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An action for a string and a particle with two timelike dimensions is proposed and analyzed. Due to
new gauge symmetries and associated constraints, the motion of each system in the background of the
other is equivalent to effective motion with a single timelike dimension. The quantum constraints
are consistent only in critical dimensions. For the bosonic system in flat spacetime the critical
dimension is 27 or 28, with signature (25,2) or (26,2), depending on whether the particle is massive
or massless respectively. For the supersymmetric case the critical dimensions are 11 or 12, with
signature (9,2) or (10,2), under the same circumstances. Generalizations to multi particles, strings
and p-branes are outlined.

PACS: 11.17.+y, 02.40.+m, 04.20.Jb

I. CLASSICAL PARTICLES AND STRINGS

The idea that the fundamental theory may be formu-
lated in twelve or more dimensions has been receiving
increased attention [1] - [19] . It has become apparent
that some of the extra dimensions are timelike, and thus
the issues associated with more than one timelike dimen-
sions must be addressed seriously. As a first step toward
theories with two or more timelike dimensions, in which
the traditional problems are overcome, we have proposed
a set of gauge symmetries and associated constraints, as
well as a cosmological scenario [13]. As an example we
formulated an action principle for two particles which
move freely except for a global constraint on each other’s
momenta. In this paper we generalize this type of ac-
tion principle by discussing the example of a string and
a particle in detail, and then showing how to apply the
same methods to more particles, strings and p-branes.
We discuss the quantum constraints, the emergence of
critical dimensions, and the quantum consistent sectors.
The supersymmetric generalization is outlined.

A. Reformulation of the two particles

Consider two particles described by their worldlines
xµ

1 (τ) , xµ
2 (τ). In our previous work [13] we presented

an action with appropriate gauge invariances that pro-
duced the following constraints for the momenta of the
two particles

p2
1 + m2

1 = 0, p2
2 + m2

2 = 0, p1 · p2 = 0. (1)

The two particles move freely, except for the mutual con-
straint p1 ·p2 = 0. Two orthogonal timelike momenta can-
not exist in a space with a single timelike dimension. The
extra constraint was the key for two timelike dimensions
and their interpretation given in [13]. In this section we

would like to give another formulation of the action that
leads to the same results. The new formulation is better
adapted to generalizations to strings and p-branes.

We consider the following action for two particles

S = S1(x1, A1, e1, λ2) + S2(x2, A2, e2, λ1) + λµ
1 λν

2 ηµν

S1 =
1

2

∫ T

0

dτ
[

e−1
1 (∂τxµ

1 − λµ
2A1)

2 − e1m
2
1

]

(2)

and similarly for S2, where xµ
i (τ) , Ai (τ) , ei (τ) are func-

tions of τ while λµ
i are independent of τ. Note that λµ

2

appears in S1 and λµ
1 appears in S2. As we will see, λµ

2

is determined in terms of canonical variables that belong
to particle #2, so that the presence of particle #2 influ-
ences particle #1, and vice versa. In the path integral we
integrate over the λµ

i as well as the other fields. There-
fore, in the classical theory we minimize the action with
respect to the λµ

i as well as the other fields.
The τ reparametrization invariance of Si(xi, Ai, ei, λi′ )

is independent for each i (we denote 1′ = 2 and 2′ = 1),
hence there are two reparametrizations that eventually
allow the two gauge choices ei (τ) = 1. The equations of
motion for the ei lead to two constraints

p2
i + m2

i = 0, (3)

where

pµ
i = e−1

i (∂τxµ
i − λµ

i′Ai) , ∂τpµ
i = 0 (4)

are the canonical momenta, which are conserved accord-
ing to the equations of motion for xµ

i .
The action is gauge invariant under the following two

gauge transformations with parameters Λi (τ)

δxµ
i (τ) = λµ

i′Λi (τ) , δAi (τ) = ∂τΛi (τ) . (5)

The covariant derivatives ∂τxµ
i − λµ

i′Ai may be seen as
arising from the gauging of an Abelian subgroup in the
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spirit of gauged Wess-Zumino-Witten (WZW) models.
Because of these gauge invariances, the equations of mo-
tion for Ai lead to two other constraints that help remove
degrees of freedom

λi′ · pi = 0. (6)

Finally we come to the role of the coupling term λ1 ·λ2

in the action. If it were not for this coupling term there
would be two independent Lorentz symmetries, one for
each particle. However, because of this coupling there is
a single Lorentz symmetry, in a d-dimensional space with
a metric ηµν whose signature will be determined by the
solution of all the constraints. The equations of motion
for the λi give

λµ
1 =

∫ T

0

dτ A1p
µ
1 , λµ

2 =

∫ T

0

dτ A2p
µ
2 . (7)

Since the momenta are conserved one finds

λµ
1 ∼ pµ

1 , λµ
2 ∼ pµ

2 . (8)

Therefore, the two constraints in (6) reduce to the single
constraint

p1 · p2 = 0. (9)

We have demonstrated that the new action in (2) re-
produces the same system of constraints in (1) given by
our old action. Hence, we need to introduce two time-like
dimensions and interpret them as in our previous work.
This reformulation is more elegant and permits general-
izations to strings and p-branes, as discussed below.

