

TRANSVERSE COHERENT RESONANCE EFFECTS IN STORAGE DEVICES
by

Ya.S. Derbenev, N.S. Dikanskij

Novosibirsk - 1968
Translated at CERN by A.T. Sanders
Revised by N. Mouravieff
(Oririn=1 : Russian)
(CERN Trans. 69-15)

Geneva
May 1969

Interactions of a charged particle beam with an external system having a finite Q may lead to both growth and damping of the coherent motion of the particles. In the papers so far available on this subject 1), 2) the resonances when the interactions become the most intense have not been thoroughly studied.

The present paper deals with the study of the dynamics of the small coherent excitations of the beam near the resonances $\omega_{K}+m \omega_{\delta}=n \omega_{O}$, where ω_{K} is the natural frequency of the resonator, ω_{δ} the betatron frequency, ω_{0} the revolution frequency and m and n are integers. In order to study the motion in the vicinity of a resonance, one may use the averaging method, regarding the oscillation of the resonator field and the beam particles as a coupled oscillator system. On the basis of the overall characteristics of the coupling resonances 3) instabilities can be expected to appear only in the case of sum rusonances ($m>0$). In the paper, estimates are made of the threshold of the appearance of instabilitics. A study of the difference resonance is interesting fwom the point of view of obtaining rapid damping of coherent excitations. In the paper, estimates are made of the damping constants and the conditions are found under which interactions prevent the transition of the energy of the coherent excitations of the bean into heat. Let us take the Hamiltonian form :

$$
H=\omega_{i \delta} J_{i}+\sum_{K} \frac{P_{K}^{2}+\omega_{K}^{2} Q_{K}^{2}}{2}-e o_{K} \vec{A}_{K} \vec{V}+e Q_{Q}
$$

where $w_{i \delta}$ is the frequency, J_{i} the action of the betatron oscillations, P_{k} and Q_{k} canonical variables of the oscillator field, A the eigenfunctions of the resonator, \vec{V} the velocity of the particle; on the scalar potential; the particle co-ordinate in terms of action and phase is expressed in the following form:

$$
\begin{aligned}
& Z=a \cos \left(\omega_{i \delta} t+\varphi_{i}\right)=\sqrt{\frac{2 J_{i}}{m \theta_{\delta i}}} \cos \varphi \cdot \\
& \psi=\omega_{i \delta} t+\varphi_{i} . \quad \int A_{k}^{2} d v=4 \pi
\end{aligned}
$$

In the case of the resonance $\omega_{k}+m{ }^{(0)}=n \omega_{0}$ it is convenient to switch to slowly changing variables $\phi_{i}=\psi_{i}+\frac{\varepsilon}{m} t+\frac{n_{c}}{m} \cdot q=\frac{0_{k} Q_{k}-i P_{k}}{\sqrt{20} e_{k}} e^{-i \omega_{k} t}$, $p=-i q t$. Here $\varepsilon=m \omega_{i \delta}+\omega_{k}-n_{0}$, and φ_{c} is the slow phase of the synchrotron oscillations. Then, the Hamiltonian averaged for the now variables is :

$$
\begin{equation*}
H=\frac{\varepsilon_{i}}{m} J_{i}+\left(e^{i m \phi_{i}}-i q e^{-i m \phi_{i}}\right) V(J)+V_{0}(J) \tag{I}
\end{equation*}
$$

where

$$
\begin{array}{r}
V(J)=\left\lvert\, \frac{V m n}{\sqrt{2\left(\omega_{k}\right.}\left|=1 e \frac{1}{\sqrt{2()_{k}}} \int \vec{V} \vec{\Lambda}_{k} e^{i n \theta-i m \psi} \frac{d \theta}{2 \pi} \frac{d \psi}{2 \pi}\right|}\right. \\
\theta=\omega_{0} t+\omega_{c}
\end{array}
$$

Hence, taking into account the friction, we obtain the equations of motion :

$$
\begin{align*}
& \dot{p}=\left\langle i 0^{\operatorname{ing} \phi} V(J)\right\rangle-\lambda_{h} p \tag{2}\\
& \dot{q}=\left\langle e^{i \operatorname{mo}} V(J)\right\rangle-\lambda_{k}{ }^{4}
\end{align*}
$$

where < > denotes the averase according to the particle distribution of the bean $P=H(U, \phi, t)$ wich satisfies the equation:

$$
\frac{\partial \hat{I}}{\partial t}+\{X ; i\}=0
$$

assuming that the perturbation is small $f=f_{0}(J)+\tilde{f}(J, \phi, t)$ and that $\tilde{\tilde{I}} \sim 0^{-i o t}$ we obtain the disporsion equation :

$$
\begin{equation*}
I=\frac{m N}{\omega+i \lambda_{E}}\left\langle\frac{\partial}{\partial J} \frac{V^{2}(J)}{\omega-\varepsilon}\right\rangle=0 \tag{3}
\end{equation*}
$$

where \mathbb{N} is the number of particles.

