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ABSTRACT

We study the transformation under the full String Theory duality group of
the observable charges (including mass, angular momentum, NUT charge,
electric, magnetic and different scalar charges) of four dimensional point-
like objects whose asymptotic behavior constitutes a subclass closed under
duality.

We find that those charges fall into two complex four-dimensional represen-
tations of the duality group. T duality (including Buscher’s transformations)
has an O(1, 2) action on them and S duality a U(1) action. The generalized
Bogomol’nyi bound is an U(2, 2)-invariant built out of one representations
while the other representation (which includes the angular momentum) never
appear in it. The bound is manifestly duality-invariant.

Consistency between T duality and supersymmetry seems to require that pri-
mary scalar hair is included in the generalized Bogomol’nyi bound. We also
find that all known four-dimensional supersymmetric massless black holes
are the T duals in the time direction of the usual massive supersymmetric
black holes. Non-extreme massless “black holes” can be found as the T duals
of the non-extreme black holes. All of them have primary scalar hair and
naked singularities.
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Introduction

Black-hole physics is probably the only non perturbative problem in gravity
in which non trivial progress has recently been made owing to the different
perspective afforded by “string dualities” (for a recent review see e.g. [1]).

In a previous work [2] a systematic analysis was made of the behavior
of asymptotic charges under T duality (see e.g. [3, 4] for four-dimensional
non-rotating black holes5.

The main goal of the present work is to extend their results, by essentially
widening the class of metrics considered both by allowing a more general
asymptotic behavior and by including more non-trivial fields. This simul-
taneously widens the subgroup of the duality group that acts on that class
preserving the asymptotic behavior.

Therefore, we will define the asymptotic behavior considered (“TNbh”)
and we will identify the subgroup that preserves it (the “ADS”). We will find
that the charges naturally fit in multiplets under the action of this subgroup
and that the Bogomol’nyi bound can be written as a natural invariant of this
subgroup. This was to be expected since duality transformations in general
respect unbroken supersymmetries, but, since duality transformations in gen-
eral transform conserved charges that appear in the Bogomol’nyi bound into
non-conserved charges (associated to primary scalar hair) that, in principle,
do not, the consistency of the picture will require us to include those non-
conserved charges into the generalized Bogomol’nyi bound. A by-product of
our study will be the identification of the known supersymmetric massless
black holes as the T duals in the time direction of the usual supersymmetric
massive black holes. These are our main results.

One of the motivations for this work was to try to constrain the angular
momentum of black holes using duality and supersymmetry in such a way
that the extreme limit would never be surpassed. As it is well known the
striking difference between the black-hole extremality bound and the super-
symmetry (or Bogomol’nyi) bound: although teh angular momentum appears
in the extremality bound, it does not enter the supersymmetry bound. This
difference is even more surprising in view of the fact that in presence of only
NUT charge (that is, for some stationary, non-static, cases) both bounds still
coincide; the NUT charge squared must simply be added to the first mem-
ber in the two bounds [5]. On the other hand, it is also known that some
T duality transformations seem to break spacetime supersymmetry making

5Since some of the objects studied are singular, as opposite to black holes with a regular
horizon, the name black hole will be used in a generalized sense for (usually point-like)
objects described by asymptotics such that a mass, angular momentum etc. can be assigned
to them.
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it non-manifest [6]. These two facts could perhaps give rise to an scenario in
which extremal Kerr-Newman black holes (which are not supersymmetric)
could be dual to some supersymmetric configuration. At the level of the
supersymmetry bounds one would see the angular momentum transforming
under a non-supersymmetry-preserving duality transformation into a charge
that does appear in the supersymmetry bound (like the NUT charge). In
this way, the constraints imposed by supersymmetry on the charge would
constraint equally the angular momentum.

Although this scenario has been disproved by the calculations that we
are going to present6 the transformation of black-hole charges and the corre-
sponding Bogomol’nyi bounds under general string duality transformations
remains an interesting subject in its own right and its study should help us
gain more insight into the physical space-time meaning of duality.

Thus, in the sequel, the transformation of asymptotic observables (as mul-
tipoles of the metric or of other physical fields) of four-dimensional “black
holes” under the T duality and S duality groups will be systematically ana-
lyzed, from the four-dimensional effective action point of view7.

We are going to consider for simplicity a consistent (from the point of
view of the equations of motion and of the supersymmetry transformations)
truncation8 of the four-dimensional heterotic string effective action includ-
ing the metric, dilaton and two-form field plus two Abelian vector fields.
This truncation is, however, rich enough to contain solutions with 1/4 of the
supersymmetries unbroken [9, 7].

Since all the configurations we are going to consider are stationary and
axially symmetric, the theory can be reduced to two dimensions were the
T dualities due to the presence of isometries in four dimensions become evi-
dent. This we will do in Section 1 getting manifest O(2, 4) due to the presence
of the two Abelian vector fields in four dimensions [10]. We will also find the
S duality transformations in their four-dimensional form.

Then, in Section 2 we will define the asymptotic behavior of those fields in
the configurations we are interested in: (charged, rotating) black holes, Taub-
NUT metrics etc. which are stationary and axially-symmetric. This class of
asymptotic behavior will be referred to as TNbh asymptotics. Any config-
uration in this class will be characterized by a set of parameters (charges)
such as the electric and magnetic charges with respect to the gauge fields,

6In fact, the angular momentum is part of a set of charges which transform amongst
themselves under duality and never appear in the Bogomol’nyi bound.

7The transformation of some of the charges we are going to consider here was studied
previously in Refs. [7, 8]. Here we will extend that study to other sets of charges.

8This truncation is also invariant under duality transformations in the compact six-
dimensional space directions.
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the ADM mass, the angular momentum, the NUT charge and some other
charges forced upon us by duality.

The rest of the paper is organized as follows: In Section 3 we study the
transformation of the charges under different elements of the T and S duality
groups and show explicitly the transformations that preserve TNbh asymp-
totics including the effect of constant terms in the asymptotics of the vector
fields (Section 3.4). In Section 4 we define the Asymptotic Duality Subgroup
as the subgroup of the duality group that preserves TNbh asymptotics and
study the transformation of the Bogomol’nyi bound under duality. We will
find full agreement with the preservation of unbroken supersymmetry if we
admit the presence of primary scalar hair in the generalized Bogomol’nyi
bound. We illustrate this with several examples in Section 4.3 where we also
find that the known massless supersymmetric black holes are the T duals of
the common massive supersymmetric ones. Section 5 contains our conclu-
sions.

1 The Derivation of the Duality Transforma-

tions

In this paper we are going to consider a consistent truncation of the four-
dimensional heterotic string effective action in the string frame including the
metric, axion 2-form and two Abelian vector fields given by9:

S =
∫
d4x

√
|ĝ| e−

ˆφ
[
R(ĝ) + ĝµ̂ν̂∂µ̂φ̂∂ ν̂φ̂−

1
12
Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂ − 1
4
F̂ I

µ̂ν̂F̂
Iµ̂ν̂
]
,

(1.1)
where I = 1, 2 sums over the Abelian gauge fields ÂI µ̂ with standard field
strengths

F̂ I
µ̂ν̂ = 2∂[µ̂Â

I
ν̂] . (1.2)

and the two-form field strength is

Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂] −
3
2
F̂ I

[µ̂ν̂Â
I
ρ̂] . (1.3)

Before proceeding, an explanation of the origin of this action is in or-
der. This action can be obtained from the ten-dimensional heterotic string

9Our signature is (−,+,+,+). All hatted symbols are four-dimensional and so µ̂, ν̂ =
0, 1, 2, 3. The relation between the four-dimensional Einstein metric ĝEµ̂ν̂ and the string-

frame metric ĝµ̂ν̂ is ĝEµ̂ν̂ = e−φ̂ĝµ̂ν̂ .
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effective action by first considering only the lowest order in α′ terms (so the
Yang-Mills fields and R2 terms are consistently excluded), then compactify-
ing the theory on T 6 to four dimensions following essentially Ref. [10] and
afterwards setting to zero all the scalars and identifying the six Kaluza-Klein
vector fields with the six vector fields that come from the ten-dimensional
axion. This last truncation is done in the equations of motion and it is
perfectly consistent with them and with the supersymmetry transformation
rules. The result of this truncation is the action of N = 4, d = 4 supergravity
[11] in the string frame and with the axion 2-form. Setting to zero four of
the six vector fields one gets the above action.

The above action is invariant under Buscher’s T duality transformations
in the six compact directions because these interchange the vector fields
whose origin is the ten-dimensional metric with the the vector fields whose
origin is the ten-dimensional axion and we have identified these two sets of
fields. There are still some trivial T duality transformations which corre-
spond to rotations in the internal compact space. They correspond to global
O(2) rotations of the two vector fields (O(6) rotations in the full N = 4
supergravity theory).

The reason why we consider two vector fields instead of six or just one is
that the generating solution for black-hole solutions of the full N = 4, d = 4
theory only needs two non-trivial vector fields. Starting from this generating
solution and performing T duality transformations in the compact space and
S duality transformations (to be described later) which do not change the
Einstein metric one can generate the most general black-hole solution (if the
no-hair theorem holds). Also, the minimal number of vector fields required
in this theory for allowing solutions with 1/4 of the N = 4 supersymmetries
unbroken, is two [9, 7].

As announced in the Introduction, it will be assumed that the metric
has a timelike and a spacelike rotational isometry10. The former is phys-
ically associated to the stationary (but not static, in general) character of
the spacetime and the other to the axial symmetry11. They comute with
each other and, thus, one can find two coordinates, in this case the time t
and the angular variable ϕ, adapted to them, such that the background does
not depend on them. This, then, implies that the theory can be dimension-
ally reduced. Using the standard technique [12] the resulting dimensionally
reduced, Euclidean, action turns out to be

10The action of rotational isometries has fixed points, while translational isometries act
with no fixed points.