B. A string and a particle

Consider a string and a particle described by the a
worldsheet xµ

1 (τ, σ) and a worldline xµ
2 (τ) respectively,

and introduce the action

S = S1(x1, A1m, gmn, λ2) + S2(x2, A2, e2, λ1) + λ1 · λ2

S1 =
1

2

∫ T

0

dτ

∫

dσ
√−ggmn (∂mxµ

1 − λµ
2A1m)

× (∂nxν
1 − λν

2A1n) ηµν (10)

S2 =
1

2

∫ T

0

dτ
[

e−1
2 (∂τxµ

2 − λµ
1A2)

2 − e2m
2
2

]

The two actions S1,2 are invariant under independent
reparametrizations, hence one can choose the usual con-
formal gauge for the string

√−ggmn = ηmn, and e2 = 1
for the particle, and obtain the following constraints from
the equations of motion of gmn, e2 respectively

(D±xµ
1 )

2
= 0, p2

2 + m2
2 = 0, (11)

where

D±xµ
1 = (∂±xµ

1 − λµ
2A1±) , (12)

pµ
2 = e−1

2 (∂τxµ
2 − λµ

1A2) ,

and the ∂± derivatives are with respect to the light-
cone variables σ± ≡ τ ± σ. The equations of motion for
xµ

1 (τ, σ) , xµ
2 (τ) , in the gauges we have chosen, are

∂+ (D−xµ
1 ) + ∂− (D+xµ

1 ) = 0, ∂τpµ
2 = 0. (13)

As in the two particle case, there are additional gauge
invariances, which may be understood in the spirit of
gauged WZW models

δ1x
µ
1 = λµ

2Λ1 (τ, σ) , δ1A1m = ∂mΛ1 (τ, σ) , (14)

δ2x
µ
2 = λµ

1Λ2 (τ) , δ2A2 = ∂τΛ2 (τ) ,

and these explain the structure of the covariant deriva-
tives (gmn, e2, λ

µ
1,2 are invariant under δ1,2). The equa-

tions of motion for A1±, A2 give the constraints associ-
ated with these gauge invariances

λ2 · D±x1 = 0, λ1 · p2 = 0. (15)

Finally, the equations of motion for λµ
1,2 give

λµ
1 =

∫ T

0

dτ

∫

dσ (D+xµ
1A1− + D−xµ

1A1+) , (16)

λµ
2 =

∫ T

0

dτ A2p
µ
2 ,

Using the constraints (15) we deduce

λ1 · λ2 = 0. (17)

Since pµ
2 is conserved, one finds λµ

2 ∼ pµ
2 .

From the first equation in (15) we deduce A1± = 1
λ2

2

λ2 ·
∂±x1 which allows us to write

D±xµ
1 = ∂±xµ

1 − 1

p2
2

pµ
2 p2 · ∂±x1 , (18)

which solves the constraint λ2 · D±x1 = p2 · D±x1 = 0
explicitly, provided p2

2 6= 0. From this form one sees that
the component of xµ

1 that is parallel to pµ
2 drops out of

the string system when p2
2 6= 0. Using the Λ1 (τ, σ) gauge

invariance one may choose the gauge

p2 · x1 (τ, σ) = 2c1p
2
2τ = c1p

2
2

(

σ+ + σ−
)

, (19)

where c1 is a constant. In this gauge one has

D±xµ
1 = ∂±xµ

1 − c1p
µ
2 , A1± (τ, σ) = c1

√

p2
2/λ2

2, (20)

which leads to the simplification

λµ
1 = c1

√

p2
2/λ2

2

∫ T

0

dτ

∫

dσ (∂τxµ
1 − 2c1p

µ
2 ) . (21)

The canonical momentum density for the string is
Dτxµ

1 = ∂τxµ
1 − A1τλµ

2 = ∂τxµ
1 − 2c1p

µ
2 . Inserting this

2



in the equation above, one finds that λµ
1 is proportional

to the total conserved momentum of the string # 1

pµ
1 =

∫

dσ (∂τxµ
1 − 2c1p

µ
2 ) , (22)

and that it is orthogonal to the momentum of particle #
2. Since both λµ

1 and pµ
1 are gauge independent quanti-

ties, their relation which was derived in a specific gauge,
is also gauge invariant. Hence we have deduced that

λµ
1 ∼ pµ

1 , λµ
2 ∼ pµ

2 , p1 · p2 = 0, (23)

just as in the case of two particles of the previous section.
In the lightlike case λ2

2 = 0 = p2
2 (which is consistent

only if m2 = 0), the action S1 has no A1+A1− term, and
acquires an additional gauge symmetry beyond (14)

δ3x
µ
1 (τ, σ) = 0, δ3A1± = ±∂±Λ3 (τ, σ) . (24)

