and should dominate for growing hni.
We use a simple ansatz b = �s (1� hni) = �s (1� �pp TA). The prefactor �s is a

�t parameter characterizing the stopping. From �ts to the experimental particle

spectra we obtain �s = 2:25. One has to keep in mind that the deduced value of

�s depends on the time evolution from initial to �nal distributions and therefore

on the equation of state which is used. Finally, the parameter c could also be

chosen to depend on the thickness. However, it turns out that we can obtain the

needed rapidity shift as a function of nuclear thickness from the hni dependence
of b(hni) alone and leave c as a constant.

We summarize the functional dependence of the parameters a; b and c on TA:

a(TA) = 1:5 (�pp TA)
�1

b(TA) = �s (1� �pp TA)

c(TA) = 3:0 : (6)

These functions (6) together with (1) form our phenomenological ansatz with the

values of the parameters determined mainly from the S + S data. In Fig. 1b we

show, with �s = 2:25 the resulting dNB=dy for several values of hni normalized

as in Fig 1a. For hni = 1 the curve is the same as in Fig. 1a. The dependence

of dNB=dy on hni shows the following limits. For hni ! 0 the parameter a(hni)
dominates and leads to a sharp rise at jxyj <� 1 which is cut down by the phase

space factor at the boundaries. Therefore dNB=dy turns to a double �-function

peaked at target and projectile rapidity. For hni ! 1, the parameter b(hni)
dominates and results in a Gaussian function for dNB=dy which narrows with

increasing hni.
Since we obtain the distribution as a function of transverse variable dNB(~�)=dy

it will be normalized to the number of nucleons per unit transverse area at ~�. To

obtain the �nal local density we must know the dependence between rapidity and

longitudinal distance z at the initial time t0. We do this by specifying the initial
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velocity pro�le by choosing a linear relation between rapidity and z:

y(�; z) = �(�)z ; vz(�; z) = tanh[�(�)z] : (7)

The local density �B(z; �) is obtained from the dNB(~�)=dy by multiplying with

(dy=dz)= cosh y where cosh y is the Lorentz contraction factor between the local

rest frame and the �xed cms frame. We will specify the initial 
ow velocity, in

particular the ~� dependence of �(�), after discussing the initial energy distribu-

tion.

3 The Initial Energy Flow and Velocity Pro-

�le

The numerical solution of the hydrodynamical equations is determined on a 2 + 1

dimensional grid in the cylindrical coordinate system ~r = (z; ~�) [3]. The frame

which we use is always the cms frame of the participating nucleons.

Since we assume azimuthal symmetry the simulation is strictly valid only for

zero impact parameter collisions. However, even the triggering to 5% of most

central events in the experiments corresponds to a considerable range in impact

parameter. It turns out that if we incorporate the full energy available in the

impact parameter zero collisions we slightly overshoot the experimental spectra.

To account for the experimental impact parameter averaging, we use e�ective

nuclear sizes, i.e. we replace the incoming nuclei A;B by Ae� = �A and Be� = �B

and �x the geometry in terms of e�ective mass numbers A
e� and B

e� . The

value of � is close to one. Our numerical algorithm for the calculation of �nal

particle spectra leads to a few per cent loss of baryon number and energy [3]. We

compensate also for these losses when �xing the value of � to be 0.9 in symmetric

collisions.

For the hydrodynamical calculation we need also the local energy density "(~r)

and the initial 
ow velocity at the initial time t0. For the energy density we follow

a similar approach as for the baryon density. We �rst parametrize the energy per

unit transverse area and unit rapidity using a Gaussian distribution in rapidity

dE(~�)

dy
= C" exp

"
�(y � y0)

2

2�2"

# h
1� (y=ymax)

2

i
; (8)

where the width �" and the normalization C" depend on the transverse coordinate

~�. The last factor is the same phase space cut-o� as imposed for the baryons

(1). Eq. (8) contains only the non-baryonic energy to which the contribution
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connected with the net baryon density will be added. The parametrization has

three unknowns (at each ~�), but only one, e.g. the width �" may be freely chosen.