11The axis corresponds obviously to the set of fixed points of the isometry.
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S =
∫
d2x

√
|g| e−φ

[
R(g) + gµν∂µφ∂νφ+ 1

8
Tr∂µM∂µM−1

(1.4)

−1
4
W i
µν(M

−1)ijW
jµν
]
,

Now the spatial indices µν = 2, 3 for simplicity and we also have internal
indices α, β = 0, 1. The two-dimensional fields are the metric gµν , six vector
fields Kiµ = (K(1)α

µ, K
(2)

αµ, K
(3)I

µ) with the standard Abelian field strengths

W i
µν (i = 1, . . . , 6) and a bunch of scalars Gαβ, B̂αβ, Â

I
α that appear com-

bined in the 6× 6 matrix Mij. They are given by

Gαβ = ĝαβ , φ = φ̂− 1
2

log | detGαβ | ,

K(1)α
µ = ĝµβ(G−1)βα , Cαβ = 1

2
ÂIαÂ

I
β + B̂αβ ,

gµν = ĝµν −K(1)α
µK

(1)β
νGαβ , K(3)I

µ = ÂIµ − ÂIαK(1)α
µ ,

K(2)
α µ = B̂µα + B̂αβK

(1)β
µ + 1

2
ÂIαK

(3)I
µ ,

(1.5)
and

(Mij) =


G−1 −G−1C −G−1AT

−CTG−1 G+ CTG−1C +ATA CTG−1AT +AT

−AG−1 AG−1C +A I2 +AG−1AT

 , (1.6)

A being the 2× 2 matrix with entries ÂIα. If B stands for the 2× 2 scalar
matrix (B̂αβ), then the 2× 2 scalar matrix C is given by

C = 1
2
ATA+B . (1.7)

Any explicit contribution from the three-form automatically vanishes in
two dimensions, which explains why it does not occur in Eq. (1.4). On the
other hand, the dynamics of a two-dimensional vector field is trivial12 and
this seems to suggest that we can safely ignore it. However, the correct
procedure to eliminate the vector fields is to solve their equation of motion

12The equation of motion of a two-dimensional vector field implies that the single inde-
pendent field-strength component is a constant.
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and then substitute the solution into the equations of motion of the other
fields. The equations of motion for the vector fields in the action above tell
us that the components of the fields (M−1)ijW

j
µν are constant. In Ref. [13]

the constants were chosen to be zero by setting the vector fields themselves
to zero, which can be consistently done at the level of the action. This is
obviously an additional restriction on the backgrounds considered13. This
restriction was also made (in the purely gravitational sector) in the original
paper by Geroch [14] and it has been done in all the subsequent literature on
this subject in the form proposed in Refs. [15] where it was expressed as the
requirement that the background possess “orthogonal insensitivity”, i.e. it is
invariant under (t, ϕ)→ (−t,−ϕ).

This restriction is crucial to obtain an infinite-dimensional algebra of
invariances of the equations of motion of the two-dimensional system. As
we are going to explain, though, in this paper we are not interested in the
infinite-dimensional algebra but only in its zero-mode subalgebra and so we
will not impose this restriction. Nevertheless, all the configurations that we
will explicitly consider will obey it.

1.1 T Duality Transformations

The matrix M satisfies MLML = I6, with

L ≡

 0 I2 0
I2 0 0
0 0 I2

 . (1.8)

It can be immediately seen from Eq. (1.4) that the dimensionally reduced
action, is invariant under the global transformations given by

M→ Ω M ΩT , Kiµ → Ωi
j K

j
µ , (1.9)

if the transformation matrices Ω satisfy the identity

Ω L ΩT = L . (1.10)

The matrix L given in Eq. (1.8) can be diagonalized and put into the form
η = diag(−,−,+,+,+,+) by a change of basis associated to the orthogonal
matrix ρ:

ρ L ρT = η , ρ =
1
√

2

 I2 −I2 0
I2 I2 0

0 0
√

2I2

 , ρ ρT = I6 , (1.11)

13Other choices could lead to two-dimensional cosmological terms.
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where now η is the diagonal metric of O(2, 4;R) which implies that the Ω’s
are O(2, 4;R) transformations in a non-diagonal basis. The transformations
in the diagonal (Ωη) and non-diagonal basis are related by

Ωη = ρ Ω ρT , Ωη η ΩT
η = η . (1.12)

This symmetry group corresponds to the classical T duality group. From
the quantum-mechanical point of view, O(2, 4;R) is broken to O(2, 4;Z) and
this group is an exact perturbative symmetry of string theory.

We must stress at this point that no S duality transformations are in-
cluded in this group. S duality is a non-local symmetry while T duality
consists only on local transformations14. So, where are the S duality trans-
formations that were present in four dimensions?

It is well-known [16, 13] that this finite symmetry group can be extended

to the infinite algebra ̂o(2, 4). The zero-mode subalgebra corresponds to
the algebra o(2, 4;R) of the symmetry we just described. The S duality
transformations are included in this algebra as non-local transformations
which are not in the zero-mode subalgebra.

Observe that we could have proceeded in a completely different way: we
could have started by reducing the theory in the time direction to three di-
mensions and we could have dualized in three dimensions all vectors into
scalars (as in Ref. [17]). In this way we would have gotten two scalars from
each vector field: one would be the electrostatic potential ÂI t and the other

would be the magnetostatic potential
˜̂
AI t, non-locally related to the other

three components of the vector. In this three-dimensional theory, S dual-
ity would be realized by local transformations rotating the electrostatic and
magnetostatic potentials into each other. Further reduction to two dimen-
sions would give us a different (“dual”) version of the two-dimensional theory
related to the one we have obtained and we are going to study by a non-local

transformation. The dual theory has also a ̂o(2, 4)2 invariance but now the
S duality transformations are in the zero-mode subalgebra o(2, 4;R)2 [13].

Another possibility is to study the S duality transformations directly in
four dimensions.

1.2 S Duality Transformations

The N = 4, d = 4 supergravity equations of motion [11] have another duality
symmetry nowadays called S duality that consists of electric-magnetic duality
rotations accompanied of the inversion of the dilaton (the string coupling

14At the level of the effective action, of course.
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constant) and constant shifts of pseudoscalar axion (see e.g. Ref. [18] for
a review with references). This symmetry is only manifest in the Einstein
frame and with the pseudoscalar axion. To study it we have to rewrite the
action Eq. (1.1) in the Einstein frame and then trade the axion two-form B̂µ̂ν̂

by the pseudoscalar axion â by means of a Poincaré duality transformation.
(One would get an inconsistent result if one replaced Ĥ by its dual field
strength directly in the action). Thus, we consider first the above action as
a functional of Ĥ which is now unrelated to B̂. Then, we have to introduce
a Lagrange multiplier (â) to enforce the Bianchi identity of Ĥ. Eliminating
Ĥ in the action by using its equation of motion one finally gets the following
action

S =
∫
d4x

√
|ĝE|

[
R̂(ĝE)− 1

2
(∂φ̂)2 − 1

2
e2φ̂(∂â)2 − 1

4
e−φ̂F̂ IF̂ I + 1

4
âF̂ I?F̂ I

]
.

(1.13)
It is important for our purposes to have a very clear relation between the

fields in both formulations since we have to identify the same charges in both
and track them after their transformation. The (non-local) relation between
â and B̂ and the relation between the Einstein- and string-frame metric are
given by 

∂µ̂â = 1

3!
√
|ĝE |

e−2φ̂ε̂µ̂ν̂ρ̂σ̂Ĥ
ν̂ρ̂σ̂ ,

ĝEµ̂ν̂ = e−φ̂ ĝµ̂ν̂ .

(1.14)

Defining now the complex scalar λ̂ and the S dual vector field strengths
˜̂
F I

[8]

λ̂ ≡ â+ ie−φ̂ ,
˜̂
F I ≡ e−φ̂ ?F̂ I + âF̂ I = λ̂F̂ I + + c.c. , (1.15)

where

F̂ I ± ≡ 1
2

(
F̂ I ∓ i ?F̂ I

)
, ?F̂ I ± = ±iF̂ I ± , (1.16)

one gets the action

S =
∫
d4x

√
|gE|

R̂(ĝE)− 1
2

∂µ̂λ̂∂
µ̂ ¯̂
λ(

=mλ̂
)2 + 1

4
F̂ I ? ˜̂

F I

 . (1.17)

The equations of motion plus the Bianchi identities for the vector field
strengths can be written in the following convenient form
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ĜEµ̂ν̂ +
2

(λ̂− λ̂)

[
∂(µ̂λ̂∂ν̂)λ̂−

1
2
ĝEµ̂ν̂∂λ̂∂λ̂

]

−1
4

(
? ˜̂
F I

µ̂
ρ̂ ?F̂ I

µ̂
ρ̂

) 0 1

−1 0




˜̂
F I

ν̂ρ̂

F̂ I
ν̂ρ̂

 = 0 , (1.18)

∇2λ̂− 2
(∂λ̂)2

(λ̂− λ̂)
+ i

8
(λ̂− λ̂)2

(
F̂ I−

)2
= 0 , (1.19)

∇µ̂


? ˜̂
F I µ̂ν̂

?F̂ I µ̂ν̂

 = 0 . (1.20)

In this way, it is easy to see that the last equation is covariant under
linear combinations of the vector fields and the S dual vector fields

˜̂
F I′ µ̂ν̂

F̂ I′ µ̂ν̂

 =

 a b

c d




˜̂
F I µ̂ν̂

F̂ I µ̂ν̂

 , (1.21)

with the only requirement that the transformation matrix is non-singular.
However, these vector fields are not independent and consistency implies the
following non-linear transformations for the complex scalar λ̂

λ̂′ =
aλ̂ + b

cλ̂+ d
. (1.22)

The Einstein equation and the scalar equations are invariant if the con-
stants a, b, c, d are the entries of an SL(2,R) (Sp(2,R)) matrix i.e.

ad− bc = 1 . (1.23)

These transformations do not act on the Einstein metric. Observe that,
although they are local transformations of the vector field strengths they are
in fact non-local transformations in terms of the true variables; the vector
fields themselves. Observe that the equations of motion of the vector fields

are nothing but the Bianchi identities for the dual vector fields
˜̂
F I

µ̂ν̂ implying

the local existence of the dual vector fields
˜̂
AI µ̂ such that

˜̂
F I

µ̂ν̂ = 2∂[µ̂
˜̂
AI ν̂] , (1.24)
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which justifies the definition of the
˜̂
F I ’s.

˜̂
AI depends non-locally on ÂI and

the pair
˜̂
AI , ÂI transforms as an SL(2,R) doublet.

