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Interactions of a charged particle beam with an
external system having a finite Q may lead to both growth
and damping of the coherent motion of the particles, In
the papers so far available on this subject 1),2) the
resonances when the interactions become the most intense

have not been thoroughly studied.

The present paper deals with the study of the
dynamics of the small ccherent excitations of the beam
near the resonances ©, + mw, = nwo, where © is the

K & K
natural frequency of the resonator, w,6 the betatron

5
frequency, @ the revotution frequency and m and n are
integers. In order to study the motion in the vicinity
of a resonance, one may use the averaging method, re-
garding the oscillation of the resonator field and the
beam particles as a coupled oscillator system. On the
basis of the overall characteristics of the coupling
resonances 3) instabilities can bhe expected 1o appear
only in the case of sum resonances (m > 0). 1In the
paper, estimates are made o¢. the threshold of the
appearance of instabilitice. A study of the difference
resonance is intercsting from the point of view of
obtalning rapid damping of coherent excitations. In
the paper, estimates are made or the damping constants
and the conditions are found under which interactions
prevent the transition of the energy of the coherent ex~
citations of the beam into heat. Let us take the

Hamiltonian form :
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where wié i1s the frequency. Ji the action of the betatron

oscillations, Pk-and Qk canoniecel variables of the os-
cillator field, Ak the eigenfunctions of fthe resonator,
¥ +the velocity of the particle, « the scalar potentialj
the particle co-ordinate in terms of action and phase

is expressed in the following form

Z =a cos{w,,t+ o) = / 253— cos © .
ib ‘i N
651
= o, .t + f A2 av = 4 7
b=y ACT 3 Tk

In the case of the resonance G+ MO0 =10,
it is convenient to switch to slogly changing variables
6o i - . P o
€ . k *k - 1 ~k -in,
G. = ¢, + =t + —L, q-= e kK
i i m m 5
“k
= -igt . Here = mw., + O, - non na is
p q € 0, o K o ' 2 @,

the slow phase of the synchrotron oscillations. Then,

the Hamiltonian averaged for the new variables is :

E; bl . -7 7
Bo 0, + (p ™1 - 10e™1) v(3) + v (7) (1)
m i o
where
Von 1 27 in6-im¢ 48 Q
v(J) = | | = le = v Ak e £ Lo f

; P » J 27 21
A/qu ﬁ‘2Jk

6 =0 t+ 0
o c

Hence, taking into account the friction, we obtain the

equations of motion
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where ( ) denotcs the average according to the particle

. P . ~ - o P g 4 3 .. 3 . .
distribution of the beam T = ©{J,¢,t) which satisfies

the equation
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assuming that the perturbation is small £ = fo(J)+f(J,¢

. . -imh . . . . .
and that T ~ ¢ we obtain the digpersion cquation :

_.nm o, 2 ¥ ()
BN =7 oz ) =0 (3)

where N 1g the number of particlesgs.

Let us note that because 1t is a resonance that is
being studied the ftransition te the slowly variable is
possible and therefore the kinetic cquation for the
bunched beam doces not differ from that for an unbunched
beam, First let us cxamine the solution of cquation (3)
without frequency spread of the betatron oscillations,

where the dispersion equation will bo :

(b +dx ) -e +4n) +mi (VT (3)) =0 (4)
k
the soluvion of which in the abgcnce of dissipation ig as
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By 5 " E is the frequency shift of the heam.
9

: . 2! .
Let us note that the value VS {J) is expressed
in terms of the impcdance of the resonator in the

following way :

1 2.2
. r @ A a“o; o
72 (7) ¢ 0712 3 [Vz LA & %% rawgV 237
2 ~ 2 L o “kmn 4 knmn o knm
47 maunv Ja

" The gencral solution is the superposition of normal
oscillations, and Q signifies the frequency of phase
oscillations or the frequenc& of amplitude beats. It is
easy to see that for m < 0 solutions of (5) are always
real, whereas for m > 0 , i.e, the
unstable solution is possible if e < 4l (V2'> . This

sum resonance, an

instability is referred to as dynamic.

Let us note that when m > 1 instability may
occur when the beam is of fuirly large dimcnsions, as

must alsc be the case with multi-polar instabilities.