Let us note that because it is a resonance that is being studied the transition to the slowly variable is possible and therefore the kinetic equation for the bunched beam docs not differ from that for an unbunched beani. First let us examine the solution of equation (3) without frequency spread of the botatron oscillations, where the dispersion equation will be :

$$
\begin{equation*}
\left(0+i \lambda_{k}\right)(0-\varepsilon+i \lambda)+m \mathbb{N}\left\langle V^{21}(J)\right\rangle=0 \tag{4}
\end{equation*}
$$

the solution of which in tho aboonco of dissipation is as follows :

$$
\begin{equation*}
\omega_{ \pm}^{i}=\left(\omega_{1,2}^{\prime}-\varepsilon\right)=-\frac{\varepsilon}{2} \pm \sqrt{\frac{\varepsilon^{2}}{4}-\operatorname{miv}\left\langle V^{2}(J)\right\rangle}=-\frac{\varepsilon}{2} \pm \frac{\Omega}{2} \tag{5}
\end{equation*}
$$

PS/7184
$0_{1,2}-\varepsilon$ is the Irequency shift of the bean.
Let us note that the value $\mathrm{V}^{2 \prime}(J)$ is expressed in terms of the irpedance of the resonator in the following way:

$$
V^{2 \prime}(J)=\frac{r_{e} \omega_{0}^{2} \lambda_{12}}{4 \pi^{2} \omega_{\delta} \omega_{n} \gamma} \frac{\partial}{\partial a^{2}}\left[v_{0}^{2} z_{k m n}^{y y}+\frac{a^{2} \omega_{\delta}^{2}}{4} z_{k m n}^{z z}+a \omega_{\delta} V_{o} z_{k n m}^{y z}\right]
$$

The general solution is the superposition of normal oscillations, and Ω signifies the frequency of phase oscillations or the frequency of amplitude beats. It is easy to see that for $m<0$ solutions of (5) are always real, whereas for $m>0$, i.e. the sum resonance, an unstable solution is possible if $\varepsilon^{2}\left\langle 4 \mathrm{mN}\left\langle\mathrm{V}^{2}\right\rangle\right.$. This instability is referred to as dynamic.

Let us note that when $m>1$ instability may occur when the beam is of fairly large dinensions, as must also be the case with multi-polar instabilities.

Dissipation in tho difference resonance leads to damping, wihereas in the sum resonance instability occurs if:

$$
\Omega^{2}+4 \lambda_{k} \lambda<\varepsilon^{2}\left(\frac{\lambda_{k}-\lambda}{\lambda_{k}+\lambda}\right)^{2}
$$

We shall call "dissipative" an instability appearing as a result of friction, when $\Omega^{2}>0$. Here it should be pointed out that the system will be unstable if at least friction is equal to 0 . If $\left(\lambda-\lambda_{k}\right)^{2} \ll \Omega^{2}$ the real part of the solution of equation (4) does not differ from (5), and the imaginary part takes the form :

$$
\begin{equation*}
\operatorname{Im}(-\omega)=\frac{\lambda}{2}\left(I \pm \frac{\Lambda_{1}!}{\Omega}\right)+\frac{\lambda_{k}}{2}\left(I+\frac{!_{\varepsilon}!}{\Omega}\right) \tag{6}
\end{equation*}
$$

In the opposite extreme case $\left(\lambda-a^{2}>\Omega^{2}\right.$ we find:

$$
\begin{aligned}
\left(\omega_{12}-\varepsilon\right)=-\frac{\varepsilon}{2} \pm \varepsilon\left(1-\frac{m N\left\langle V^{2}\right\rangle}{\left(\lambda-\lambda_{k}\right)^{2}}\right) & -i\left[\frac{\lambda+\lambda_{k}}{2} \pm\left(\frac{1 \lambda-\lambda_{k} \mid}{2}\right.\right. \\
& \left.+\frac{m N\left\langle V^{2}\right\rangle}{\left(\lambda-\lambda_{k}\right)^{2}}\right]
\end{aligned}
$$

In the difference resonance it is interesting to study the case where $\lambda=0$, (i.e. the case when damping of the beam is due to the coupling with the resonator). It is evident that the maximum damping constant of the collective excitation of the beam is $\lambda_{k} / 2$ when $\varepsilon^{\prime} \ll \Omega$, i.e. strong coupling, and the energy of the excitation in the absence of frequency spread is fully dissipated in the resonator. If the coupling is weak, ${ }^{\prime} \varepsilon{ }^{\prime} \gg N\left|m\left\langle V^{2}\right\rangle\right|$, then the damping constant depends on the number of particles and is $\frac{N \lambda k m\left\{\left\langle V^{2}\right\rangle \mid\right.}{\varepsilon^{2}}$. For the schematic curves δ of $\lambda, N_{\text {g }}$ see figs. 1 and 2. The frequency spread of the oscillations in the beam results in pert of the energy of the collective motion being changed into heat energy of the particles. Therefore, it is interesting to investigate the contribution of the spread to the speed of damping of the collective motion. It is clear that the contribution depends essentially on the relationship between the conerent erequency wilt $\sigma_{ \pm}^{\prime}=\frac{\square}{2}\left(\frac{-1-}{\Omega}\right)$ and the width of the distribution Iunction $\{$ If the character of the damping depends on the shape of the distribution function and not on the coupling with the resonator; if $\mid \omega^{\prime}!\gg \Delta$ then, solving the dispersion equation (3), we obtain :