SL(2,R) is generated by three types of transformations15: rescalings of λ̂(
a 0
0 1/a

)
, λ̂′ = a2λ̂ , (1.25)

continuous shifts of the axion(
1 b
0 1

)
, λ̂′ = λ̂+ b , (1.26)

and the discrete transformation(
0 1
−1 0

)
, λ̂′ = −1/λ̂ . (1.27)

2 TNbh Asymptotics

In this section we will present the asymptotic behavior that we will assume
for the solutions of the equations of motion originating from the action (1.1).

As advertised in the Introduction we are going to consider generaliza-
tions of asymptotically flat Einstein metrics. The asymptotic behavior of
four-dimensional asymptotically flat metrics is completely characterized to
first order in 1/r by only two charges: the ADM mass M and the angular
momentum J . However, duality transforms asymptotically flat metrics into
non-asymptotically flat metrics which need different additional charges to
be asymptotically characterized. One of them [2] is the NUT charge N and
closure under duality forces us to consider it. We will not need any more
charges in the metric but, for completeness we define a possible new charge
u which we will simply ignore in what follows.

With these conditions on the asymptotics of the four-dimensional metric
it is always possible to choose coordinates such that the Einstein metric in
the t− ϕ subspace has the following expansion in powers of 1/r:

(ĝEαβ)=


−1 + 2M/r 2N cos θ +

[
2J sin2 θ − 4M(N + u) cos θ

]
/r

2N cos θ +
[
2J sin2 θ − 4M(N + u) cos θ

]
/r (r2 + 2Mr) sin2 θ


15SL(2,Z) can be generated by the discrete versions of the last two.
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+


O(r−2) O(r−2)

O(r−2) O(1)

 . (2.1)

We will assume the following behavior for the dilaton

e−φ̂ = 1− 2Qd/r + 2W cos θ/r2 − 2Z/r2 +O(r−3) , (2.2)

where Qd is the dilaton charge,W is a charge related to the angular momen-
tum that will be forced upon us by S duality and Z is a charge which is not
independent, but a function of the electric and magnetic charges (see below)
and is also forced upon us by S duality . This implies for the two-dimensional
scalar matrix G:

(Gαβ) =


−1 + 2(M −Qd)/r 2N cos θ +

[
2J sin2 θ − 4N(M −Qd) cos θ

]
/r

2N cos θ +
[
2J sin2 θ − 4N(M −Qd) cos θ

]
/r

[
r2 + (M +Qd)r

]
sin2 θ



+


O(r−2) O(r−2)

O(r−2) O(1)

 . (2.3)

where we have already set u = 0.
Observe that we have fixed its constant asymptotic value equal to zero

using the same reasoning as Burgess et.al. [2], i.e. rescaling it away any time
they arise. The time coordinate, when appropriate, will be rescaled as well,
in order to bring the transformed Einstein metric to the above form (i.e. to
preserve our coordinate (gauge) choice), but in a duality-consistent way.

Sometimes it will also be necessary to rescale the angular coordinate ϕ
in order to get a metric looking like (2.1). Conical singularities are then
generically induced, and then the metric is not asymptotically TNbh in spite
of looking like (2.1).

The objects we will consider will generically carry electric (QIe) and mag-
netic (QIm) charges with respect to the Abelian gauge fields ÂI µ̂. Since we
allow also for angular momentum, they will also have electric (PIe ) and mag-
netic (PIm) dipole momenta. This implies for the two-dimensional scalar
matrix A the following asymptotic behavior

13



(
ÂIα

)
= −2

 Q
1
e/r −P

I
e cos θ/r2 Q1

m cos θ + P1
m sin2 θ/r

Q2
e/r −P

I
e cos θ/r2 Q2

m cos θ + P2
m sin2 θ/r



+

 O(r−3) O(r−2)

O(r−3) O(r−2)

 . (2.4)

Electric dipole momenta appear at higher order in 1/r and it is not strictly
necessary to consider them from the point of view of T duality, since it will
not interchange them with any of the other charges we are considering and
that appear at lower orders in 1/r. However, S duality will interchange the
electric and magnetic dipole momenta and we cannot in general ignore them.

The different behavior of T and duality is due to the fact that T duality
acts on the potential’s components and S duality acts on the field strengths.
Thus, for the purpose of performing T duality transformations the electric
charge and the magnetic momentum terms in the potentials are of the same
order in 1/r. From the point of view of S duality, the electric and magnetic
charge terms are of the same order in 1/r.

To the matrix A in (2.4) we could have added a constant 2 × 2 matrix
which would be the constant value of the t, ϕ components of the vector fields
at infinity. Usually these constants are not considered because they can be
removed by a four-dimensional gauge transformation with gauge parameters
depending linearly on t and ϕ.

In [2] it was claimed those constants (in particular a constant term in
the asymptotic expansion of ÂI t), although pure gauge, do have an influence
on physical characteristics of the dual solutions (actually this fact was inter-
preted there as evidence against the possibility of performing duality with
respect to isometries with non-compact orbits).

However, a glance at the steps necessary to derive the O(2, 4) invariance
of the dimensionally reduced theory [10] immediately reveals the necessity of
not only staying in an adapted coordinate system, but also that the allowed
four-dimensional gauge transformations are those which correspond to two-
dimensional gauge transformations which are obviously independent of cyclic
coordinates (in this case t and ϕ) and keep the matrix A invariant.

In other words: a constant shift in the matrix A, is not a symmetry of the
two-dimensional theory but relates two inequivalent vacua16. The situation

16In any case, one should not be too dogmatic in this issue. After all, we are studying
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from the point of view of S duality is not different: the result of the same
classical S duality transformation (i.e. SL(2,R) transformation) depends on
the asymptotic constant values of the dilaton and axion. These can always
be absorbed by further classical S duality transformations, but they do not
relate equivalent vacua in general.

Thus, at least from the point of view adopted here, constant terms are in-
deed physically meaningful. From the point of view of obtaining a closed class
of solutions under duality they are necessary because they are generated by
duality transformations. Setting the constant terms to zero is just a specific
gauge choice (as much as the coordinate choice made for the metric is also
a coordinate choice). Duality transformations do not respect these gauge
choices. In the next section we will study the inclusion of these constant
terms in a consistent way by performing gauge transformations and coordi-
nate changes in all the fields. However, the transformations with constant
terms become very clumsy and we will consider most transformations on the
configurations we are describing in this section, with zero constant terms.
Only in Section 3.4, we will briefly consider a discrete duality transformation
on the most general configuration.

The two-index form will have the usual charge Qa. Closure under duality
again demands the introduction of a new extra parameter (“charge”) that
we denote by F and which will play an important role in what follows. At
the same order in 1/r it is possible to define another charge H which is not
independent, but a function of the electric and magnetic charges, as we will
show. Its presence, is required by closure of duality but it transforms as
a dependent charge and it does not play a relevant role. The asymptotic
expansion are, then

(
B̂αβ

)
= 2

 0 Qa cos θ + F sin2 θ/r +H cos θ/r

−Qa cos θ −F sin2 θ/r −H cos θ/r 0



+

 0 O(r−2)

O(r−2) 0

 . (2.5)

only the massless spectrum of four-dimensional string theory and performing dimensional
reduction to two dimensions disregarding all the massive Kaluza-Klein modes which are
associated to specific functional dependences on the coordinates t and ϕ. A full answer
on whether t- or ϕ-dependent gauge transformations are allowed and their effect on the
two-dimensional theory can only be obtained from the study of the full theory and it is
beyond the scope of the effective theory that describes the massless spectrum.
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As we will show in Section 3.3, the necessity of the new charge F becomes
clear when looking at discrete duality subgroups checking that the subgroup’s
multiplication table is satisfied. From the physical point of view it is clear
that the presence of angular momentum should induce such a charge.

Observe that we could have added a constant term to B̂tϕ as well which
could be reabsorbed by four-dimensional gauge transformations which are
not allowed from the two-dimensional point of view. We choose them to be
initially zero as well for simplicity17.

Now we have to show that the asymptotics that have been assumed on
the gauge fields ÂI , and on the two-index field B̂ correspond to the gauge-
invariant charges that one can define by looking directly in the asymptotic
expansions of the field strengths F̂ I , or Ĥ. The field strengths corresponding
to the above potentials are

F̂ I = 2

(
QIe − 2

PIe
r

cos θ

)
1

r2
dr ∧ dt+ 2PIm sin2 θ

1

r2
dr ∧ dϕ

+2

(
QIm − 2

PIm
r

cos θ

)
sin θ dθ ∧ dϕ− 2PIe sin θ

1

r2
dθ ∧ dt

+O(r−3) , (2.6)

and

Ĥ = −2
{
Qa −

[(
QIeQ

I
m +H

)
− 2F cos θ

] 1

r

}
sin θ dθ ∧ dt ∧ dϕ

−2
[
F sin2 θ −

(
QIeQ

I
m −H

)
cos θ

] 1

r2
dr ∧ dt ∧ dϕ

+O(r−2) . (2.7)

Observe that the effect of taking the Hodge dual of F̂ I is equivalent to
replacing (QIe,P

I
e ) by (QIm,P

I
m) and (QIm,P

I
m) by (−QIe ,−P

I
e ).

Now we have to identify H. A convenient way of doing this is to dualize
the three-form field strength to find the asymptotics of the pseudoscalar
axion â defined in Eq. (1.14). The partial-differential equation ∂µ̂â for â the
consistency condition ∂[µ̂∂ν̂]â = 0 (which is the Bianchi identity for â and,

17A constant term in B̂tϕ implies via duality a constant term in Gtϕ which we have also
initially set to zero for the same reason. We will consider both kinds of constant terms in
the next section
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therefore, the equation of motion for B̂) has to be satisfied and this implies
that the combination QIeQ

I
m −H vanishes, so

H = QIeQ
I
m , (2.8)

and we find

Ĥ = −2
{
Qa − 2F cos θ

1

r
+ 2QIeQ

I
m

1

r

}
sin θ dθ ∧ dt ∧ dϕ

−2F sin2 θ
1

r2
dr ∧ dt ∧ dϕ+O(r−2) . (2.9)

From this expression and (2.6) we see that all charges considered have
a gauge-invariant meaning. The asymptotic expansion of the pseudoscalar
axion â is (allowing for a constant value at infinity â0 that we will set to zero
in the initial configuration)

â = â0 + 2Qa/r − 2F cos θ/r2 + 2QIeQ
I
m/r

2 +O(r−3) , (2.10)

which shows that Qa is the standard axion charge defined, for instance, in
Ref. [7]. With the pseudoscalar axion and the dilaton we find the asymp-
totic expansion of the complex scalar λ̂ (allowing also for a non-vanishing
asymptotic value for the dilaton φ̂0)

λ̂ = λ̂0 + 2e−φ̂0Υ/r − 2e−φ̂0χ cos θ/r2 + 2e−φ̂0Θ/r2 +O(r−3) , (2.11)

where

λ̂0 = â0 + ie−φ̂0 ,

Υ = Qa − iQd ,

χ = F − iW ,

Θ = QIeQ
I
m − iZ .