Dissipation in the diffecrence resonance leads
to damping, whereas in the sum rcsonancc instability

occurs if

A =k <2
92+4x‘x<52<xﬁ%>

We shall call "dissipative" an instability appearing as

a result of friction, when 0% > 0. Here it should be
pointed out that the system will be unstable if at least
friction is equal to 0. If (A - kk)z << 92 the real part
of the solution of equation (4) does not differ from (5),

and the imaginary part takes the form :
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In the opposite extreme case (K - 1k) > 0 we find
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In the difference rescnancce it is interesting to study the
case where A = 0 (i.e. the case when damping of the
beam is due to the coupling with the resonator). It is
evident that the maximum damping constant of the collective
excitation of the beam is kk/2 when ?e’ <<, i.e,
gstrong coupling, and the energy of the excitation in the
absence of frequency spread is fully disgipated in the
resonator. If the coupling is weak; fe! >> !m (V2'>!,
then the damping co?stant depends on the aumber of particles
and is - ELEE—LQZE—ZE. For the schematic curves § of
A, N, see figs.gl and 2. The frequency spread of the
oscillations in the beam results in part of the energy
of the collective motlion belng changed into heat energy
of the particles. Therefore, it is interesting to investi-
gate the contribution of the spread to the speed of damping
of the collective motion., It is clear that the contri-

bution depends essentially on the relationship between the

e - SO - !Sl ™ N . R
concrent frequency ochirt ! = - — 1 + === | gnd the widtn
- + PN a ./
A . . - . \ ol S
of the distribution function v . If |0'i«<< N 2nd Lk<<C then

the character of the damping derends on the shape of the dis-
tribution function and not on the coupling with the resonator;

if lort>>s then,solving the dispersion equation (3)9 we obtain
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from which it can be seen that the contridbution of the
spread depends essentially on the behaviour of the tail
of the distribution function. With the assumptions made

above, the fraction of energy dissipated is

2!
¥ lml (VY /7 1 1N
N =2 ’ L=+ = (8)
k QQ \~6+ 5 S
: . . w'? lel )
For kk >> (0 the relation = K—* ig small and there-

fore the contribution of the spreag will also be small if

§ > p . It should be noted that the longitudinal momentum
spread for a bunched beam does not lead to Landau damping,
since fhe gpectrum of coherent oscillations 1s then dis-
crete and equidistant. It is evident that the spread can
appear only as a rosult of non-linearity of the synchrotron

oscillations and only in a synchro-betatron resonance.

In the sum resonance the imaginary part of the
solution of the dispersion equation under the condition

w!' > A is as follows

17, - lel T o o2ndE ]
(o) =3 1+ e w5 N wT e ()
& ad a(.)a/aJ

from which it is easy to obtain the stability condition

for (A - xk) << Q
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It can be seen from (9) that the spread may not only
stabilise the dissipative instability but also leads

to anti-damping, which can also appear when Rk = A =0

The physical significance of this instability is
easy to understand from formulsa (9) : the particles of
the tail of the distribution function remove energy from
the resonator, when they are in the resonance, and the
main part of the beam then damps or grows as 1f there
was friction in the resconator. However, it should be

noted that the energy of the resonator beam system does

not vary.

In the gencral case, the boundary of the stable
region is easy to find in the absence of self-phasing
in the azimuthal direction and assuming a spread ounly

on the limiting pulses we have

1
-~ m N (V2 Syoe (01) = 0

@ ’ (ll>

t 3oy 1
E4o' +m T (VO ( ar f(T)elw -0

e}

The schematic curve of the stable region is given in Fig.

The distribution function is single-humped and symmeiric,
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In conclusion, we should like to point out that
the character of the dependence of the spez=d of damping
or growing is a function of the number of particles N and

depends essentially on the coupling coefficient

N m gl (V2
E2

decrement ~ N, if it is large then, in the sum resonance,

i.e. 1if it is small the incrcement and

the increment ~ ./ N and in the difference resonance,
the maximum decrement is A/2 . If Landau anti-damping
does not take place, then for a small coupling coefficient

the decrement ~ N2 .
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FIGURE CAPTIONS

Fige 1. Damping constant of coherent cscillations in a difference

resonance when A = 0

Fige 2. Damping constant of coherent oscillation in a difference

resonance depending on the number of particles in the beam,
Fige 3. The unshaded portion represents a stable region corresponding

to condition (11). The dotted line shows the boundary curve

for SI<82-
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