The normalization C" is given by energy conservation, imposed per unit transverse

area at each value of �. The value y0 is the center of mass rapidity for nucleons

at ~�. For symmetric collision y0 = 0 in the cms frame.

It turns out that the experimental pion rapidity distribution is well reproduced

when the value of �" correlates with the baryon stopping. A larger stopping of

baryon number results in a larger stopping of energy, too. Therefore the width

of the energy distribution in rapidity space decreases with increasing nuclear

stopping. We describe this with an ansatz

�"(�) =
c"

[�ppTA(�)�ppTB(�)]
�" ; (9)

where �pp is included in order to make the denominator dimensionless. The

numbers appearing in (9) are determined from the �ts to the symmetric collision

systems: c" = 0:75, �" = 0:13.

Next we add to the energy density Eq. (9) the energy density connected with

the net baryon number. This additional energy is important at the edge of phase

space and ensures that we take into account the rest mass and the thermal energy

of every leading nucleon. We write the coordinate space density in the form

"(~�; z) =
dE(�)

dy

dy(~�; z)

dz
+ ��B(~�; z) ; (10)

where � is the energy carried by the baryon. We take � = 1:3 GeV � mnuc +Eth

where mnuc is the rest mass of a nucleon and Eth its thermal energy. Since �B is

the net baryon distribution, the energy of baryon-antibaryon pairs is included in

the �rst term.

The expansion of the matter is very sensitive on the initial velocity pro�le.

Since we consider zero impact parameter collisions with cylindrical symmetry

only, we do not expect signi�cant collective motion in transverse direction initially,

and take the velocity in the transverse direction at t0 to vanish, i.e., ~v�(t0; ~r) = 0.

In the case of the Bjorken model [10], the scaling ansatz for longitudinal

velocity is vz = z=t and initial conditions are usually de�ned on �xed proper time

�0. At �nite, albeit high collision energies, the longitudinal extent of the system

is �nite and the scaling assumption must break in the fragmentation regions.

Since we perform the numerical calculations in the center-of-mass frame of the

participating nucleons we specify the initial condition at a �xed time t0 in this

frame. On this line the scaling velocity is z=t0. Since scaling cannot hold, we have,

for convenience, chosen the linear z{dependence for rapidity instead of velocity
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Figure 2: Local baryon density �B (upper) and 
�B (lower) in the z-� plane as they

result from the parametrization. The initial distribution is for S + S collisions (left)

and Pb + Pb (right).

as given in Eq. (7). For small z this ansatz can approach the velocity pro�le of

the scaling solution. The proportionality constant is now � instead of 1=t0 of

the Bjorken model. We de�ne �
e�

0
= 1=�(� = 0) as a parameter which can be

regarded as an equilibration time scale in the same way as �0 in the scaling case.

We determine the � dependence of �(�) through the longitudinal extension

of the system, zL(�), at di�erent values of �. The � dependence arises from

the variation of the nuclear thickness in the transverse plane. The di�erence of

the longitudinal extension between the center and the edge is of the order of

�z = zL(� = 0) � zL(� = RA) � RA=
, where 
 = cosh(yA) is the Lorentz

contraction of the nucleus in the �reball rest frame. This form follows from

nuclear geometry and the assumption that formation and equilibration times are
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independent of �. We de�ne

zL(�) = z0 +

q
R2

A � �2



; (11)

where z0 is the longitudinal extension of the matter at equilibration time in the

thin disk limit. Instead of z0 we use � e�
0

as an independent parameter with the

assumption that the forward (backward) edge of the initial �reball, zL(�), moves

with the target (projectile) rapidity ycms, which, from Eq. (7) at � = 0 gives

z0 = �
e�

0 ycms �
RA



: (12)

Combining the above de�nitions one gets

�(�) =
ycms

zL(�)
: (13)

Even though the initial distributions approach zero in transverse direction as

a consequence of the �nite size of the nuclei (cf. Eq. (3)), it is still practical for the

numerical work to make them zero beyond some value of �. As a criterium we use

the mean value of interactions, hni and set the initial distributions to zero when

hni < 0:5. It is clear that even so the matter at the edge is not dense enough for

thermalization but for a �nite system we are forced to extend the calculation at

the surface to densities were the hydrodynamics cannot be justi�ed.