(2.12)

2.1 Inclusion of Constant Terms

The inclusion of constant terms in the asymptotics of the matrices G,A and
B in a consistent way is trickier than it seems at first sight. Let us start by
discussing the modifications needed to include constant terms in A.
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In the presence of constant terms in A one has to be very careful when
identifying the right axion charges. If we consider the presence of only con-
stant terms vI in ÂI t for the moment

(
ÂIα

)
=

 v1 − 2Q1
e/r + 2P1

e cos θ/r2 −2Q1
m cos θ − 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 −2Q2
m cos θ − 2P2

m sin2 θ/r



+

 O(r−3) O(r−2)

O(r−3) O(r−2)

 . (2.13)

the above expression for the axion field strength changes due to the Chern-
Simons terms to

Ĥ = −2
{(
Qa −

1
2
vIQIm

)
− 2

(
F − 1

2
vIPIm

)
cos θ/r

+2QIeQ
I
m

1

r

}
sin θ dθ ∧ dt ∧ dϕ

−2
(
F − 1

2
vIPIm

)
sin2 θ/r2dr ∧ dt ∧ dϕ+O(r−2) . (2.14)

Now, the right charges are no longer Qa and F but the combinations
Qa −

1
2
vIQIm and F − 1

2
vIPIm that appear in Ĥ. This really means that in

presence of constant terms in ÂI t as above, the asymptotic expansion of B
that gives the right charges as in Eq. (2.9), and the one that on has to use is
(setting H = 0)

B̂tϕ = 2
(
Qa + 1

2
vIQIm

)
cos θ + 2

(
F + 1

2
vIPIm

)
sin2 θ/r

+2QIeQ
I
m cos θ/r +O(r−2) ,

(2.15)

Analogous results would have been obtained by creating the constant
terms via a t-dependent gauge transformation of the gauge fields (which
induces, due to the Chern-Simons term present in Ĥ a gauge transformation
of the two-form field) of and looking for a gauge-independent definition of the
axion charges. This way of thinking (i.e. that the terms arise because of gauge
transformations that take us from the gauge in which we have written the
asymptotic expansion of the potentials and metric in the previous section) is
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the most appropriate to study the inclusion of constant terms in G and B.
For instance, let us now perform a ϕ-dependent gauge transformation of the
gauge fields with parameter ΛI = wIϕ that induces a constant term in ÂIϕ

δÂIϕ = wI . (2.16)

This transformation induces on the two-form field Eq. (2.15) (taking into
account the constant terms vI) a gauge transformation in B. To make the
story short, we will simply say that if we consider a general matrix A with
constant terms

(
ÂIα

)
=

 v1 − 2Q1
e/r + 2P1

e cos θ/r2 w1 − 2Q1
m cos θ − 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 w2 − 2Q2
m cos θ − 2P2

m sin2 θ/r



+

 O(r−3) O(r−2)

O(r−3) O(r−2)

 , (2.17)

we must consider a B matrix of the form (we only write the B̂tϕ entry)

B̂tϕ = x+ 1
2
vIwI2

(
Qa + 1

2
vIQIm

)
cos θ − wIQIe/r

+2
(
F + 1

2
vIPIm

)
sin2 θ/r + 2QIeQ

I
m cos θ/r +O(r−2) ,

(2.18)

to get an axion field strength of the form (2.9) so the constants Qa and F are
still the axion charges. Now, a new t- or ϕ-dependent gauge transformation
of the form Λ = δvIt+ δwIϕ is reabsorbed in a redefinition of the constants
x, vI , wI and does not affect the charges, that keep their gauge-invariant
meaning. The constant x can also be generated or absorbed by a gauge
transformation of the two-form field and it does not induce any other changes
in the asymptotics of other fields.

Finally, we will see that duality sometimes creates a constant term in
ĝEtϕ. This term can be reabsorbed or induced by a reparametrization of the
time coordinate t→ t− qϕ. This transformation changes G and A to

(Gαβ) =


−1 + 2(M −Qd)/r (q + 2N cos θ) [1− 2 (M −Qd) /r] + 2J sin2 θ/r

(q + 2N cos θ) [1− 2 (M −Qd) /r] + 2J sin2 θ/r
[
r2 + (M +Qd)r

]
sin2 θ
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+


O(r−2) O(r−2)

O(r−2) O(1)

 . (2.19)

and

(
ÂIα

)
=



v1 − 2Q1
e/r + 2P1

e cos θ/r2 (w1 − qv1)− 2Q1
m cos θ

+2qQ1
e/r− 2P1

m sin2 θ/r

v2 − 2Q2
e/r + 2P2

e cos θ/r2 (w2 − qv2)− 2Q2
m cos θ

+2qQ2
e/r− 2P2

m sin2 θ/r



+


O(r−3) O(r−2)

O(r−3) O(r−2)

 . (2.20)

Observe that the electric dipole momenta do not appear in the right column
because they are of higher order.

It is easy to see that there is no need to do further changes in B. Thus,
the most general asymptotic expansions that we will consider are given by
the matrices G in Eq. (2.19) A in Eq. (2.20) and B in Eq. (2.18) which
define gauge-invariant charges in the sense that t and ϕ-dependent gauge
transformations ΛI = δvIt+(δwI−qδvI) and reparametrizations of the form
t→ t+ δqϕ which are the ones that do not take us out of the Kaluza-Klein
ansatz become simple redefinitions of the constants vI → vI+δvI etc. leaving
the charges invariant (which justifies their name).

The class of asymptotic behavior just described, determined by the twelve
charges {

M,J,N,Qa,F ,Qd,Q
I
e,Q

I
m,P

I
m

}
(2.21)

(with or without constant terms in the matrices G,B,A) will be referred to
henceforth as TNbh asymptotics.

3 Transformation of the Charges under Du-

ality

In this Section we are going to study the transformation of the charges of
asymptotically TNbh configurations under the T and S duality transforma-
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tions found in Section 1.

3.1 Deriving the Form for the T Duality Transforma-
tion Matrices

The problem that now will be tackled is how to generate the explicit transfor-
mations of the full O(2, 4,R) classical T duality group to find which subgroup
maps TNbh asymptotics into TNbh asymptotics. O(2, 4) is a non-compact,
non-connected group and our first task is to elucidate its structure.

It is known that every element from a group G, can be written as a
sequence of operators, which are always part of the connected component
containing the identity G0 (which is itself a subgroup of G), and elements
from the coset G/G0. The action of these elements on any element of G is
to take them from a connected part to a different connected part. This coset
is called the mapping-class group π0(G).

O(2, 4) has four connected pieces: two correspond to matrices with deter-
minant +1 and two to matrices with determinant −1. The former two con-
nected pieces constitute the subgroup SO(2, 4) and are related to the other
two by a discrete transformation that generates the groupO(2, 4)/SO(2, 4) =

Z(B)
2 . The two connected components of the subgroup18 SO(2, 4) differ by

the sign of the (1, 1) component of the matrices of the defining represen-
tation. The component with positive sign contains the identity and is the
subgroup SO↑(2, 4) and is related to the other connected component (which
is not a subgroup and we denote by SO↓(2, 4)) by a discrete transformation

that generates another Z(S)
2 = SO(2, 4)/SO↑(2, 4) subgroup.

Thus, the mapping-class group of O(2, 4) is O(2, 4)/SO↑(2, 4) = Z(B)
2 ×

Z(S)
2 .

We will study it in detail later. Now we are going to concentrate on
describing the duality transformations in the component connected with the
identity SO↑(2, 4).

Every element of the connected component of a group can be written as
a sequence of its one-parameter-subgroups [20] and we are going to study
these first.

In our case these are the exponentiated versions of the generators of the
Lie algebra so(2, 4), which we write in the covariant form Mij

Ωij(αij) = exp{−α(ij)M(ij)} , (3.1)

and which satisfy the commutation relations

18All groups SO(n,m) have two connected components [19].
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[Mij ,Mkl] = ηilMjk − ηikMjl + ηjkMil − ηjlMik , (3.2)

where, again, the indices i, j, k, l = 1 . . . , 6 and η = diag(−,−,+,+,+,+) is
the diagonal metric of O(2, 4).

It should be noted that the action ofO(2, 4) is 6-dimensional, which means
that the group acts through its vector representation on the matrixMij and
on the vectors Kiµ. The generators of so(2, 4) in the vector representation,
denoted by Γ, are given by

Γ (Mij)
k
l = 2ηl[iη

k
j] . (3.3)

Upon exponentiation of a single generator, one gets a one-parameter
subgroup. In this way to get all the basic one-parameter subgroups of
SO↑(2, 4) in the diagonal basis with metric η. Thus, we still need to trans-
form the on-parameter subgroup transformations to the non-diagonal basis
using Eq. (1.12) and finally we can study the effect of these transformations
on the fields using Eq. (1.9).

3.2 The One-Parameter Subgroups of the T Duality
Group

The one-parameter subgroups of SO↑(2, 4) are either boosts involving one
of the indices 1, 2 and one of the indices 3, 4, 5, 6 or rotations involving the
indices 1 and 2 or two of the indices 3, 4, 5, 6.

Boost matrices are taken to have the form

Ωη(boost) =


ch .. sh ..
.. .. .. ..
sh .. ch ..
.. .. .. ..

 , (3.4)

and generate a non-compact SO↑(1, 1) = R+ subgroup and every rotation
will be taken to have the form

Ωη(rotation) =


cos .. sin ..
.. .. .. ..

− sin .. cos ..
.. .. .. ..