The constraint p2·D±x1 = p2·∂±x1 = 0 eliminates a com-
ponent of xµ

1 (τ, σ) not parallel to pµ
2 (this is consistent

with the gauge choice (19 ) although in this case it follows
from the constraint). The extra Λ3 (τ, σ) gauge symme-
try can be used to gauge fix A1± to A1± = ∂±γ (τ, σ)
and then use the gauge symmetry (14) to fix γ (τ, σ) so
that D±x1 and A1± take the form in ( 20). In this way
all the results above, including (23), apply in the mass-
less particle case as well, and this may be understood as
the limit in which p2

2/λ2
2 remains finite. However, in the

background of the massless particle, two string compo-
nents, rather than only one, are eliminated by the gauge
invariances: ∂±xµ

1 − c1p
µ
2 has no components along the

lightlike pµ
2 , and p2 · ∂±x1 = 0, whereas for the massive

particle these two conditions correspond to one and the
same component. This kind of phenomenon happened
also in the massless limit of the two particle case, as ex-
plained in [13].

The equation of motion for the string is easily solved
since it has the free string form

∂+∂−xµ
1 = 0. (25)

As usual, the general solution is given in terms of left and
right movers

x1µ = x
(+)
1µ

(

σ+
)

+ x
(−)
1µ

(

σ−
)

+ c1p2µτ

x
(±)
1µ

(

σ±
)

=
1

2

(

q1µ +
σ±

2π
p1µ

)

− i
∑

n6=0

1

n
α(±)

nµ einσ±

The term proportional to c1p
µ
2 τ is added to be consistent

with the definition of the total string momentum pµ
1 that

followed from the canonical formalism. The canonical
pair is (q1µ, p1µ), while the α

(±)
nµ have the usual string

oscillator commutation rules.
The equations of motion for particle #2 are also solved

easily since pµ
2 is conserved. The constraint in eq.(15),

together with the definition of pµ
2 in terms of the velocity

∂τxµ
2 give A2 (τ) = 1

λ2

1

λ1 · ∂τx2, so that

pµ
2 = ∂τxµ

2 − pµ
1

1

p2
1

p1 · ∂τx2. (26)

Using the Λ2 (τ) gauge invariance one can choose the
gauge

p1 · ∂τx2 (τ) = c2p
2
1 (27)

where c2 is a constant. In this gauge the conserved mo-
mentum of particle #2 and A2 become

pµ
2 = ∂τxµ

2 − c2p
µ
1 , A2 = c2

√

p2
1/λ2

1 (28)

This form is valid for the massive as well as massless
string states (i.e. p2

1/λ2
1 finite as p2

1 → 0, as above). The
solution of the particle equation is

xµ
2 (τ) = (pµ

2 + c2p
µ
1 ) τ + qµ

2 , (29)

showing that it moves as a free particle, except for the
orthogonality constraint p1 · p2 = 0. The canonical pair
is (qµ

2 , pµ
2 ).

By reexamining the equations for λµ
1,2 one finds that

λµ
1 = Ta1p

µ
1 , λµ

2 = Ta2p
µ
2 , (30)

where a1,2 are constant zero modes of the gauge fields
that have survived in the general solution

A1± (τ, σ) ≡ a1, A2 (τ) = a2, (31)

and that the two constants c1,2 are equal and given by
c1 = c2 = Ta1a2.

II. QUANTIZATION AND CRITICAL

DIMENSIONS

In the previous section it was shown that the parti-
cle and string systems move as free systems except for
a set of constraints. The canonical degrees of freedom
(qµ

2 , pµ
2 ), (qµ

1 , pµ
1 ), α±

nµ satisfy the first class constraints
that follow from eqs.(11,15,23)

m2 6= 0 : Φ ≡ p2
2 + m2

2 = 0, L±
n = 0, J±

0 ≡ p2 · p1 = 0,

m2 = 0 : Φ ≡ p2
2 = 0, L±

n = 0, J±
n ≡ p2 · α±

n = 0, (32)

where the Virasoro operators are

m2 6= 0 : L±
n =

1

2

∞
∑

m=−∞

α
(±)µ
n−m · α(±)ν

m

(

ηµν − p2µ p2ν

p2
2

)

m2 = 0 : L±
n =

1

2

∞
∑

m=−∞

α
(±)µ
n−m · α(±)ν

m ηµν (33)

We have used α±
0µ = p1µ, therefore the constraint J±

0 ≡
p1 · p2 = 0 is included above for m2 = 0 as well. The
second term in L±

n for m2 6= 0 could be dropped since
p2 · α±

n = 0 was taken as a gauge choice, which may be
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added as an additional constraint J±
n ≡ p2 · α±

n = 0 for
the massive case as well. This may be done classically as
well as in a lightcone quantization, as we will see below.
However, this gauge choice becomes a second class con-
straint in the massive case m2 6= 0, that is harder do deal
with in a covariant quantization (since it has an anomaly
proportional to m2

2)
[

J±
n , J±

m

]

= n Φδn+m − n m2
2δn+m. (34)

As we will see, this will play a role in the covariant quan-
tization of the system and in the determination of the
critical dimension.