$$
\begin{equation*}
\delta^{ \pm}=\frac{\left|\omega^{\prime}\right|}{\Omega}\left[\lambda_{k}+\pi N^{\prime} m\left|\left(-V^{2} \frac{\partial f_{0}}{\partial J}\right)\right|_{J=} \frac{\omega^{\prime}}{\partial \omega_{\delta} / \partial J}\right] \tag{7}
\end{equation*}
$$

from which it can be seen that the contribution of the spread depends essentially on the behaviour of the tail of the distribution function. With the assumptions made above, the fraction of energy dissipated is :

$$
\begin{equation*}
\eta=\lambda_{k} \frac{N|m|\left\langle V^{21}\right\rangle}{\Omega^{2}}\left(\frac{I}{\delta^{+}}+\frac{I}{\delta^{-}}\right) \tag{8}
\end{equation*}
$$

For $\lambda_{k} \gg \Omega$ the relation $\frac{\omega^{\prime}}{\delta}=\frac{l_{\varepsilon}!}{\lambda_{k}}$ is small and therefore the contribution of the spreat will also be small if $\delta \gg L$. It should be noted that the longitudinal momentum spread for a bunched beam does not lead to Landau damping, since the spectrum of coherent oscillations is then discrete and equidistant. It is evident that the spread can appear only as a rosult of non-linearity of tine synchrotron oscillations and only iri a synchro-betatron resonance.

In the sum resonance the imaginary part of the solution of the dispersion equation under the condition $\omega^{\prime} \gg \Delta$ is as follows :
$\operatorname{Im}(-\omega)=\frac{1}{2}\left(1 \mp \frac{L \varepsilon!}{\Omega}\right) ;\left[\lambda_{k}-\frac{\pi N}{\partial \omega_{\delta} / \partial J}\left(V^{2}!\frac{\partial f^{\prime}}{\partial J}!\right)!J=\frac{\omega^{\prime}}{\partial \omega_{\delta} / \partial J}\right]$
from which it is easy to obtain the stability condition for $\left(\lambda-\lambda_{k}\right) \ll \Omega$

$$
\begin{aligned}
& +\left.\frac{\pi N}{\partial \omega_{\delta}}\left(V^{2}, \frac{\partial f o}{\partial J} 1\right)\right|_{J=} \frac{\omega^{\prime}}{\frac{\partial \omega^{\prime} \delta}{\partial J}}
\end{aligned}
$$

It can be seen from (9) that the spread may not only stabilise the dissipative instability but also leads to anti-damping, which can also appear when $\lambda_{k}=\lambda=0$.

The physical significance of this instability is easy to understand from formula (9) : the particles of the tail of the distribution function remove energy from the resonator, when they are in the resonance, and the main part of the beam then damps or grows as if there was friction in the rescnator. However, it should be noted that the energy of the resonator beam system does not vary.

In the general case, the boundary of the stable region is easy to find ir the absence of self-phasing in the azimuthal direction and assuming a spread only on the limiting pulses we have

$$
\begin{gather*}
\therefore-\pi m \mathbb{N}\left\langle V^{2}\right\rangle \rho\left(\omega^{\prime}\right)=0 \\
\varepsilon+\omega^{\prime}+m \mathbb{N}\left\langle V^{2}\right\rangle \int_{0}^{\infty} d \tau f(\tau) e^{i \omega^{\prime} \tau}=0 \tag{11}
\end{gather*}
$$

The schematic curve of the stable region is given in Fig. 2. The distribution function is single-humped and symmetric.

In conclusion, we should like to point out that the character of the deperdence of the speed of damping or growing is a function of the number of particles N and depends essentially on the coupling coefficient $\frac{N m h k!\left\langle v^{2}\right\rangle \mid}{2}$ i.e. if it is small the increment and decrement $\sim \mathbb{N}$, if it is large then, in the sum resonance, the increment $\sim \sqrt{N}$ and in the difference resonance, the maximum decrement is $\lambda_{k} / 2$. Is Landau anti-damping does not take place, then for a small coupling coefficient the decrement $\sim N^{2}$.

REFERENCES

1. N.S. Dikanskij et al. "Atomnaya Energiya". vol. 22. 3. 188. (1966)
2. V.P. Bolbekov, L.A. Kolomenskij. "Atomnaya Energiya". vol. 20. 3. 270. (1966)
3. A.A. Kolomenskij, A.N. Lebedev, "Theory of cyclic accelerators", (1962)

FIGURE CAPTIONS

Fig. I. Damping constant of coherent oscillations in a difference resonance when $\lambda=0$

Fig. 2. Damping constant of coherent oscillation in a difference resonance depending on the number of particles in the beam.

Fig. 3. The unshaded portion represents a stable region corresponding to condition (11). The dotted line shows the boundary curve for $\varepsilon_{1}<\varepsilon_{2}$.