 , (3.5)

and generates a compact U(1) subgroup. Here the operators will be labelled
by the Lie algebra generator that generates the operators. For instance, we
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have19

Ωη13 ≡ exp {−α13Mη13} =


ch 0 sh
0 1 0
sh 0 ch

I3

 , (3.6)

and in the non-diagonal basis

Ω13 =



ch + sh 0 0

0 1 0

0 0 ch− sh

I3


, (3.7)

etc. Therefore it is not difficult to compute the action of these subgroups
on the background fields. It turns out that only a few of them (seven, but
only five with a non-trivial action and just three with different actions on
the charges) preserve TNbh asymptotics.

When the transformations that leave TNbh asymptotics intact are known
the exact change in the asymptotic charges can be computed. The charges
transform linearly. Actually, the T duality transformations close on sets of
four charges and their effect can be described by matrices acting on three
four-component charge vectors:

~M ≡


M
Qd
Q1
e

Q2
e

 , ~N ≡


N
Qa
Q1
m

Q2
m

 , ~J ≡


J
F
P1
m

P2
m

 , (3.8)

which will be referred to, respectively, as electric, magnetic and dipole charge
vectors.

There is a fourth charge vector that contains the electric dipole momenta
PIe , the dilaton dipole-type chargeW and an unidentified geometrical charge
that we denote by K

~K ≡


K
W
P1
e

P2
e

 . (3.9)

19Throughout we shall use the abbreviations c = cos(αij), s = sin(αij), ch = cosh(αij)
and sh = sinh(αij), the ij being the indices of the transformation.
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The presence of this fourth charge vector is required by S duality, as we will
explain later.

For each TNbh duality transformation there is a unique matrix action
on the three vectors. This, for the moment, can be considered merely a
convenient representation of the duality transformations. It will be shown
later in the paper that the Bogomol’nyi bound can be rewritten in terms of
our multiplets in an exceedingly convenient way.

Let us examine now examine the interesting duality transformations case
by case.

3.2.1 Ω13

The action of this subgroup is simply equivalent to a rescaling of the time
coordinate and obviously it preserves TNbh asymptotics. Using the inverse
rescaling to rewrite the metric in the gauge (2.1) we find the the action of
this duality transformation is trivial.

3.2.2 Ω15

This subgroup preserves TNbh asymptotics and our gauge choice for the
metric (2.1) and for the matrices A,B. In particular it does not generate any
constant term in the A,B,G matrices. Thus, one can proceed to compute
the transformation of the charges. This transformation is described by the
4× 4 symmetric matrix

Ω
(4)
15 ≡



1+ch
2

1−ch
2

sh√
2

0

1−ch
2

1+ch
2
− sh√

2
0

sh√
2
− sh√

2
ch 0

0 0 0 1


, (3.10)

so

~̃M = Ω
(4)
15
~M , ~̃N = Ω

(4)
15
~N , ~̃J = Ω

(4)
15
~J . (3.11)

3.2.3 Ω16

The effect of this transformation is identical to the previous one with the
interchange of the labels I = 1 and I = 2. This, the matrix that describes it
on the charges is
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Ω
(4)
16 ≡



1+ch
2

1−ch
2

0 sh√
2

1−ch
2

1+ch
2

0 − sh√
2

0 0 1 0

sh√
2
− sh√

2
0 ch


. (3.12)

3.2.4 Ω24

This transformation is analogous to the transformation Ω13: its effect is
equivalent to a rescaling of the coordinate ϕ that preserved it periodicity,
which is initially fixed to be 2π, i.e. all components of fields with indices ϕ
are rescaled, but the coordinate itself is not rescaled. Now, to go back to our
coordinate choice (2.1) we have to rescale ϕ, changing its periodicity and,
thus, introducing conical singularities. Therefore, this transformation does
not preserve TNbh asymptotics.

3.2.5 Ω35

The result of this transformation is another asymptotically TNbh metric
written in our gauge (2.1) up to a rescaling of the time coordinate and up to
constant term in the matrix A:

v1 =
√

2 sinα35 , (3.13)

and this has to be taken into account in the definitions of the axion charges
that have to be identified in the transformed configurations using the expan-
sion of B in Eq. (2.15). The rescaling of the time coordinate can be performed
combining ω35 with an ω13 transformation with the right parameter. The re-
sult of this composition is a one-parameter subgroup of transformations that
do preserve TNbh asymptotics and our gauge choice except for the non-
vanishing v1. The effect of this composite transformation on the charges can
be described by the 4× 4 symmetric matrix
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(Ω13Ω35)(4) ≡



c+1
2c

c−1
2c

1√
2

s
c

0

c−1
2c

c+1
2c

− 1√
2

s
c

0

1√
2

s
c
− 1√

2
s
c

1
c

0

0 0 0 1


. (3.14)

Now, this matrix is exactly the same as Ω
(4)
15 with the replacement

cosα35 = 1/ coshα15 , (3.15)

and, so, these transformations are identical on the charges.

3.2.6 Ω36

This transformation is identical to the previous one with the interchange of
the labels I = 1 and I = 2. Thus, it also generates a constant term in the
matrix A which has to be taken care of when identifying the axion charges
of the transformed configurations:

v2 =
√

2 sinα36 , (3.16)

Therefore, although it does not preserve TNbh asymptotics, it can be
combined with an Ω13 transformation into a TNbh-preserving one-parameter
subgroup of transformations that can be described by the action of the 4× 4
symmetric matrix

(Ω13Ω36)(4) ≡



c+1
2c

c−1
2c

0 1√
2

s
c

c−1
2c

c+1
2c

0 − 1√
2

s
c

0 0 1 0

1√
2

s
c
− 1√

2
s
c

0 1
c


. (3.17)

on the three four-component charge vectors ~M, ~N, ~J .

3.2.7 Ω56

This transformation is just the SO(2) subgroup acting on the gauge fields
only and rotates the electric and magnetic charges and the magnetic dipole
momenta.Thus, it can be described by the 4× 4 antisymmetric matrix
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Ω
(4)
56 ≡

 I2
c s
−s c

 . (3.18)

3.3 The Mapping-Class Group T Duality Transforma-
tions Z(B)

2

The last “elementary” duality transformations of O(2, 4) that we have to

study are those in the coset O(2, 4)/SO↑(2, 4) = Z(B)
2 ×Z(S)

2 . What do these
transformations correspond to? In Ref. [21] the simpler duality groups O(1, 1)

and O(1, 2) where analyzed in detail and it was found that the subgroup Z(S)
2

is essentially generated by a reflection in all directions in the scalar σ-model
target space. Here we can do the same and take the generator of Z(S)

2 as
the total reflection −I6. In the same reference it was also found that the
subgroup Z(B)

2 corresponds essentially to Buscher’s duality transformations
[22].

The generator of Z(B)
2 is not unique (it is a coset group). Two obvious

choices correspond to the Buscher transformations in the directions t and
ϕ. The Buscher transformation in the direction ϕ does not preserve TNbh
asymptotics and so we will take as generator of Z(B)

2 the Buscher transfor-
mation in the direction t, that we denote by τ , with matrix

Ωη(τ) =

(
+1

−I5

)
. (3.19)

Observe that there is no inconsistency in taking one and not the other
as inequivalent representatives because from the point of view of the TNbh-
preserving duality subgroup they are no related: only an infinite boost (Ω14)
will completely rotate t into ϕ and, in any case, this subgroup does not
preserve TNbh asymptotics itself.

As was said in Section 2, the necessity of introducing additional “charges”
like F becomes evident20 when one studies discrete duality subgroups like
Z(B)

2 . If we analyze the τ -transformation explicitly, we see that the τ -
transform of ĝtϕ is

˜̂gtϕ =
1

2Ω

{
ĝtt
[
ÂI tÂ

I
ϕ − 2B̂tϕ

]
− ĝtϕÂ

I
tÂ

I
t

}
, (3.20)

where Ω goes asymptotically as

20To see it in the continuous subgroups one has to study the invertibility of the trans-
formations, which is much harder.
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Ω = 1−
4M

r
+O(r−2) . (3.21)

Looking at the asymptotic behavior of the terms involved, it is easy to
see that to get a contribution to J , the initial configuration has to have a
r−1 sin2 θ term in its asymptotic expansion of the Kalb-Ramond field. This
also shows that J transforms into the new charge F since τ−1 = τ .

The effect of τ on all the charges can be expressed in terms of the same
symmetric 4× 4 matrix Ω(4)

τ

Ω(4)
τ =

 0 1
1 0

I2

 , (3.22)

acting on the charge vectors ~M, ~N, ~J . The involutive property, that on the
charges τ2 = id is immediately apparent.

A natural worry at this point is whether a combination of transformations
that do not preserve TNbh asymptotics, can result in a TNbh asymptotics-
preserving transformation.

This is a complicated and time-consuming problem that can only be han-
dled by computational methods for just products of two transformations.
The result of our (CPU-limited) search is negative.

3.4 Constant Parts in the Gauge Fields and the Closed
Set of Asymptotic “Charges” Under τ

We have to find the way in which the transformations of the charges change
when we include constant terms in the matrices G,A,B. To do a general
study would take to much CPU time. Thus, we will only perform a full check
of only the τ transformation, although the general picture should become
quite clear from our results for τ and other general arguments.