It is evident from the analogous two particle problem
that there is no solution (either classical or quantum) un-
less there are two or more timelike dimensions. Assum-
ing two timelike dimensions the signature of the space
is given by ηµν = diag (−1,−1, 1, · · · , 1). Hence there
is a SO(d − 2, 2) covariance in d dimensions. d will be
determined in the quantum theory. It will be fixed to a
critical dimension dcrit = 27 for m2 6= 0, or dcrit = 28 for
m2 = 0, to eliminate quantum anomalies.

We will first solve the constraints classically and hence
we will add J±

n = 0 as a gauge choice to the massive
case as well. This solution will be used in a lightcone
quantization. Using the SO(d − 2, 2) symmetry one can
boost pµ

2 to a timelike rest frame if the mass m2 6= 0, or
to a lightlike frame if the mass m2 = 0,

p̂µ
2 =

(

m2, 0;~0, 0
)

or p̂µ
2 =

(

|p2| , 0;~0, p2

)

, (35)

where the first two entries are timelike and the rest are
spacelike. This allows the solution of three constraints in
the form

m2 6= 0 : p̂1µ = (0, p̂1I) , α̂±
µn =

(

0, α̂±
In

)

, (36)

m2 = 0 : p̂µ
1 = (0, p̂1I , 0) , α̂±

µn =
(

0, α̂±
In, 0

)

,

leaving one constraint to be solved

L±
n =

1

2

∞
∑

m=−∞

α̂±
n−m · α̂±

m = 0, (37)

where α̂±
In are the string variables in the rest frame or

lightcone frame of particle #2, and the index I labels
a subspace of signature (−1, 1, · · · , 1) whose dimension
is (d − 1) for m2 6= 0 and (d − 2) for m2 = 0. Therefore
there remains a Lorentz symmetry SO(d − 2, 1) for m2 6=
0 and SO(d − 3, 1) for m2 = 0. Note that for m2 = 0, the
solutions α̂±

µn, p̂µ
1 have no components along the lightlike

p̂µ
2 . This is due to the gauge symmetry (24) as explained

above.

A. Covariant quantization

To quantize covariantly and implement the constraints
(32) on the states one may use the BRST formalism.

The BRST procedure is valid for first class constraints.
We will pretend as if it is applies to both massless and
massive cases with the constraints Φ, L±

n , J±
n in order

to illustrate the problem with the anomaly in (34), and
will find out that this set of constraints work only for
m2 = 0. Then we will discuss separately the massive case
by dealing directly only with the first class constraints
(without the J±

n ).
Corresponding to the constraints Φ, L±

n , J±
n one in-

troduces the ghosts (B, C) , (b±n , c±n ) and (β±
n , γ±

n ) . The
algebra of the constraints and their anomalies are

[

L±
n , L±

m

]

= (n − m)L±
n+m +

d

12

(

n3 − n
)

δn+m,0

[

L±
n , J±

m

]

= −m J±
m (38)

[

J±
n , J±

m

]

= n Φδn+m − n m2
2δn+m

The BRST operator is

Q = CΦ +
∑

±

∑

n

[

c±−nL±
n + γ±

−nJ±
n

]

−1

2

∑

±

∑

n,m

(n − m) c±−nc±−mb±n+m (39)

−1

2

∑

±

∑

m

mγ±
−mγ±

mB

−
∑

±

∑

n,m

(−m) c±−nγ±
−mβ±

n+m −
∑

±

c±0 a± − CA

where a±, A are anomaly constants to be determined
by requiring Q2 = 0. By anticommuting Q with the
antighosts B, bn, βn one gets the total gauge generators
of the BRST quantized theory

Φtot = Φ − A

L(±)tot
n = L±

n +
∑

m

(n − m) b±n+mc±−m (40)

+
∑

m

(−m) β±
n+mγ±

−m − a±δn0

J (±)tot
n = J±

n + n

(

γ±
n B +

∑

m

β±
n+mc±−m

)

Requiring Q2 = 0 is equivalent to requiring the total
generators to close without anomalies. For a ghost sys-

tem of dimension h the Virasoro generator is L
(h)
n =

∑

m (n(h − 1) − m) b
(h)
n+mc

(1−h)
−m and the anomaly in its

algebra is

anom (h) = δn+m

1

12

[

n3ch + 2n
]

(41)

ch = −12h2 + 12h− 2.