We show in Fig. 2 the resulting initial baryon density distributions for S + S

and Pb + Pb. The upper frames give the densities in the local comoving frame

and the lower the spatial density in the overall rest frame of the collision. The

di�erence comes from the 
 factor of the Lorentz contracted 
uid cell. The �gure

clearly shows the increase in transparency with radius. We think this is more

reasonable than using the same baryon distribution at the edge as at the center.

In this �gure the cut in hni leads to a sharp discontinuity in radial directions

near the maximum. However, this does not in
uence the dynamics, because the

pressure gradients are given by the local densities, which are small and smooth

in this region when going to larger � as seen in the two upper �gures.

In Tab. 1 we give the values of parameters which characterize the initial state.

An interesting point is that � e�
0

which is a parameter adjusted to each collision

system turns out to be rather similar in Pb + Pb and S + S collisions. This

means that the equilibration time seems to be independent of the thickness of the

nuclei.
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Table 1: Summary of parameters characterizing the collision when a QGP equation

of state is used. � and �
e�
0 are parameters adjusted to the data and explained in the

text. The rest follows from the initial parametrization. tf is the central freeze-out

time and hv�i the mean radial velocity in the rapidity range of jyzj < 0:25.

collision S + S Pb + Pb

� 0.9 0.9

�
e�

0
(fm/c) 1.2 1.3

zL(0) (fm) 3.5 3.6

cent. " (GeV/fm3) 7.1 16.7

cent. �B (fm�3) 0.59 1.94

cent. T (MeV) 244 300

R(�A) (fm) 3.15 6.25

tf (fm/c) 6.1 11.4

hv�i(jyzj < 0:25) 0.28 0.34

4 Results

We illustrate the use of the parametrization of initial conditions discussed

above by comparing with experimental data from the NA35 [11] and NA49 [9]

collaborations. We solve the hydrodynamical evolution as described in [3], where

also the treatment of the freeze-out is explained. We use isospin symmetry when

calculating the hadron spectra. The isospin corrections would somewhat reduce

the calculated p� �p spectrum in the heavy systems (e.g. Pb + Pb) but our choice

� = 0:9 probably overestimates the amount of spectator nucleons. The freeze-out

happens at a constant energy density of "f = 0:15 GeV=fm3 leading to an average

freeze-out temperature of Tf � 140 MeV. In [3] we also explain the construction

of the equation of state we use. Here we show results only for an equation of state

with phase transition to QGP at Tc = 165 MeV, labeled as EOS A in [3].

The stopping shows up mainly in the rapidity distributions. We show in Fig. 3

the distributions for negatives and proton-antiproton di�erence in a central S +

S collision. In the p� �p rapidity distribution target and projectile fragmentation

regions exhibit clear maxima, which are nicely reproduced by the calculation. The

normalization is slightly adjusted by the � parameter. The rapidity distribution

of the negatives �ts very well. Also the transverse momentum distributions of

both negatives and p� �p are reproduced reasonably well.
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Figure 3: Comparison of experimental data from S + S collisions with �nal hadron

spectra calculated using an equation of state (EOS A) with phase transition at Tc =

165 MeV. The data are taken by the NA35 collaboration [11].

Fig. 4 shows the result for Pb + Pb collisions compared with preliminary

data from the NA49 collaboration [9]. There are small deviations in the proton

distribution but the negative particle rapidity distribution is very well reproduced.

Both collisions are calculated with nearly the same parametrization, the di�erence

coming from the thickness function TA(�) only. The only slight di�erence is the

�
e�

0
= 1:2 for S + S and �

e�

0
= 1:3 for Pb + Pb. Thus the parametrization

reproduces well the stopping as a function of nuclear size. The result for p � �p

show larger deviation with faster protons in the experimental spectrum than in the

calculated result. At least part of this must come from the �nite impact parameter

range included in the measurement and leading to a larger average transparency.

In the calculation we take this into account only in the normalization through

the parameter � with practically no change in the shape of the spectrum.