First of all, the consistency in the way we have defined charges and con-
stant terms (which will be referred to as moduli) implies that the moduli
transform non-linearly amongst themselves and, thus, their transformations
can be studied by setting to zero the charges. For the τ transformation this
allows us to immediately get21

21Simultaneous rescalings of the dilaton and the time coordinate t are necessary to
eliminate the constant value of the dilaton at infinity and to get an asymptotically TNbh
metric.
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ṽI = vI , q̃ = ξx ,

w̃I = wI , x̃ = ξ−1q .
(3.23)

where we have used ξ = (1− ~v 2/2)−1.
Next, we expect the multiplet structure of the duality transformations to

remain valid in the presence of non-trivial moduli. (The multiplets contain
multipole terms of the same order of different fields.) This can be checked
explicitly, but it also allows us to set to zero all charges except for those in one
multiplet and find their transformation more easily. The result is that we can
describe in all of them the τ transformation with a unique moduli-dependent
matrix Ω(4)

τ (x, q, v, w)

Ω(4)
τ (x, q, v, w) =



−1
2
ξ~v 2 ξ ξv1 ξv2

ξ −1
2
ξ~v 2 −ξv1 −ξv2

−ξv1 ξv1 1 + ξ(v1)2 ξv1v2

−ξv2 ξv2 ξv1v2 1 + ξ(v2)2


. (3.24)

Observe that this matrix indeed squares to the identity.
What happens to the other transformations in presence of non-trivial

moduli? The rule is that now the 4 × 4 matrices Ω
(4)
ij will become moduli-

dependent matrices Ω
(4)
ij (x, q, v, w) and the group multiplication table is sat-

isfied in the following sense:

Ω
(4)
T2

(x̃, q̃, ṽ, w̃)Ω
(4)
T1

(x, q, v, w) = Ω
(4)
T2·T1(x, q, v, w) , (3.25)

where (x̃, q̃, tildev, w̃) are the transformed moduli under T1. In the case of τ
we had, trivially

Ω(4)
τ (x̃, q̃, ṽ, w̃)Ω(4)

τ (x, q, v, w) = I4 . (3.26)

because Ω(4)
τ (x, q, v, w) only depends on the vI and these are invariant under

τ .

3.5 Transformation of the Charges under S Duality

The transformation of the electric, magnetic, dilaton and axion charges under
S duality has been previously studied in Ref. [7, 8]. Here we are consider-
ing more charges and we are choosing initial configurations with vanishing
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asymptotic values of the axion and dilaton. In general, S duality generates
non-vanishing values of these constants and we will remove them by applying
further S duality transformations.

Let us first see the effect of general classical S duality transformations on
arbitrary configurations. It is easy to see that the transformation (1.22) acts
on the asymptotic value of λ̂ as follows [7, 8]

λ̂′0 =
aλ̂0 + b

cλ̂0 + d
, (3.27)

and on its complex charge as follows

Υ′ =

cλ̂0 + d

cλ̂0 + d

Υ . (3.28)

The factor multiplying Υ is just a λ̂0-dependent complex phase and, thus
the axion and dilaton charges are simply rotated into one another. It is also
easy to see that the additional complex charge that we are considering here
χ = F − iW transforms exactly as Υ.

The effect on the electric and magnetic charges is a bit more difficult to
explain because the electric and magnetic charges that transform in a natural
way under S duality, and which are the ones conserved in the quantum theory
when the Witten effect [23] is taken into account, are not the ones we have
defined. To be precise, the equation of motion and the Bianchi identity tell
us that the two charges that are well defined in the quantum theory and obey
the Dirac-Schwinger-Zwanziger quantization condition are

qIe ∼
∫
S2
∞

˜̂
F I = e−φ̂0QIe − â0QIm ,

qIm ∼
∫
S2
∞
F̂ I = QIm .

(3.29)

This pair of charges transform under (1.21) as an SL(2,R) doublet

(
qI ′e qI ′m

)
=
(
qIe qIm

) a −c

−b d

 , (3.30)

which ensures that the DSZ quantization condition, which can be written for
two dyons in the form

(
qI (1)
e qI (1)

m

) 0 1

−1 0


 qI (2)

e

qI (2)
m

 = cn , n ∈ Z , (3.31)

30



where c is some constant, is S duality invariant. From the relation between
the charges

(
qI (1)
e qI (1)

m

)
and the charges QIe ,Q

I
m that we are using (3.29)

one readily finds

QI ′e = (câ0 + d)QIe + ce−φ̂0QIm ,

QI ′m = −ce−φ̂0QIe + (câ0 + d)QIm .

(3.32)

It is easy to see that the electric and magnetic dipole momenta transform
in exactly the same fashion.

Now we have to adapt these formulae to our case in which the original
configuration has λ̂0 = i and in which we want the transformed configura-
tion to have also λ̂′0 = i. This can be achieved by applying after the general
SL(2,R) transformation, two transformations (1.25,1.26) with the appropri-
ate values of a and b to absorb the constant values of the axion and dilaton.
This is equivalent to allow only an SO(2) subgroup of SL(2,R) to act on the
charges. The result, expressed in terms of the entries of the original SL(2,R)
matrix is

 Q
I ′
e

QI ′m

 =


d√

c2+d2

c√
c2+d2

−c√
c2+d2

d√
c2+d2


 Q

I
e

QIm

 , (3.33)

and similarly for the vector of dipole momenta
(
PIm ,P

I
e

)
and

 Q
′
d

Q′a

 =


d2−c2√
c2+d2

2cd√
c2+d2

−2cd√
c2+d2

d2−c2√
c2+d2


 Qd
Qa

 , (3.34)

and, analogously for the charge vector (W ,F). Observe that the last SO(2)
transformation matrix is precisely the square of the former.

It is now clear that the multiplet structure that we built for the T duality
transformations is not respected by S duality: the last three components
of the “electric” multiplet M̂ are rotated into the last three components of
the “magnetic” multiplet ~N and vice versa. The same happens with the
multiplet ~K defined in Eq. (3.9), whose last three components are rotated

into those of the multiplet ~J in exactly the same way, and vice versa (this is

the reason why we introduced K and ~K in the first place). To respect the
T duality multiplet structure and, at the same time incorporate the S duality
multiplet structure it is useful to introduce the complexified multiplets
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~M≡ ~M + i ~N =


M
iΥ
Γ1

Γ2

 , (3.35)

where

M≡M + iN , ΓI ≡ QIe + iQIm , (3.36)

and

~J ≡ ~K + i ~J =


J
iχ
Π1

Π2

 , (3.37)

where

J ≡ K + iJ , ΠI ≡ PIe + iPIm . (3.38)

These two complex vectors transform under T duality with exactly the
same Ω

(4)
ij matrices as the real vectors and, under the above S duality trans-

formations with the complex Σ(4) SO(2) matrix

Σ(4) =



1

e2iθ

eiθ

eiθ


θ = Arg(d− ic) , (3.39)

so

~M′ = Σ(4) ~M , ~J ′ = Σ(4) ~J . (3.40)

4 The Asymptotic Duality Subgroup

We define the Asymptotic Duality Subgroup (ADS) as the subgroup of the
full duality group that respects TNbh asymptotics. In the previous section
we have identified several one-parameter subgroups of the T duality part of
the ADS and we know that the full S duality group is a subgroup of the ADS.
However these two subgroups do not commute and, together, generate a large
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ADS. We proceed to identify it in the next section and later we will use it
to study the invariance of the Bogomol’nyi bound relevant for the theory we
are considering under it.

4.1 Identification of the Asymptotic Duality Subgroup

First, we are going to identify the T duality subgroup of the ADS. As we have
seen, from the point of view of its action on the charges it has only three non-
trivial one-parameter subgroups which we take to be the ones corresponding
to the transformations Ω(4)

15 ,Ω
(4)
16 ,Ω

(4)
56 . To find the group that they generate

we first study the algebra of their infinitesimal generators M
(4)
ij

Ω
(4)
ij = I4 − α(ij)M

(4)
(ij) , (4.1)

which are given by

M
(4)
15 = 1√

2


0 0 −1 0
0 0 1 0
−1 1 0 0

0 0 0 0

 , M
(4)
16 = 1√

2


0 0 0 −1
0 0 0 1
0 0 0 0
−1 1 0 0

 ,

M
(4)
56 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

(4.2)

These infinitesimal generators obey the algebra

[M
(4)
56 ,M

(4)
15 ] = M

(4)
16 , [M

(4)
56 ,M

(4)
16 ] = −M (4)

15 , [M
(4)
15 ,M

(4)
16 ] = −M (4)

56 . (4.3)

A small calculation of the Killing metric then show that on the base
{M (4)

15 ,M
(4)
16 ,M

(4)
56 } the metric is diagonal with entries η(3) = diag(+,−,−)

thus proving that the algebra is o(1, 2) and the group generated by the one-
parameter subgroups is SO↑(1, 2) and that the T duality part of the ADS
(taking into account the discrete transformations) is O(1, 2).

This raises now the question as to what is the meaning of the four-
component charge vectors. Clearly they transform in the four-dimensional
reducible representation of O(1, 2) furnished by the matrices Ω(4). The only
representation of this kind is the direct sum of a singlet and a vector (three-
dimensional) representation of O(1, 2), which in turn means that there is a
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linear combination of the charges in each charge vector that is invariant under
the full T duality part of the ADS. It is easy to see that these combinations
are

1√
2

(M +Qd) ,
1√
2

(N +Qa) ,
1√
2

(J + F) . (4.4)

The triplets over which T duality acts in the vector representation of
SO(1, 2) are

~M (3) =


1√
2

(M −Qd)

Q1
e

Q2
e

 , ~N (3) =


1√
2

(N −Qa)

Q1
m

Q2
m

 ,

~J (3) =


1√
2

(J −F)

P1
m

P2
m

 ,

(4.5)
and, on this representation the generators of the algebra are

M
(3)
15 = 1√

2

 0 1 0
1 0 0
0 0 0

 , M
(3)
16 = 1√

2

 0 0 1
0 0 0
1 0 0

 ,

M
(3)
56 =

 0 0 0
0 0 −1
0 1 0

 .

(4.6)

We remark for future use that the four-dimensional matrices Ω(4) of the
1 ⊕ 3 representation of O(1, 2) respect the diagonal O(2, 2) metric η(4) =
diag(+,+,−,−) and are also automatically O(2, 2) matrices.

4.2 The Bogomol’nyi Bound and its Variation

In N = 4 supergravity there are two Bogomol’nyi (B) bounds, of the form

M2 − |Zi|
2 ≥ 0 , i = 1, 2 , (4.7)

where the Zi’s are the complex skew eigenvalues of the central charge matrix
and are combinations of electric and magnetic charges of the six graviphotons.
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These two bounds can be combined into a single bound by multiplying them
and then dividing by M2. One gets, then, a generalized B bound

M2 +
|Z1Z2|

M2
− |Z1|

2 − |Z2|
2 ≥ 0 . (4.8)

In regular black-hole solutions the second term can be identified with
scalar charges of “secondary” type. The identification is, actually (with zero
value for the dilaton at infinity)

|Z1Z2|

M2
= Q2

d +Q2
a , (4.9)

and, taking into account the expression of the central charges in terms of the
QIe,m’s one gets the generalized B bound22 [7]

M2 +Q2
d +Q2

a −Q
I
eQ

I
e −Q

I
mQ

I
m ≥ 0 . (4.10)

Note however that this bound is valid only for asymptotically flat spaces
(i.e. with N = 0). This problem can however be overcome by the reasoning
of Ref. [5] where it was observed that the NUT charge N does enter in the
generalized B bound. With our definitions the B bound for asymptotically
TNbh spaces takes the form

M2 +N2 +Q2
d +Q2

a −Q
I
eQ

I
e −Q

I
mQ

I
m ≥ 0 . (4.11)

Now we want to study the invariance of this bound under the T and
S duality pieces of the ADS that preserves TNbh asymptotics. We will not
make distinctions between primary and secondary scalar charges since all we
are interested in are the transformation rules of the scalar charges which are
the same for primary- or secondary-type scalar charges. We will focus on
this distinction in the next section.