Therefore the total anomaly in the algebra of L
(±)tot
n is

n3

12
(d + ch=2 + ch=1) +

n

12
(−d + 24a± + 2 + 2) (42)

4



with the total central charge

ctot = d + ch=2 + ch=1 = d − 28. (43)

The J
(±)tot
n algebra is

[

J (±)tot
n , J (±)tot

m

]

= n Φtot δn+m (44)

+n
(

A − m2
2

)

δn+m,

and
[

L(±)tot
n , J (±)tot

m

]

= −mJ
(±)tot
n+m . (45)

So the total anomaly cancels if

d = 28, a± = 1, A = m2
2. (46)

Under these conditions one finds

Φtot = p2
2 + m2

2 − A = p2
2 = 0. (47)

So, the quantum particle must be massless p2
2 = 0, and

the critical dimension for the total system is 28. The
global Lorentz symmetry of this quantum system is
SO(26, 2) . Therefore, the analysis applies correctly only
to the m2 = 0 case, as anticipated above.

For m2 6= 0 the correct treatment of the second class

constraint J
(±)
n = 0 needs more care. Since the present

model is in the class of gauged WZW models one may
imitate the BRST procedure advocated in [20] to show
that the final result is equivalent to the standard coset
construction. In the coset language our case corresponds
to G/H with G = Rd and H = R, and our Virasoro
generator in (33) is indeed the coset construction for the
conformal field theory for Rd/R. The central charge of
this Virasoro generator is d − 1, and for the quantum
consistency of the conformal field theory it must be set
equal to 26. Hence

m2 6= 0 : dcrit = 27, (48)

and the global symmetry of the system with a massive
particle #2 is SO(25, 2) .

This result may be obtained more directly without ap-
pealing to the formalism of [20]. Namely, one can avoid

the J
(±)
n = 0 gauge fixing and work directly with the

oscillators

α̃(±)
nµ = α(±)

nµ − 1

p2
2

p2µ p2 · α(±)
n (49)

since these α̃
(±)
nµ solve explicitly the original constraints

p2 · D±x1 = 0. The Virasoro constraints in (33) are
written directly in terms of these oscillators

m2 = 0 : L±
n =

1

2

∞
∑

m=−∞

α̃
(±)µ
n−m · α̃(±)ν

m ηµν , (50)

and their commutation rules are

[

α̃(±)ν
n , α̃(±)ν

m

]

= n δn+m

(

ηµν − pµ
2 pν

2

p2
2

)

. (51)

The only constraints that need to be considered are the
first class constraints L±

n = 0, Φ = p2
2 + m2

2 = 0, J0 =
p1 · p2 = 0. In the algebra of these constraints all com-
mutators are zero, except for

[

L±
n , L±

m

]

= (n − m)L±
n+m (52)

+
d − 1

12

(

n3 − n
)

δn+m,0

where the d − 1 anomaly comes from

(

ηµν − pµ
2 pν

2

p2
2

)(

ηµν − p2µ p2ν

p2
2

)

= d − 1. (53)

The BRST operator is then

Q =
∑

±

∑

n

c±−nL±
n − 1

2

∑

±

∑

n,m

(n − m) c±−nc±−mb±n+m

+CΦ + γ0J0 −
∑

±

c±0 a± (54)

and the standard procedure gives the critical dimension
d − 1 = 26.

B. Lightcone quantization

The remaining constraints in the rest frame or light-
cone frame of particle #2 are (∂±x̂I

1±)2 = 0 or L±
n = 0

of eq.( 37). These are the familiar Virasoro constraints
of string theory, which can be solved explicitly by tak-
ing advantage of the conformal invariance of the string
system and choosing the lightcone gauge x̂+

1 = p̂+
1 τ

α̂(±)−
n =

1

2p̂+
1

∞
∑

m=−∞

∑

I

α̂
(±)i
n−m α̂(±)i

m − ã

p̂+
1

δn,0, (55)

α̂(±)+
n = p̂+

1 δn,0,

The unconstrained degrees of freedom are the transverse

string oscillators ~α
(±)i
n that describe the left/right mov-

ing string excitations and the center of mass canonical
degrees of freedom for the string (q̂1, p̂1) and particle
(q̂2, p̂2), all of which are expressed in the rest frame or
lightcone frame of particle #2.

The Lorentz symmetry SO(d − 2, 1) (or SO(d − 3, 1) )
which was manifest in the special frame (35-37) is hid-
den in the lightcone gauge (55) for the string. As is well
known, the quantum algebra for the normal ordered gen-

erators M̂ IJ =
(

M̂−+, M̂ i+, M̂ i−, M̂ ij
)
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M̂−+ = q̂−1 p̂+
1 , M̂ i+ = q̂i

1p̂
+
1 ,

M̂ i− = q̂i
1p̂

−
1 − q̂−1 p̂i

1 − i
∑

±

∑

n6=0

1

n
: α̂

(±)i
−n α̂(±)−

n :, (56)

M̂ ij = q̂i
1p̂

j
1 − q̂j

1p̂
i
1 − i

∑

±

∑

n6=0

1

n
: α̂

(±)i
−n α̂(±)j

n :,

of this symmetry closes correctly only if the number
of transverse dimensions labeled by i is 24 and ã = 1
(see e.g. [21]). The number of transverse dimensions is
(d − 3) = 24 for m2 6= 0, and (d − 4) = 24 for m2 = 0.
Therefore the particle and string system has a critical
dimension

m2 6= 0 : dcrit = 27, (57)

m2 = 0 : dcrit = 28,

so the generators M̂ IJ represent correctly SO(25, 1) at
the quantum level.