The gross features of the transverse momentum data of the negative particles

are again well reproduced except for the very forward (and backward) region
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Figure 4: Comparison of experimental data from Pb = Pb collisions with �nal

hadron spectra calculated using an equation of state (EOS A) with phase transition

at Tc = 165 MeV. The data are taken by the NA49 collaboration [9] and should

be considered as preliminary. The mT -spectra of negatives and p � �p are measured

in rapidity intervals of width 0.5 centered at 2.9 (p � �p only), 3.4, 3.9, 4.4, 4.9,

5.4. For clarity the data and the calculation are successively scaled down by 10�n

(n = 0,1,2,...).

were the calculated slope is steeper than the data. The particle density at this

edge of the phase space, however, is becoming so small that the hydrodynamics

with relatively strong longitudinal 
ow can lead to an arti�cially large transverse

cooling. Thus we should not expect that hydrodynamics can describe the far

edges of fragmentation regions well.

This problem is more pronounced in the p� �p transverse distributions which

indicate that even in the central rapidity region the experimental transverse 
ow

is somewhat stronger. A possible explanations is that the equation of state is

too soft. Later freeze-out time might also enhance the 
ow e�ect on protons as
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compared to pions.

In Tab. 1 we also give numbers which characterize the freeze-out. The life-

time tf of the �reball, measured at the center, scales as expected with the size of

the �reball. We see a doubling of the lifetime going from S + S to Pb + Pb in

accordance with the doubled radius of the lead nucleus. We further give the av-

erage (radial) transverse velocity hv�i of the 
uid cells at freeze-out with rapidity

jyzj < 0:25. The result may be compared with an analysis of NA44 [12]. They

extracted from a �t to hadron data a mean transverse velocity. The result is [12]

hv�i = 0:24 � 0:10 for S + S and hv�i = 0:36 � 0:14 for Pb + Pb in agreement

with our studies. However, the NA44 obtained a higher freeze-out temperature

for Pb + Pb, Tf = 167 � 13 MeV (for S + S Tf = 142 � 5 MeV). This explains

why NA44 gets agreement with hv�i = 0:36 while we slightly underestimate the

slope in the central p� �p transverse momentum spectra.

Finally we compare our results with the related work of Schlei et al. [2]. (See

also [13] in this Volume, where a di�erent parameter set for initial conditions is

used.) The main di�erence is in the geometry of the initial �reball. The equations

of state di�er slightly. Both exhibit a phase transition to QGP, ours with Tc = 165

MeV vs. 200 MeV in [2]. In addition, the baryonic pressure in [2] is omitted.

The basic di�erences may be summarized in the following way. The calculation

in [2] starts from a small longitudinal extension, indicating large compression, and

resulting in larger initial energy density as compared to ours. At the center of the

�reball for S+S collision �i = 13:0 GeV/fm3 in [2] vs. 7.1 GeV/fm3 in our case.

For Pb+Pb the numbers are 20.4 GeV/fm3 and 16.7 GeV/fm3, respectively. At

�rst glance this looks like a di�erence in stopping but a closer inspection shows

that it is related more closely to the initial volume than to the initial velocity

distribution. This can be interpreted as a di�erence in initial time, our calculation

corresponding to a later initial time. If the energy stopping is characterized with

the fraction of thermal energy, the numbers are very similar: 0.43 (0.64) in [2] vs.

our 0.45 (0.66) for S+S (Pb+Pb). The di�erence in initial volume is related to the

longitudinal extent and our larger initial volume can be interpreted as starting

the calculation at later initial time. This shows up also as shorter lifetimes in our

calculation, 6.1 fm/c vs. 6.9 fm/c in [2] for S+S and 11.4fm/c vs. 13.5 fm/c in [2]

for Pb+Pb collisions.

5 Conclusions

A model for initial conditions was developed with a parametrization of baryon

stopping in terms of the nuclear thickness as the basic input. The same parametri-

13



zation gives a very satisfactory description of the basic features of hadron spectra

both in S + S and Pb + Pb collisions. We think that this is an improvement

compared to earlier approaches [2, 3] where the transverse dependence of stopping

was not taken into account.
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