Before perform a direct check, let us analyze what we can expect the
result to be. The T duality piece of the ADS preserves in general unbroken
supersymmetries of the low-energy string effective action: one can prove that
if one solution admits Killing spinors the dual solution does as well. Equiva-
lent properties can be checked from the world-sheet point of view. The only
instances in which T duality seems not to respect unbroken supersymmetries
(at least in a manifest fashion from the spacetime point of view) is when a
Buscher T duality transformation is performed with respect to an isometry
with fixed points, like the isometry in the direction ϕ in our axially-symmetric
case [6]. However, this transformation does not respect TNbh asymptotics

22A general expression of the same kind for black holes with regular horizons in genera;
theories with scalars non-minimally coupled to vector fields has been found in [24].
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and therefore it does not belong to the ADS. S duality is known to always
preserve unbroken supersymmetry [7] and, thus, we can expect the B bound
to be invariant under the full ADS.

To study the transformation properties of the B bound under the physical
TNbh asymptotics-preserving duality group it is convenient to use the diag-
onal metric of SO(2, 2) η(4) = diag (1, 1,−1,−1) already introduced at the
beginning of this section. Using this metric and the charge vectors defined
in Eqs. (3.35,3.37) the B bound can be easily rewritten in this form:

~M†η(4) ~M≥ 0 . (4.12)

In this form the B bound of N = 4, d = 4 supergravity is manifestly
U(2, 2)-invariant. Observe that U(2, 2) ∼ O(2, 4), although it is not clear if
this fact is a mere coincidence or it has a special significance. The T duality
piece of the ADS is an O(1, 2) subgroup of the O(2, 2) canonically embedded
in U(2, 2) and obviously preserves the B bound. The S duality piece of the
ADS is a U(1) subgroup diagonally embedded in U(2, 2) through the matrices
Σ(4) defined in Eq. (3.39) and obviously preserve the B bound.

The charges in the vector ~J do not appear in the B bound and neither
T nor S duality change this fact. It is not possible to constrain the values of
any of the charges it (in particular J) by using duality and supersymmetry,
as was suggested in the Introduction.

Although we are not going to study the full ADS generated by the T dual-
ity and the S duality pieces, it is clear that there are transformations in it that
rotate the mass M into the NUT charge N and J into K: it is enough to per-
form first a τ transformation to interchange the first and second components
of the U(2, 2) vectors ~M and ~J , then perform an S duality transformation
that interchanges the real and imaginary parts of the second component of
those vectors and a further τ -transformation to bring this rotated component
back to the first position.

4.3 Primary Scalar Hair and Unbroken Supersymme-
try

So far we have not discussed in detail the physical meaning of the charges
that define TNbh asymptotics. In particular, we have considered completely
unrestricted charges Qd and Qa.

The dilaton charge Qd, not being protected by a gauge symmetry, is not a
conserved charge. In four dimensions the Kalb-Ramond two-form is dual to
the pseudoscalar axion and the charge Qa is just its charge. Again, Qa is not
a conserved charge. This may seem contradictory because in the two-form
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version there is indeed a gauge symmetry. However, the two-form conserved
charge is actually associated to one-dimensional extended objects, not to
the point-like objects we are considering here. Thus both charges can be
considered non-conserved scalar charges (hair).

If these scalars were minimally-coupled scalars the standard no-hair the-
orems would apply to them and any non-vanishing value of Qd and Qa would
imply the presence of naked singularities. The prototype of this kind of sin-
gular solution with non-trivial scalar hair (called primary hair) is the one
given in Refs. [25] for the theory with a massless scalar and action

S =
∫
d4x

√
|ĝE|

[
R̂(ĝE) + 1

2
∂µ̂φ̂∂

µ̂φ̂
]
. (4.13)

The solutions take the form


dŝ2

E = W
M
r0
−1
Wdt2 −W 1−M

r0 [W−1dr2 + r2dΩ2] ,

φ̂ = φ̂0 −
Qd
r0

lnW ,

(4.14)

where 
W = 1− 2r0/r ,

r2
0 = M2 +Q2

d .
(4.15)

The three fully independent parameters that characterize each solution
are the mass M , the scalar charge23 Qd and the value of the scalar at infinity
φ0. Only when Qd = 0 one has a regular solution (Schwarzschild). In all
other cases there is a singularity at r = r0, where the area of 2-spheres of
radius r vanishes.

Before continuing with our discussion a couple of remarks should be made:
first, this whole family of solutions belong to the TNbh class and, second,
observe that the above family of solutions includes a non-trivial massless
solution. Setting M = 0 above we find

dŝ2
E = dt2 − dr2 −Wr2dΩ2 ,

φ̂ = φ̂0 − lnW , eφ̂−φ̂0 = W−1 ,

(4.16)

with

23We use the symbol of the dilaton charge because these solutions (which are written
in the Einstein frame) are also solutions of the equations of motion of the low-energy

string-effective action Eq. (1.1) with φ̂ identified with the dilaton.
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W = 1−
2Qd
r

. (4.17)

In the full low-energy string effective action, the dilaton and the axion
are non-minimally coupled scalars, though, and the existence of black-hole
solutions with regular horizons in theories with non-minimally coupled scalars
is known [26, 27]. In these solutions, the scalar (dilaton) charge is identical
to a certain fixed combinations of the other, conserved, charges:

Qd ∼
QImQ

I
m −Q

I
eQ

I
2

2M
. (4.18)

The same is true of the axion charge in solutions with non-trivial axion
hair and regular horizons [28, 7, 29, 30]. The axion charge is in those cases
given by

Qa ∼
QIeQ

I
m

2M
. (4.19)

This kind of scalar hair, whose existence does not imply the presence of
naked singularities is called secondary hair. It is clear that the existence
of secondary hair does not preclude the existence of primary hair. In fact,
the solutions above can be interpreted in the framework of string theory with
primary but no secondary hair and there are solutions which have both kinds
of hair at the same time [31].

Primary scalar hair always seems to imply the presence of naked singu-
larities, and the no-hair theorem (if it existed such a general theorem) should
probably be called no-primary hair theorem.

So, what can duality and supersymmetry tell us about primary scalar
hair? At first sight, nothing. In the standard derivations of the different
B bound formulae only conserved electric and magnetic charges appear and
only when all the scalar hair is secondary and given by the above formulae
one can derive the generalized B bounds of the previous section in which the
scalar charges appear.

Nevertheless, let us consider a simple example: Schwarzschild’s solution
(given above just by setting Qd = 0). This solution has no unbroken super-
symmetries, which can be understood in terms of non-saturation of the B
bound (M ≥ 0). A Buscher T duality transformation in the time direction
belongs to the physical duality group and should preserve the supersymme-
try properties and asymptotic behavior of the solution and so it should yield
a new solution with no unbroken supersymmetries and TNbh asymptotics.
A short calculation shows that the dual solutions is exactly the massless so-
lution with primary scalar hair written above in Eqs. (4.16,4.17)! It is easy
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to check that this solution admits no N = 4 Killing spinors and so it has
no unbroken supersymmetries24. However, the fact that this solution has
no unbroken supersymmetries would not have been clear from the B bound
point of view , had we used the once-standard form in which primary hair
should not added to it, since its mass and all the other conserved charges are
zero, meaning that the bound would be trivially saturated.

All that happened in this transformation is that the mass M , which does
appear in the B bound has completely transformed in primary dilaton charge
Qd which in principle does not.

After our study of the transformation of charges it is clear that to rec-
oncile these two results one has to admit that the generalized B bound for-
mula Eq. (4.11) does apply to all kinds of scalar charge and not only to the
secondary-type one. Only in this way the invariance of the B bound becomes
consistent with the covariance of the Killing spinor equations.

Although our reasoning is completely clear when we look on specific solu-
tions one should be able to derive B bounds including primary scalar charges
using a Nester construction based on the supersymmetry transformation laws
of the fermions of the supergravity theory under consideration. To be able
to do this one has to be able to manage more general boundary conditions
including the seemingly unavoidable naked singularities that primary hair
implies.

Although we have kept this discussion strictly four-dimensional it is easy
to generalize these arguments to higher dimensions. In fact, solutions gen-
eralizing the one above to higher (d) dimensions can be straightforwardly
found


ds2 = −W

M
r0
−1
Wdt2 +W

1
d−3

(
1−M

r0

) [
W−1dρ2 + ρ2dΩ2

(d−2)

]
,

φ = φ0 + Qd
r0

lnW .

(4.20)

where

W = 1−
2r0

ρd−3
, (4.21)

and now

r2
0 = M2 + 2

(
d−3
d−2

)
Qd . (4.22)

24The dilatino supersymmetry transformation rule would be equal to δελ
I ∼6∂φ̂εI which

only vanishes for εI = 0. (I is an SU(4) index here).

39



For Qd = 0 we recover the d-dimensional Schwarzschild solution. In
all other cases we have metrics with naked singularities either at ρ = 0 or
ρd−3 = 2r0.

A further example can be useful to fix these ideas.
Using our conventions, it is possible to write the stringy RN solution in

the following form:

dŝ2
E = −H−2Wdt2 +H2 [W−1dr2 + r2dΩ2] ,

e−φ̂ = H/H = 1 ,

Â(1)
t = 2α1

|Q|
M−r0

(H−1 − 1) ,

Â(2)
ϕ = −2α2|Q| cos θ ,

(4.23)

where H and W are (not independent) harmonic functions

H = 1 +
M − r0

r
, W = 1−

2r0

r
, (4.24)

and the constants are:

α2
i = 1 , r2

0 = M2 − 2Q2 , (4.25)

where we have set

Q1
e = α1|Q| , Q2

m = α2|Q| . (4.26)

The dilaton charge is identically zero for this family. Observe also that
M − r0 ≥ 0 always, and thus H never vanishes and so it never gives rise
to any singularities in the metric apart from the one at r = 0, which is the
curvature singularity. The metric is also singular at the horizon r = 2r0 > 0
where W vanishes, covering the physical singularity at r = 0.