The original action was invariant under the full classi-
cal rotation invariance SO(d − 2, 2) . For the critical di-
mension this classical symmetry is SO(25, 2) if m2 6= 0
and SO(26, 2) if m2 = 0. We now need to show that
the quantum theory has the higher symmetry by veri-
fying that the Lorentz algebra closes. To construct the
remaining generators of SO(25, 2) (or SO(26, 2)) we need
to boost back to the general frame of particle #2 and
include the canonical degrees of freedom of particle #2.

For the massive particle m2 6= 0 in the general frame
the mass shell constraint is solved by the SO(d − 2, 2)
covariant vector

pµ
2 =

(

E′
2, p

I
2

)

, E′
2 =

√

p2 · p2 + m2
2 (58)

where pI
2 is a SO(25, 1) vector. The boost of any vector

v̂µ =
(

v̂0′

, v̂I
)

defined in the particle rest frame (denoted

with the hats ˆ) to the vector vµ =
(

v0′

, vI
)

defined in

the particle general frame (no ˆ) is given by

v0′

=
1

m2

(

E′
2v̂

0′

+ p2 · v̂
)

,

vI = v̂I +
pI
2

m2

(

p2 · v̂
E′

2 + m2
+ v̂0′

)

(59)

where the sum over I in the dot products is SO(25, 1)
covariant in 26 dimensions. Of course, the transforma-
tion is such that dot products are SO(25, 2) invariant in
the full 27 dimensions v̂2 = v2. The string and particle
can now be described in the general frame by boosting
the rest frame solution in (35-37). Taking into account

α̂
(±)0′

n = 0 one obtains

α(±)0′

n =
p2 · α̂±

n

m2
, α(±)I

n = α̂(±)I
n +

pI
2

m2

p2 · α̂±
n

E′
2 + m2

. (60)

These are expected to form covariant SO(25, 2) vectors

α
(±)µ
n =

(

α
(±)0′

n , α
(±)I
n

)

, as will be verified below. Fur-

thermore, because of the SO(25, 2) invariance of dot

products, the fully SO(25, 2) covariant Virasoro con-
straints in (33) are equal to (37) for any pµ

2 = (E′
2, p

I
2).

Therefore, the explicit solution of these constraints is
given in terms of only the 24 transverse oscillators in

(55). Thus, the 27 components α
(±)µ
n given in (60 ) are

also expressed in terms of the 24 oscillators in (55) which
are the ones that solve all the constraints in the general
frame of the massive particle. So, for example the 0′

component is

α(±)0′

n =
1

m2

(

−p+
2 · α̂(±)−

n − p−2 p+
1 δn,0 + pi

2α
(±)i
n

)

(61)

where α̂
(±)−
n is quadratic in the 24 transverse oscillators

as given in (55).
We are now ready to construct the generators Mµν =

(

M0′I , M IJ
)

of SO(25, 2) in the general frame of the

massive particle #2. They are given by

M0′I =
1

2

(

qI
2E′

2 + E′
2q

I
2

)

+
p2JM̂JI

E′
2 + m2

(62)

M IJ = qI
2pJ

2 − qJ
2 pI

2 + M̂ IJ

where M̂ IJ , which satisfy the SO(25, 1) Lie algebra, are
given in terms of the 24 transverse string oscillators in
eq.(56). It can be checked that these Mµν satisfy the
SO(25, 2) Lie algebra without any anomalies, and fur-

thermore, that they rotate the α
(±)µ
n of (60) as vectors

[

Mµν , α(±)λ
n

]

= iηµλα(±)ν
n − iηvλα(±)µ

n . (63)

This last property is trivial for the M IJ , α
(±)K
n since it is

the same as the usual 26 dimensional string in the light-
cone gauge. The new feature is the structure of M0′I . It
can be checked that this structure automatically closes
into the higher algebra SO(25, 2) provided the M̂ IJ form
the SO(25, 1) Lie algebra.

The form of M0′I follows from rather general proper-

ties of cosets. The α
(±)µ
n are given by boosting the α̂

(±)µ
n

with a pµ
2 dependent boost

α(±)µ
n = T µ

ν (p2) α̂(±)ν
n . (64)

where T µ
ν (p2) is in the coset SO(25, 2) /SO(25, 1) .

When a general SO(25, 2) transformation is applied, it
can be rewritten as follows

α(±)µ
n → Λµ

ν α(±)ν
n = (ΛT (p2))

µ

ν α̂(±)ν
n (65)

= (T (p′2)H)
µ

ν α̂(±)ν
n

where p′µ2 = Λµ
νpν

2 , and H (p2, Λ) is an element in the
subgroup SO(25, 1) but its parameters depend on a func-
tion of both pµ

2 and Λµ
ν . When Λ is an element of

SO(25, 1) one has H = Λ, therefore the subgroup is im-

plemented on the 26 α̂
(±)I
n and pI

2 by the total particle
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and string generators M IJ . Of course, the α̂
(±)0′

n is in-
variant under this combined transformation since it is a
dot product. The remaining SO(25, 2)/SO(25, 1) coset
transformations have generators that are precisely the
M0′I given above, and they automatically take into ac-
count the complicated nature of H (p2, Λ) .