The extremal limit is r0 = 0, M =
√

2|Q|, which makes W disappear and
H becomes an unrestricted harmonic function (we could describe many BHs
if we wanted). In this limit the horizon is placed at r = 0, which is th locus
of a two-sphere instead of a point, as can be seen by a coordinate change.
The curvature singularity is not covered by these coordinates.

Th B bound for this family of solutions is

M2 − 2Q2 = M2 − (Q1
e)

2 − (Q2
m)2 ≥ 0 , (4.27)

with the equality satisfied in the extreme r0 = 0 limit. Performing the τ
transformation on the above family of solutions we get the dual family of
solutions

40





d˜̂s
2

E = −H−1K−1Wdt2 +HK [W−1dr2 + r2dΩ2] ,

e
˜̂
φ = H/K ,

˜̂
A

1

t = 2α1
|Q|

M−r0
(K−1 − 1) ,

˜̂
A

2

ϕ = −2α2|Q| cos θ ,

(4.28)

where

K = 1−
M + r0

r
, (4.29)

The above metric has several singularities: there is a curvature singularity
at r = 0 and the would-be horizon singularity at r = 2r0 but both lie beyond
another physical singularity at r = M +r0 ≥ 2r0 which is where the function
K vanishes and where 2-spheres of radius r have zero area. This is, therefore,
a naked singularity.

Now the mass of the dual solution is clearly equal to the dilaton charge of
the original RN solution M̃ = Qd = 0 and vice-versa Q̃d = M . The electric
and magnetic charges have the same values.

This is a non-extreme massless “black hole” where the non-extremality is
provided by primary scalar hair.

Now, if one takes the “extreme limit” r0 = 0 (that is, the extreme limit in
the original solution) which is also the limit in which all the primary scalar
hair vanishes and all the dilaton charge is completely determined by the
electric and magnetic charges25 Q̃2

d = 2Q2 so the B bound is saturated

d˜̂s
2

E = −H−1K−1dt2 +HK [dr2 + r2dΩ2] ,

e
˜̂
φ = H/K ,

˜̂
A

1

t = −
√

2α1 (K−1 − 1) ,

˜̂
A

2

ϕ = −2α2|Q| cos θ ,

(4.30)

25The situation parallels the usual situation in which there is unconstrained “primary
mass” and “secondary mass” which is completely fixed by the electric and magnetic charges
through the B bound.
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which is one of the extreme massless black holes in Refs. [32], identified as
composite objects in the sense of Ref. [33] in Ref. [34] and further studied in
Refs. [35].

Observe that, while primary scalar hair should be included in the B
bound, the primary scalar hair completely disappears in the saturated B
bound. Thus, unbroken supersymmetry acts as a cosmic hairdresser and it
is not possible to find solutions with unbroken supersymmetry and primary
scalar hair.

As a last example we consier the well-known Kerr spacetime metric which
in Boyer-Lindquist coordinates reads:

dŝ2
E = −

r2 − 2Mr + a2

r2 + a2 cos2 θ
(dt− a sin2 θdφ)2

+
sin2 θ

r2 + a2 cos2 θ

[
(r2 + a2)dφ− adt

]2

+
r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2 + (r2 + a2 cos2 θ)dθ2 , (4.31)

where a = J/M . This metric belongs to a more general class of metrics which
can be written in appropriate coordinates as:

dŝ2
E = −G(dt− ωdφ)2 +Adr2 +Bdθ2 + Cdφ2 , (4.32)

where G,ω,A,B and C are arbitrary functions of r and θ, conveying the
adapted character of the coordinates employed.

The T dual with respect to the isometry with Killing vector ∂
∂t

is easily
found to be, in the Einstein frame,

d˜̂s
2

E = −G−1dt2 +Adr2 +Bdθ2 + Cdφ2 , (4.33)

There is also a two-form present, given by

B̂ = −ωdt ∧ dφ , (4.34)

as well as a dilaton, namely

φ̂ = −1
2

log |G| , (4.35)

It is well known that in the static Schwarzschild case [2] what appear as
horizons in one metric, look as singularities in the T dual of it. In the more
general, stationary case considered here, there are two related concepts: the
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infinite redshift surface, (also called the “static limit”) that is, the stationary
limit surface bordering the region in which the Killing ∂

∂t
is timelike; and the

event horizon; that is the hypersurface where r = constant becomes null ;
the region between those two surfaces being the ergosphere.

In the ˜Kerr metric presented above, there is no “infinite redshift surface”,
and before the surface r = const becomes null, a singularity develops, located
at

G ≡
r2 + a2 cos2 θ − 2mr

r2 + a2 cos2 θ
= 0 . (4.36)

The metric is easily seen to be asymptotically flat, and the 2-form goes to
zero at infinity as

B̂ = 2ma sin2 θ
1

r

[
1 +

2m

r
+O(r−2)

]
dt ∧ dφ . (4.37)

5 Conclusions

The results of the present paper concerning the transformation of the charges
under duality leave unanswered the question posed in the Introduction: why
the angular momentum appears in the definition of extremality (defining
the borderline between regular horizon and a naked singularity, with zero
Hawking temperature) but not in the Bogomol’nyi bound (whose saturation
guarantees absence of quantum corrections, as well as a “zero force condi-
tion”, allowing superposition of static solutions).

We now believe this is due to the fact that stationary (as opposed to
static) black holes possess a specific decay width, which can even be seen
classically by scattering waves off the black hole. This process is known as
“superradiance” ([36]; see also [37]) in the black hole literature.

The way this appears is that the amplitude for reflected waves is greater
than the corresponding incident amplitude, for low frequencies, up to a given
frequency cutoff, mΩH , depending on the angular momentum of the hole, and
such that ΩH(a = 0) = 0. The angular momentum of the hole decreases by
this mechanism until a static configuration is reached. The physics underly-
ing this process is similar to the one supporting Penrose’s energy extraction
mechanism, namely, the fact that energy can be negative in the ergosphere.
This, in turn, is an straightforward consequence of the mathematical fact
that the Energy of a test particle is defined as E = p.k, where p is the
momentum of the particle, and k is the Killing vector (which has spacelike
character precisely in the ergosphere); and the product of a spacelike vector
with a timelike one does not have a definite sign.
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Quantum mechanically, this means that there are two competing mecha-
nisms of decay for a rotating (stationary) black hole: spontaneous emission
(the quantum effect associated to the superradiance), which is not thermal
(and disappears when the angular momentum goes to zero) and Hawking
radiation, which is thermal.

The first one is most efficient for massive black holes, but its width is
never zero even for small masses, until the black hole has lost all its angular
momentum.

This clearly shows that even if the black hole is extremal, it cannot be
stable quantum mechanically as long as its angular momentum is different
from zero. This argument taken literally would suggest that it is not possible
to have BPS states with non zero angular momentum, unless they are such
that no ergosphere exists. This is the case of the supersymmetric Kerr-
Newman solutions which are singular and, therefore, do not have ergosphere.
What is not clear is why supersymmetry signals as special that singular case
and not the usual extremal Kerr-Newman black hole26.

It could well be that Supergravity is not capable to give that answer but
String Theory is: from the String Theory point of view, given an extreme
Reissner-Nordström black hole, if we want to add angular momentum, we can
only do it at the expense of adding mass at the same time. Thus, according
to the String Theory black-hole building rules, one can get extreme Kerr-
Newman black holes but never a supersymmetric (singular) object with non-
zero angular momentum. In this sense, while Supergravity acts as a cosmic
censor only in static cases, String Theory seems to act as a true cosmic censor
in all cases. The singular solutions cannot be built in the theory.

A similar argument could also be enough to prove a no-hair theorem in
String Theory: it could happen that it is impossible to build String Theory
states with primary scalar hair because there is no primary source for scalar
hair in it. In this sense String Theory would act as a cosmic hairdresser.
Here the situation is, though, a bit different. First of all, we are clearly
a long way from proving that there are no microscopic configurations in
String Theory that result in macroscopic primary scalar hair. In fact, the
situation resembles a bit the situation of the “primary mass” (the mass that
exceeds the Bogomol’nyi identity) since it is not clear what the microscopic
configuration that manifests itself as that primary mass is and, thus, there
is no String Theory model for the Schwarzschild black hole. It is, in fact,
conceivable that both quantities have the similar origins, as T duality seems

26This argument seems to be valid only in four dimensions, though, since rotating
charged black holes which are BPS states exist in five dimensions [38]. The existence
of two Casmirs for the five-dimensional angular momentum seems to play an important
role.
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to be indicating. This would be a more attractive scenario since then we
would have a tool ins String Theory to understand no-hair theorems from
first principles.

There is, yet, another, more speculative, possibility that we could like
to mention. Since extreme and non-extreme massless “black holes” seem
to have the same kind of singularities as their regular T dual counterparts
(null and spacelike, respectively) one could, in principle, use the spacetime
of the massless black hole to patch up the spacetime of the massive one,
gluing them at the singularity. This would be a non-analytic continuation
through the singularity with the help of T duality much in the same spirit as
T duality at finite temperature can relate high and low-temperature regimes
of the heterotic string even though, in between the free energy diverges at
the Hagedorn temperature [39].

From the point of view of String Theory this possibility looks more plau-
sible when one takes into account the lower sensitivity of strings to spacetime
singularities, as compared to point particles [40],

Work in this direction is in progress.
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E. Álvarez and M.A.R. Osorio, Duality is an Exact Symmetry of String
Perturbation Theory, Phys. Rev. D40 (1989) 1150.

[40] G.T. Horowitz and A.R. Steif, Space-Time Singularities in String The-
ory, Phys. Rev. Lett. 64 (1990) 260.
G.T. Horowitz and A.R. Steif, Strings in Strong Gravitational Fields,
Phys. Rev. D42 (1990) 1950-1959.

49