The outcome of the lightcone quantization for m2 6= 0
is a critical dimension d = 27 with signature (25, 2) , in
agreement with the covariant quantization.

The lightcone quantization for the m2 = 0 case can be
done in a similar way. One needs to boost back from the
lightcone frame of particle #2 to the general frame. It
is a straightforward exercise and there are no oscillator
ordering problems, just as in the massive case. Therefore
the critical dimension is d = 28 with signature (26, 2), in
agreement with the BRST quantization.

III. MULTI PARTICLES, STRINGS, P-BRANES

The type of action discussed in this paper can be gen-
eralized to other systems. For example for three particles

S = S1 + S2 + S3 + λ1 · λ2 + λ2 · λ3 + λ3 · λ1 (66)

where S1 (xµ
1 , A12, A13, e1, λ

µ
2 , λµ

3 ) is the action for parti-
cle #1 in the background of particles #2,3, constructed
in terms of gauge covariant derivatives

Dτxµ
1 = ∂τxµ

1 − A12λ
µ
2 − A13λ

µ
3 (67)

in the spirit of gauged WZW models. So, the coset is
Rd/R2. Similarly for the actions S2,3 which are obtained
by a cyclic permutation of the indices 1,2,3. Because of
the gauge invariances one finds constraints, and going
through a similar analysis as the two particle case one
determines λµ

i ∼ pµ
i and the constraints

pi · pj + m2
i δij = 0. (68)

The solution of this system of constraints requires 3 time-
like coordinates. In the bosonic case there seems to be no
limit on the number of particles and corresponding new
timelike dimensions, but with supersymmetry there are
hints for both sufficient and necessary reasons to have a
minimum as well as a maximum of three timelike dimen-
sions in a setting that is SO(11, 3) covariant [14] . The
structures of [14] were found to be necessary and suffi-
cient to unify type-A and type-B supersymmetries. This
unification is possible with a minimum of three timelike
dimensions and extending the general structure beyond
14 dimensions is not required by any known phenomena.
Furthermore, there seems to be an obstruction to Yang-
Mills supersymmetric systems beyond 14 dimensions [16],
thus providing a hint for a maximum of three time like
dimensions.

The same approach can be applied to a string and two
particles, with results that can be guessed from the pre-
viously discussed cases, of a string & one particle, and

three particles. The general result is that when a massive
particle is added one needs to add (0, 1) dimensions, i.e.
one timelike dimension but no spacelike dimensions, and
when a massless particle is added one must add (1, 1) , i.e.
one time plus one space dimensions. Similarly one may
substitute a membrane for a string, and so on for other
p-branes, in the case of classical p-branes. Of course,
one does not know how to solve the quantum theory that
includes membranes or p-branes, and therefore there is
no reliable statement on the number of dimensions for
which the quantum theory is consistent. However, there
are partial hints that dcrit = 11 for supermembranes [22],
therefore for the combined supermembrane & superpar-
ticle system, one may extrapolate these hints to d = 12
with signature (10, 2) if the superparticle is massive or
d = 13 with signature (11, 2) if the superparticle is mass-
less. The supersymmetry of such a system is not stan-
dard, as discussed in [23] and the next section.

Next we consider two strings, with an action S = S1 +
S2 + λ1 · λ2, where both S1,2 are string actions of the
form (10). The equations of motion and constraints for
each string can be solved, both classically and quantum
mechanically, following the same steps as sections 3,4.
But now we find new features in the quantum consistency
of the combined system. Recall that in consistent sectors
the masses of each string are given by −p2

i = Ni − 1,
where Ni are the oscillator excitation levels. Perhaps
the simplest way to arrive at the critical dimension is
to note that a quantum consistent string must have 26
dimensions after putting the other string in one of its
massive or massless states. If the second string is in a
massless state, its effect on the first string is the same as
a massless particle. Then the total number of dimensions
for string #1 has to be 28 with signature (26, 2), as we
have shown in sections 3,4. On the other hand, if the
second string is in a massive state, its effect on the first
string is the same as a massive particle, and the number
of dimensions must be 27, with signature (25, 2) . There
is also a third case when the mass of the second string
is tachyonic. Then the number of dimensions is also 27,
but with signature (26, 1) . The roles of the two strings
may be reversed and similar statements would be made
for the critical dimension of string #2. These statements
cannot be all simultaneously right in the same theory,
since the classical theory is defined with a fixed number
of dimensions for both strings. Hence, as the consistent
quantum sectors, we must select only the mass sectors
that are simultaneously consistent for both strings for a
fixed number of dimensions. The sectors are defined by
whether the masses (−p2

1, −p2
2) are simultaneously zero,

positive or negative, and evidently the only consistent
sectors are

(26, 2) : (−p2
1, −p2

2) = (0, 0)

(25, 2) : (−p2
1,− p2

2) = (+, +) (69)

(26, 1) : (−p2
1,− p2

2) = (−,−)

The (0, 0) sector which is possible in 28 dimensions has
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only one state, similarly the (−,−) sector in 27 dimen-
sions has only one state, while the (+, +) sector in 27
dimensions has an infinite number of massive states from
each string. Here we have assumed that the conformal
field theory for each string has no spectator sectors, that
is that all degrees of freedom of both strings are coupled
via the coupling λ1 · λ2. Of course, this assumption can
be modified by changing the model.

Consider a model that has one dimension for string
#1 which remains uncoupled, while all other (d1 − 1)
dimensions of string #1 are coupled to the d2 dimensions
of string #2 via λ1 ·λ2 ∼ p1 ·p2, so that d2 = (d1 − 1) . So,
string #1 has one extra dimension. We need to consider
again the values of (−p2

1,− p2
2). The mass shell conditions

in consistent sectors are now −p2
1 + p̃2 = N1 − 1 and

−p2
2 = N2 − 1, where p̃2 is the zero mode of the extra

dimension of string #1. If this dimension is compact
there would be contributions from the winding sectors
as well. In this model the sector (−p2

1,− p2
2) = (+, 0) is

consistent for d1 = 28 with signature (26, 2) and d2 =
27 with signature (25, 2) . There are an infinite number
states from string #1 and only one state from string #2.
Evidently, one can construct various consistent models
provided the sectors are selected as above.

However, it is not clear that such sectors are self con-
sistent by themselves under interactions. It is not yet
clear what interactions should be considered. If all inter-
actions defined through vertex operator products of both
strings are included, then the sectors identified above do
not seem to remain isolated from others. Perhaps one
can make sense of interactions that mix sectors of differ-
ent dimensions and signatures. More study is required
to understand such issues. These questions did not arise
for the string & particle or string & two particle systems.

IV. SUPERSYMMETRY

In a separate publication the supersymmetric version
of the superstring and a massive or massless superparti-
cle will be discussed in detail [23]. This involves a con-
struction of an action for the massive superparticle and
a more general superstring action that is invariant under
a generalized supersymmetry. Here we wish to mention
some generalities and ideas for future applications and
improvements. By extrapolating from the results of the
present paper to the supersymmetric case, one expects
critical dimensions d = 12 for m2 = 0 and d = 11 for
m2 6= 0 with a Lorentz symmetry SO(10, 2) and SO(9, 2)
respectively. Furthermore, as expected quite generally
from [5], and from discussions in [12,13,16], the general-
ized superalgebra has to be

{Qα, Qβ} = γµν
αβ p1µ p2ν , (70)

where Qα is the Majorana-Weyl spinor of SO(10, 2) or
SO(9, 2) with 32 real components. In the lightcone frame
of the massless particle #2 (as well as in the rest frame

of the massive particle #2), the remaining Lorentz sym-
metry is SO(9, 1) and the supersymmetry reduces to the
standard form of the ten dimensional type IIA. Further-
more, the superstring reduces to the usual 10 dimensional
type IIA string. By contrast, in the general frame, or in
the action, there is full covariance under SO(10, 2) or
SO(9, 2) .

We believe that the massless system m2 = 0, underlies
a supergravity theory in 12 dimensions, with bilocal fields
Φ (x1, x2) describing the string-particle system, along the
lines first suggested in [5]. This supergravity theory has
been partially realized in the special lightcone frame in
[17], but in a single Kaluza-Klein mode of the bilocal
fields Φ (x1, x2) (that is particle #2 has been frozen to
be at a fixed momentum pµ

2 ). Similar considerations for
two particles (rather than string and particle) underlie
the Yang-Mills theories in 12 dimensions, which have
also been only partially realized in a similar Kaluza-Klein
mode [7].

As has been argued in [14] the unification of type-A and
type-B supersymmetries point to a unifying supersym-
metric structure in 14 dimensions with signature (11, 3).
Some sectors of such a structure can be constructed by
considering three superparticles, or a superstring with
two superparticles, etc.. It is expected from [14], and it
has been confirmed in [16], that the three superparticle
system underlies a super Yang-Mills theory in 14 dimen-
sions. This theory has been partially constructed [15]
in a Kaluza-Klein sector in the same sense as the two
particle case (i.e. the sector in which the momenta of
two particles out of three are frozen). A superstring and
two superparticles probably underlie a supergravity in 14
dimensions that would generalize [17] to 14 dimensions.
A more general approach that includes all Kaluza-Klein
modes has been illustrated in [12] for free fields. This
approach needs to be further developed to include inter-
actions by figuring out the calculus of representations of
the new supersymmetry (70). It could then be applied to
the construction of the full 12 or 14 dimensional super-
gravity and super Yang-Mills theories in all Kaluza-Klein
sectors.
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